// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================================= ** ** Source: test1.c (modf) ** ** Purpose: Test to ensure that modf return the correct values ** ** Dependencies: PAL_Initialize ** PAL_Terminate ** Fail ** fabs ** **===========================================================================*/ #include // binary64 (double) has a machine epsilon of 2^-52 (approx. 2.22e-16). However, this // is slightly too accurate when writing tests meant to run against libm implementations // for various platforms. 2^-50 (approx. 8.88e-16) seems to be as accurate as we can get. // // The tests themselves will take PAL_EPSILON and adjust it according to the expected result // so that the delta used for comparison will compare the most significant digits and ignore // any digits that are outside the double precision range (15-17 digits). // For example, a test with an expect result in the format of 0.xxxxxxxxxxxxxxxxx will use // PAL_EPSILON for the variance, while an expected result in the format of 0.0xxxxxxxxxxxxxxxxx // will use PAL_EPSILON / 10 and and expected result in the format of x.xxxxxxxxxxxxxxxx will // use PAL_EPSILON * 10. #define PAL_EPSILON 8.8817841970012523e-16 #define PAL_NAN sqrt(-1.0) #define PAL_POSINF -log(0.0) #define PAL_NEGINF log(0.0) /** * Helper test structure */ struct test { double value; /* value to test the function with */ double expected; /* expected result */ double variance; /* maximum delta between the expected and actual result */ double expected_intpart; /* expected result */ double variance_intpart; /* maximum delta between the expected and actual result */ }; /** * validate * * test validation function */ void __cdecl validate(double value, double expected, double variance, double expected_intpart, double variance_intpart) { double result_intpart; double result = modf(value, &result_intpart); /* * The test is valid when the difference between result * and expected is less than or equal to variance */ double delta = fabs(result - expected); double delta_intpart = fabs(result_intpart - expected_intpart); if ((delta > variance) || (delta_intpart > variance_intpart)) { Fail("modf(%g) returned %20.17g with an intpart of %20.17g when it should have returned %20.17g with an intpart of %20.17g", value, result, result_intpart, expected, expected_intpart); } } /** * validate * * test validation function for values returning NaN */ void __cdecl validate_isnan(double value) { double result_intpart; double result = modf(value, &result_intpart); if (!_isnan(result) || !_isnan(result_intpart)) { Fail("modf(%g) returned %20.17g with an intpart of %20.17g when it should have returned %20.17g with an intpart of %20.17g", value, result, result_intpart, PAL_NAN, PAL_NAN); } } /** * main * * executable entry point */ int __cdecl main(int argc, char **argv) { struct test tests[] = { /* value expected variance expected_intpart variance_intpart */ { 0, 0, PAL_EPSILON, 0, PAL_EPSILON }, { 0.31830988618379067, 0.31830988618379067, PAL_EPSILON, 0, PAL_EPSILON }, // value: 1 / pi { 0.43429448190325183, 0.43429448190325183, PAL_EPSILON, 0, PAL_EPSILON }, // value: log10(e) { 0.63661977236758134, 0.63661977236758134, PAL_EPSILON, 0, PAL_EPSILON }, // value: 2 / pi { 0.69314718055994531, 0.69314718055994531, PAL_EPSILON, 0, PAL_EPSILON }, // value: ln(2) { 0.70710678118654752, 0.70710678118654752, PAL_EPSILON, 0, PAL_EPSILON }, // value: 1 / sqrt(2) { 0.78539816339744831, 0.78539816339744831, PAL_EPSILON, 0, PAL_EPSILON }, // value: pi / 4 { 1, 0, PAL_EPSILON, 1, PAL_EPSILON * 10 }, { 1.1283791670955126, 0.1283791670955126, PAL_EPSILON, 1, PAL_EPSILON * 10 }, // value: 2 / sqrt(pi) { 1.4142135623730950, 0.4142135623730950, PAL_EPSILON, 1, PAL_EPSILON * 10 }, // value: sqrt(2) { 1.4426950408889634, 0.4426950408889634, PAL_EPSILON, 1, PAL_EPSILON * 10 }, // value: log2(e) { 1.5707963267948966, 0.5707963267948966, PAL_EPSILON, 1, PAL_EPSILON * 10 }, // value: pi / 2 { 2.3025850929940457, 0.3025850929940457, PAL_EPSILON, 2, PAL_EPSILON * 10 }, // value: ln(10) { 2.7182818284590452, 0.7182818284590452, PAL_EPSILON, 2, PAL_EPSILON * 10 }, // value: e { 3.1415926535897932, 0.1415926535897932, PAL_EPSILON, 3, PAL_EPSILON * 10 }, // value: pi { PAL_POSINF, 0, PAL_EPSILON, PAL_POSINF, 0 } }; /* PAL initialization */ if (PAL_Initialize(argc, argv) != 0) { return FAIL; } for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) { validate( tests[i].value, tests[i].expected, tests[i].variance, tests[i].expected_intpart, tests[i].variance_intpart); validate(-tests[i].value, -tests[i].expected, tests[i].variance, -tests[i].expected_intpart, tests[i].variance_intpart); } validate_isnan(PAL_NAN); PAL_Terminate(); return PASS; }