// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================================ ** ** Source: test1.c ** ** Purpose: Tests ceilf with simple positive and negative values. Also tests ** extreme cases like extremely small values and positive and ** negative infinity. Makes sure that calling ceilf on NaN returns ** NaN ** **==========================================================================*/ #include // binary32 (float) has a machine epsilon of 2^-23 (approx. 1.19e-07). However, this // is slightly too accurate when writing tests meant to run against libm implementations // for various platforms. 2^-21 (approx. 4.76e-07) seems to be as accurate as we can get. // // The tests themselves will take PAL_EPSILON and adjust it according to the expected result // so that the delta used for comparison will compare the most significant digits and ignore // any digits that are outside the double precision range (6-9 digits). // For example, a test with an expect result in the format of 0.xxxxxxxxx will use PAL_EPSILON // for the variance, while an expected result in the format of 0.0xxxxxxxxx will use // PAL_EPSILON / 10 and and expected result in the format of x.xxxxxx will use PAL_EPSILON * 10. #define PAL_EPSILON 4.76837158e-07 #define PAL_NAN sqrtf(-1.0f) #define PAL_POSINF -logf(0.0f) #define PAL_NEGINF logf(0.0f) /** * Helper test structure */ struct test { float value; /* value to test the function with */ float expected; /* expected result */ float variance; /* maximum delta between the expected and actual result */ }; /** * validate * * test validation function */ void __cdecl validate(float value, float expected, float variance) { float result = ceilf(value); /* * The test is valid when the difference between result * and expected is less than or equal to variance */ float delta = fabsf(result - expected); if (delta > variance) { Fail("ceilf(%g) returned %10.9g when it should have returned %10.9g", value, result, expected); } } /** * validate * * test validation function for values returning NaN */ void __cdecl validate_isnan(float value) { float result = ceilf(value); if (!_isnanf(result)) { Fail("ceilf(%g) returned %10.9g when it should have returned %10.9g", value, result, PAL_NAN); } } /** * main * * executable entry point */ int __cdecl main(int argc, char *argv[]) { struct test tests[] = { /* value expected variance */ { 0.318309886f, 1, PAL_EPSILON * 10 }, // value: 1 / pi { 0.434294482f, 1, PAL_EPSILON * 10 }, // value: log10f(e) { 0.636619772f, 1, PAL_EPSILON * 10 }, // value: 2 / pi { 0.693147181f, 1, PAL_EPSILON * 10 }, // value: ln(2) { 0.707106781f, 1, PAL_EPSILON * 10 }, // value: 1 / sqrtf(2) { 0.785398163f, 1, PAL_EPSILON * 10 }, // value: pi / 4 { 1.12837917f, 2, PAL_EPSILON * 10 }, // value: 2 / sqrtf(pi) { 1.41421356f, 2, PAL_EPSILON * 10 }, // value: sqrtf(2) { 1.44269504f, 2, PAL_EPSILON * 10 }, // value: logf2(e) { 1.57079633f, 2, PAL_EPSILON * 10 }, // value: pi / 2 { 2.30258509f, 3, PAL_EPSILON * 10 }, // value: ln(10) { 2.71828183f, 3, PAL_EPSILON * 10 }, // value: e { 3.14159265f, 4, PAL_EPSILON * 10 }, // value: pi { PAL_POSINF, PAL_POSINF, 0 } }; /* PAL initialization */ if (PAL_Initialize(argc, argv) != 0) { return FAIL; } validate( 0, 0, PAL_EPSILON); validate(-0.0f, 0, PAL_EPSILON); validate( 1, 1, PAL_EPSILON * 10); validate(-1.0f, -1, PAL_EPSILON * 10); for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) { validate( tests[i].value, tests[i].expected, tests[i].variance); validate(-tests[i].value, 1 - tests[i].expected, tests[i].variance); } validate_isnan(PAL_NAN); PAL_Terminate(); return PASS; }