// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================================= ** ** Source: test1.c ** ** Purpose: Test to ensure that fabsf return the correct values ** ** Dependencies: PAL_Initialize ** PAL_Terminate ** Fail ** **===========================================================================*/ #include // binary32 (float) has a machine epsilon of 2^-23 (approx. 1.19e-07). However, this // is slightly too accurate when writing tests meant to run against libm implementations // for various platforms. 2^-21 (approx. 4.76e-07) seems to be as accurate as we can get. // // The tests themselves will take PAL_EPSILON and adjust it according to the expected result // so that the delta used for comparison will compare the most significant digits and ignore // any digits that are outside the double precision range (6-9 digits). // For example, a test with an expect result in the format of 0.xxxxxxxxx will use PAL_EPSILON // for the variance, while an expected result in the format of 0.0xxxxxxxxx will use // PAL_EPSILON / 10 and and expected result in the format of x.xxxxxx will use PAL_EPSILON * 10. #define PAL_EPSILON 4.76837158e-07 #define PAL_NAN sqrt(-1.0) #define PAL_POSINF -log(0.0) #define PAL_NEGINF log(0.0) /** * Helper test structure */ struct test { float value; /* value to test the function with */ float expected; /* expected result */ float variance; /* maximum delta between the expected and actual result */ }; /** * validate * * test validation function */ void __cdecl validate(float value, float expected, float variance) { float result = fabsf(value); /* * The test is valid when the difference between result * and expected is less than or equal to variance */ float delta = fabsf(result - expected); if (delta > variance) { Fail("fabsf(%g) returned %10.9g when it should have returned %10.9g", value, result, expected); } } /** * validate * * test validation function for values returning NaN */ void __cdecl validate_isnan(float value) { float result = fabsf(value); if (!_isnan(result)) { Fail("fabsf(%g) returned %10.9g when it should have returned %10.9g", value, result, PAL_NAN); } } /** * main * * executable entry point */ INT __cdecl main(INT argc, CHAR **argv) { struct test tests[] = { /* value expected variance */ { PAL_NEGINF, PAL_POSINF, 0 }, { -3.14159265f, 3.14159265f, PAL_EPSILON * 10 }, // value: -(pi) expected: pi { -2.71828183f, 2.71828183f, PAL_EPSILON * 10 }, // value: -(e) expected: e { -2.30258509f, 2.30258509f, PAL_EPSILON * 10 }, // value: -(ln(10)) expected: ln(10) { -1.57079633f, 1.57079633f, PAL_EPSILON * 10 }, // value: -(pi / 2) expected: pi / 2 { -1.44269504f, 1.44269504f, PAL_EPSILON * 10 }, // value: -(log2(e)) expected: log2(e) { -1.41421356f, 1.41421356f, PAL_EPSILON * 10 }, // value: -(sqrt(2)) expected: sqrt(2) { -1.12837917f, 1.12837917f, PAL_EPSILON * 10 }, // value: -(2 / sqrt(pi)) expected: 2 / sqrt(pi) { -1, 1, PAL_EPSILON * 10 }, { -0.785398163f, 0.785398163f, PAL_EPSILON }, // value: -(pi / 4) expected: pi / 4 { -0.707106781f, 0.707106781f, PAL_EPSILON }, // value: -(1 / sqrt(2)) expected: 1 / sqrt(2) { -0.693147181f, 0.693147181f, PAL_EPSILON }, // value: -(ln(2)) expected: ln(2) { -0.636619772f, 0.636619772f, PAL_EPSILON }, // value: -(2 / pi) expected: 2 / pi { -0.434294482f, 0.434294482f, PAL_EPSILON }, // value: -(log10(e)) expected: log10(e) { -0.318309886f, 0.318309886f, PAL_EPSILON }, // value: -(1 / pi) expected: 1 / pi { -0.0f, 0, PAL_EPSILON }, }; // PAL initialization if (PAL_Initialize(argc, argv) != 0) { return FAIL; } for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) { validate( tests[i].value, tests[i].expected, tests[i].variance); validate(-tests[i].value, tests[i].expected, tests[i].variance); } validate_isnan(PAL_NAN); PAL_Terminate(); return PASS; }