// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. // using System; using System.Collections.Generic; using System.Diagnostics; using System.Diagnostics.Contracts; using System.Reflection; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Threading; using System.Security; namespace System.Runtime.InteropServices.WindowsRuntime { // Helper functions to manually marshal data between .NET and WinRT public static class WindowsRuntimeMarshal { // Add an event handler to a Windows Runtime style event, such that it can be removed via a delegate // lookup at a later time. This method adds the handler to the add method using the supplied // delegate. It then stores the corresponding token in a dictionary for easy access by RemoveEventHandler // later. Note that the dictionary is indexed by the remove method that will be used for RemoveEventHandler // so the removeMethod given here must match the remove method supplied there exactly. public static void AddEventHandler(Func addMethod, Action removeMethod, T handler) { if (addMethod == null) throw new ArgumentNullException(nameof(addMethod)); if (removeMethod == null) throw new ArgumentNullException(nameof(removeMethod)); Contract.EndContractBlock(); // Managed code allows adding a null event handler, the effect is a no-op. To match this behavior // for WinRT events, we simply ignore attempts to add null. if (handler == null) { return; } // Delegate to managed event registration implementation or native event registration implementation // They have completely different implementation because native side has its own unique problem to solve - // there could be more than one RCW for the same COM object // it would be more confusing and less-performant if we were to merge them together object target = removeMethod.Target; if (target == null || Marshal.IsComObject(target)) NativeOrStaticEventRegistrationImpl.AddEventHandler(addMethod, removeMethod, handler); else ManagedEventRegistrationImpl.AddEventHandler(addMethod, removeMethod, handler); } // Remove the delegate handler from the Windows Runtime style event registration by looking for // its token, previously stored via AddEventHandler public static void RemoveEventHandler(Action removeMethod, T handler) { if (removeMethod == null) throw new ArgumentNullException(nameof(removeMethod)); Contract.EndContractBlock(); // Managed code allows removing a null event handler, the effect is a no-op. To match this behavior // for WinRT events, we simply ignore attempts to remove null. if (handler == null) { return; } // Delegate to managed event registration implementation or native event registration implementation // They have completely different implementation because native side has its own unique problem to solve - // there could be more than one RCW for the same COM object // it would be more confusing and less-performant if we were to merge them together object target = removeMethod.Target; if (target == null || Marshal.IsComObject(target)) NativeOrStaticEventRegistrationImpl.RemoveEventHandler(removeMethod, handler); else ManagedEventRegistrationImpl.RemoveEventHandler(removeMethod, handler); } public static void RemoveAllEventHandlers(Action removeMethod) { if (removeMethod == null) throw new ArgumentNullException(nameof(removeMethod)); Contract.EndContractBlock(); // Delegate to managed event registration implementation or native event registration implementation // They have completely different implementation because native side has its own unique problem to solve - // there could be more than one RCW for the same COM object // it would be more confusing and less-performant if we were to merge them together object target = removeMethod.Target; if (target == null || Marshal.IsComObject(target)) NativeOrStaticEventRegistrationImpl.RemoveAllEventHandlers(removeMethod); else ManagedEventRegistrationImpl.RemoveAllEventHandlers(removeMethod); } // Returns the total cache size // Used by test only to verify we don't leak event cache internal static int GetRegistrationTokenCacheSize() { int count = 0; if (ManagedEventRegistrationImpl.s_eventRegistrations != null) { lock (ManagedEventRegistrationImpl.s_eventRegistrations) { count += ManagedEventRegistrationImpl.s_eventRegistrations.Keys.Count; } } if (NativeOrStaticEventRegistrationImpl.s_eventRegistrations != null) { lock (NativeOrStaticEventRegistrationImpl.s_eventRegistrations) { count += NativeOrStaticEventRegistrationImpl.s_eventRegistrations.Count; } } return count; } // // Optimized version of List of EventRegistrationToken // It is made a struct to reduce overhead // internal struct EventRegistrationTokenList { private EventRegistrationToken firstToken; // Optimization for common case where there is only one token private List restTokens; // Rest of the tokens internal EventRegistrationTokenList(EventRegistrationToken token) { firstToken = token; restTokens = null; } // Push a new token into this list // Returns true if you need to copy back this list into the dictionary (so that you // don't lose change outside the dictionary). false otherwise. public bool Push(EventRegistrationToken token) { bool needCopy = false; if (restTokens == null) { restTokens = new List(); needCopy = true; } restTokens.Add(token); return needCopy; } // Pops the last token // Returns false if no more tokens left, true otherwise public bool Pop(out EventRegistrationToken token) { // Only 1 token in this list and we just removed the last token if (restTokens == null || restTokens.Count == 0) { token = firstToken; return false; } int last = restTokens.Count - 1; token = restTokens[last]; restTokens.RemoveAt(last); return true; } public void CopyTo(List tokens) { tokens.Add(firstToken); if (restTokens != null) tokens.AddRange(restTokens); } } // // Event registration support for managed objects events & static events // internal static class ManagedEventRegistrationImpl { // Mappings of delegates registered for events -> their registration tokens. // These mappings are stored indexed by the remove method which can be used to undo the registrations. // // The full structure of this table is: // object the event is being registered on -> // Table [RemoveMethod] -> // Table [Handler] -> Token // // Note: There are a couple of optimizations I didn't do here because they don't make sense for managed events: // 1. Flatten the event cache (see EventCacheKey in native WinRT event implementation below) // // This is because managed events use ConditionalWeakTable to hold Objects->(Event->(Handler->Tokens)), // and when object goes away everything else will be nicely cleaned up. If I flatten it like native WinRT events, // I'll have to use Dictionary (as ConditionalWeakTable won't work - nobody will hold the new key alive anymore) // instead, and that means I'll have to add more code from native WinRT events into managed WinRT event to support // self-cleanup in the finalization, as well as reader/writer lock to protect against race conditions in the finalization, // which adds a lot more complexity and doesn't really worth it. // // 2. Use conditionalWeakTable to hold Handler->Tokens. // // The reason is very simple - managed object use dictionary (see EventRegistrationTokenTable) to hold delegates alive. // If the delegates aren't alive, it means either they have been unsubscribed, or the object itself is gone, // and in either case, they've been already taken care of. // internal volatile static ConditionalWeakTable>> s_eventRegistrations = new ConditionalWeakTable>>(); internal static void AddEventHandler(Func addMethod, Action removeMethod, T handler) { Contract.Requires(addMethod != null); Contract.Requires(removeMethod != null); // Add the method, and make a note of the token -> delegate mapping. object instance = removeMethod.Target; Dictionary registrationTokens = GetEventRegistrationTokenTable(instance, removeMethod); EventRegistrationToken token = addMethod(handler); lock (registrationTokens) { EventRegistrationTokenList tokens; if (!registrationTokens.TryGetValue(handler, out tokens)) { tokens = new EventRegistrationTokenList(token); registrationTokens[handler] = tokens; } else { bool needCopy = tokens.Push(token); // You need to copy back this list into the dictionary (so that you don't lose change outside dictionary) if (needCopy) registrationTokens[handler] = tokens; } BCLDebug.Log("INTEROP", "[WinRT_Eventing] Event subscribed for managed instance = " + instance + ", handler = " + handler + "\n"); } } // Get the event registration token table for an event. These are indexed by the remove method of the event. private static Dictionary GetEventRegistrationTokenTable(object instance, Action removeMethod) { Contract.Requires(instance != null); Contract.Requires(removeMethod != null); Contract.Requires(s_eventRegistrations != null); lock (s_eventRegistrations) { Dictionary> instanceMap = null; if (!s_eventRegistrations.TryGetValue(instance, out instanceMap)) { instanceMap = new Dictionary>(); s_eventRegistrations.Add(instance, instanceMap); } Dictionary tokens = null; if (!instanceMap.TryGetValue(removeMethod.Method, out tokens)) { tokens = new Dictionary(); instanceMap.Add(removeMethod.Method, tokens); } return tokens; } } internal static void RemoveEventHandler(Action removeMethod, T handler) { Contract.Requires(removeMethod != null); object instance = removeMethod.Target; Dictionary registrationTokens = GetEventRegistrationTokenTable(instance, removeMethod); EventRegistrationToken token; lock (registrationTokens) { EventRegistrationTokenList tokens; // Failure to find a registration for a token is not an error - it's simply a no-op. if (!registrationTokens.TryGetValue(handler, out tokens)) { BCLDebug.Log("INTEROP", "[WinRT_Eventing] no registrationTokens found for instance=" + instance + ", handler= " + handler + "\n"); return; } // Select a registration token to unregister // We don't care which one but I'm returning the last registered token to be consistent // with native event registration implementation bool moreItems = tokens.Pop(out token); if (!moreItems) { // Remove it from cache if this list become empty // This must be done because EventRegistrationTokenList now becomes invalid // (mostly because there is no safe default value for EventRegistrationToken to express 'no token') // NOTE: We should try to remove registrationTokens itself from cache if it is empty, otherwise // we could run into a race condition where one thread removes it from cache and another thread adds // into the empty registrationToken table registrationTokens.Remove(handler); } } removeMethod(token); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Event unsubscribed for managed instance = " + instance + ", handler = " + handler + ", token = " + token.m_value + "\n"); } internal static void RemoveAllEventHandlers(Action removeMethod) { Contract.Requires(removeMethod != null); object instance = removeMethod.Target; Dictionary registrationTokens = GetEventRegistrationTokenTable(instance, removeMethod); List tokensToRemove = new List(); lock (registrationTokens) { // Copy all tokens to tokensToRemove array which later we'll call removeMethod on // outside this lock foreach (EventRegistrationTokenList tokens in registrationTokens.Values) { tokens.CopyTo(tokensToRemove); } // Clear the dictionary - at this point all event handlers are no longer in the cache // but they are not removed yet registrationTokens.Clear(); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Cache cleared for managed instance = " + instance + "\n"); } // // Remove all handlers outside the lock // BCLDebug.Log("INTEROP", "[WinRT_Eventing] Start removing all events for instance = " + instance + "\n"); CallRemoveMethods(removeMethod, tokensToRemove); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Finished removing all events for instance = " + instance + "\n"); } } // // WinRT event registration implementation code // internal static class NativeOrStaticEventRegistrationImpl { // // Key = (target object, event) // We use a key of object+event to save an extra dictionary // internal struct EventCacheKey { internal object target; internal MethodInfo method; public override string ToString() { return "(" + target + ", " + method + ")"; } } internal class EventCacheKeyEqualityComparer : IEqualityComparer { public bool Equals(EventCacheKey lhs, EventCacheKey rhs) { return (Object.Equals(lhs.target, rhs.target) && Object.Equals(lhs.method, rhs.method)); } public int GetHashCode(EventCacheKey key) { return key.target.GetHashCode() ^ key.method.GetHashCode(); } } // // EventRegistrationTokenListWithCount // // A list of EventRegistrationTokens that maintains a count // // The reason this needs to be a separate class is that we need a finalizer for this class // If the delegate is collected, it will take this list away with it (due to dependent handles), // and we need to remove the PerInstancEntry from cache // See ~EventRegistrationTokenListWithCount for more details // internal class EventRegistrationTokenListWithCount { private TokenListCount _tokenListCount; private EventRegistrationTokenList _tokenList; internal EventRegistrationTokenListWithCount(TokenListCount tokenListCount, EventRegistrationToken token) { _tokenListCount = tokenListCount; _tokenListCount.Inc(); _tokenList = new EventRegistrationTokenList(token); } ~EventRegistrationTokenListWithCount() { // Decrement token list count // This is need to correctly keep trace of number of tokens for EventCacheKey // and remove it from cache when the token count drop to 0 // we don't need to take locks for decrement the count - we only need to take a global // lock when we decide to destroy cache for the IUnknown */type instance BCLDebug.Log("INTEROP", "[WinRT_Eventing] Finalizing EventRegistrationTokenList for " + _tokenListCount.Key + "\n"); _tokenListCount.Dec(); } public void Push(EventRegistrationToken token) { // Since EventRegistrationTokenListWithCount is a reference type, there is no need // to copy back. Ignore the return value _tokenList.Push(token); } public bool Pop(out EventRegistrationToken token) { return _tokenList.Pop(out token); } public void CopyTo(List tokens) { _tokenList.CopyTo(tokens); } } // // Maintains the number of tokens for a particular EventCacheKey // TokenListCount is a class for two reasons: // 1. Efficient update in the Dictionary to avoid lookup twice to update the value // 2. Update token count without taking a global lock. Only takes a global lock when drop to 0 // internal class TokenListCount { private int _count; private EventCacheKey _key; internal TokenListCount(EventCacheKey key) { _key = key; } internal EventCacheKey Key { get { return _key; } } internal void Inc() { int newCount = Interlocked.Increment(ref _count); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Incremented TokenListCount for " + _key + ", Value = " + newCount + "\n"); } internal void Dec() { // Avoid racing with Add/Remove event entries into the cache // You don't want this removing the key in the middle of a Add/Remove s_eventCacheRWLock.AcquireWriterLock(Timeout.Infinite); try { int newCount = Interlocked.Decrement(ref _count); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Decremented TokenListCount for " + _key + ", Value = " + newCount + "\n"); if (newCount == 0) CleanupCache(); } finally { s_eventCacheRWLock.ReleaseWriterLock(); } } private void CleanupCache() { // Time to destroy cache for this IUnknown */type instance // because the total token list count has dropped to 0 and we don't have any events subscribed Contract.Requires(s_eventRegistrations != null); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Removing " + _key + " from cache" + "\n"); s_eventRegistrations.Remove(_key); BCLDebug.Log("INTEROP", "[WinRT_Eventing] s_eventRegistrations size = " + s_eventRegistrations.Count + "\n"); } } internal struct EventCacheEntry { // [Handler] -> Token internal ConditionalWeakTable registrationTable; // Maintains current total count for the EventRegistrationTokenListWithCount for this event cache key internal TokenListCount tokenListCount; } // Mappings of delegates registered for events -> their registration tokens. // These mappings are stored indexed by the remove method which can be used to undo the registrations. // // The full structure of this table is: // EventCacheKey (instanceKey, eventMethod) -> EventCacheEntry (Handler->tokens) // // A InstanceKey is the IUnknown * or static type instance // // Couple of things to note: // 1. We need to use IUnknown* because we want to be able to unscribe to the event for another RCW // based on the same COM object. For example: // m_canvas.GetAt(0).Event += Func; // m_canvas.GetAt(0).Event -= Func; // GetAt(0) might create a new RCW // // 2. Handler->Token is a ConditionalWeakTable because we don't want to keep the delegate alive // and we want EventRegistrationTokenListWithCount to be finalized after the delegate is no longer alive // 3. It is possible another COM object is created at the same address // before the entry in cache is destroyed. More specifically, // a. The same delegate is being unsubscribed. In this case we'll give them a // stale token - unlikely to be a problem // b. The same delegate is subscribed then unsubscribed. We need to make sure give // them the latest token in this case. This is guaranteed by always giving the last token and always use equality to // add/remove event handlers internal volatile static Dictionary s_eventRegistrations = new Dictionary(new EventCacheKeyEqualityComparer()); // Prevent add/remove handler code to run at the same with with cache cleanup code private volatile static MyReaderWriterLock s_eventCacheRWLock = new MyReaderWriterLock(); // Get InstanceKey to use in the cache private static object GetInstanceKey(Action removeMethod) { object target = removeMethod.Target; Debug.Assert(target == null || Marshal.IsComObject(target), "Must be null or a RCW"); if (target == null) return removeMethod.Method.DeclaringType; // Need the "Raw" IUnknown pointer for the RCW that is not bound to the current context return (object)Marshal.GetRawIUnknownForComObjectNoAddRef(target); } internal static void AddEventHandler(Func addMethod, Action removeMethod, T handler) { // The instanceKey will be IUnknown * of the target object object instanceKey = GetInstanceKey(removeMethod); // Call addMethod outside of RW lock // At this point we don't need to worry about race conditions and we can avoid deadlocks // if addMethod waits on finalizer thread // If we later throw we need to remove the method EventRegistrationToken token = addMethod(handler); bool tokenAdded = false; try { EventRegistrationTokenListWithCount tokens; // // The whole add/remove code has to be protected by a reader/writer lock // Add/Remove cannot run at the same time with cache cleanup but Add/Remove can run at the same time // s_eventCacheRWLock.AcquireReaderLock(Timeout.Infinite); try { // Add the method, and make a note of the delegate -> token mapping. TokenListCount tokenListCount; ConditionalWeakTable registrationTokens = GetOrCreateEventRegistrationTokenTable(instanceKey, removeMethod, out tokenListCount); lock (registrationTokens) { // // We need to find the key that equals to this handler // Suppose we have 3 handlers A, B, C that are equal (refer to the same object and method), // the first handler (let's say A) will be used as the key and holds all the tokens. // We don't need to hold onto B and C, because the COM object itself will keep them alive, // and they won't die anyway unless the COM object dies or they get unsubscribed. // It may appear that it is fine to hold A, B, C, and add them and their corresponding tokens // into registrationTokens table. However, this is very dangerous, because this COM object // may die, but A, B, C might not get collected yet, and another COM object comes into life // with the same IUnknown address, and we subscribe event B. In this case, the right token // will be added into B's token list, but once we unsubscribe B, we might end up removing // the last token in C, and that may lead to crash. // object key = registrationTokens.FindEquivalentKeyUnsafe(handler, out tokens); if (key == null) { tokens = new EventRegistrationTokenListWithCount(tokenListCount, token); registrationTokens.Add(handler, tokens); } else { tokens.Push(token); } tokenAdded = true; } } finally { s_eventCacheRWLock.ReleaseReaderLock(); } BCLDebug.Log("INTEROP", "[WinRT_Eventing] Event subscribed for instance = " + instanceKey + ", handler = " + handler + "\n"); } catch (Exception) { // If we've already added the token and go there, we don't need to "UNDO" anything if (!tokenAdded) { // Otherwise, "Undo" addMethod if any exception occurs // There is no need to cleanup our data structure as we haven't added the token yet removeMethod(token); } throw; } } private static ConditionalWeakTable GetEventRegistrationTokenTableNoCreate(object instance, Action removeMethod, out TokenListCount tokenListCount) { Contract.Requires(instance != null); Contract.Requires(removeMethod != null); return GetEventRegistrationTokenTableInternal(instance, removeMethod, out tokenListCount, /* createIfNotFound = */ false); } private static ConditionalWeakTable GetOrCreateEventRegistrationTokenTable(object instance, Action removeMethod, out TokenListCount tokenListCount) { Contract.Requires(instance != null); Contract.Requires(removeMethod != null); return GetEventRegistrationTokenTableInternal(instance, removeMethod, out tokenListCount, /* createIfNotFound = */ true); } // Get the event registration token table for an event. These are indexed by the remove method of the event. private static ConditionalWeakTable GetEventRegistrationTokenTableInternal(object instance, Action removeMethod, out TokenListCount tokenListCount, bool createIfNotFound) { Contract.Requires(instance != null); Contract.Requires(removeMethod != null); Contract.Requires(s_eventRegistrations != null); EventCacheKey eventCacheKey; eventCacheKey.target = instance; eventCacheKey.method = removeMethod.Method; lock (s_eventRegistrations) { EventCacheEntry eventCacheEntry; if (!s_eventRegistrations.TryGetValue(eventCacheKey, out eventCacheEntry)) { if (!createIfNotFound) { // No need to create an entry in this case tokenListCount = null; return null; } BCLDebug.Log("INTEROP", "[WinRT_Eventing] Adding (" + instance + "," + removeMethod.Method + ") into cache" + "\n"); eventCacheEntry = new EventCacheEntry(); eventCacheEntry.registrationTable = new ConditionalWeakTable(); eventCacheEntry.tokenListCount = new TokenListCount(eventCacheKey); s_eventRegistrations.Add(eventCacheKey, eventCacheEntry); } tokenListCount = eventCacheEntry.tokenListCount; return eventCacheEntry.registrationTable; } } internal static void RemoveEventHandler(Action removeMethod, T handler) { object instanceKey = GetInstanceKey(removeMethod); EventRegistrationToken token; // // The whole add/remove code has to be protected by a reader/writer lock // Add/Remove cannot run at the same time with cache cleanup but Add/Remove can run at the same time // s_eventCacheRWLock.AcquireReaderLock(Timeout.Infinite); try { TokenListCount tokenListCount; ConditionalWeakTable registrationTokens = GetEventRegistrationTokenTableNoCreate(instanceKey, removeMethod, out tokenListCount); if (registrationTokens == null) { // We have no information regarding this particular instance (IUnknown*/type) - just return // This is necessary to avoid leaking empty dictionary/conditionalWeakTables for this instance BCLDebug.Log("INTEROP", "[WinRT_Eventing] no registrationTokens found for instance=" + instanceKey + ", handler= " + handler + "\n"); return; } lock (registrationTokens) { EventRegistrationTokenListWithCount tokens; // Note: // When unsubscribing events, we allow subscribing the event using a different delegate // (but with the same object/method), so we need to find the first delegate that matches // and unsubscribe it // It actually doesn't matter which delegate - as long as it matches // Note that inside TryGetValueWithValueEquality we assumes that any delegate // with the same value equality would have the same hash code object key = registrationTokens.FindEquivalentKeyUnsafe(handler, out tokens); Debug.Assert((key != null && tokens != null) || (key == null && tokens == null), "key and tokens must be both null or non-null"); if (tokens == null) { // Failure to find a registration for a token is not an error - it's simply a no-op. BCLDebug.Log("INTEROP", "[WinRT_Eventing] no token list found for instance=" + instanceKey + ", handler= " + handler + "\n"); return; } // Select a registration token to unregister // Note that we need to always get the last token just in case another COM object // is created at the same address before the entry for the old one goes away. // See comments above s_eventRegistrations for more details bool moreItems = tokens.Pop(out token); // If the last token is removed from token list, we need to remove it from the cache // otherwise FindEquivalentKeyUnsafe may found this empty token list even though there could be other // equivalent keys in there with non-0 token list if (!moreItems) { // Remove it from (handler)->(tokens) // NOTE: We should not check whether registrationTokens has 0 entries and remove it from the cache // (just like managed event implementation), because this might have raced with the finalizer of // EventRegistrationTokenList registrationTokens.Remove(key); } BCLDebug.Log("INTEROP", "[WinRT_Eventing] Event unsubscribed for managed instance = " + instanceKey + ", handler = " + handler + ", token = " + token.m_value + "\n"); } } finally { s_eventCacheRWLock.ReleaseReaderLock(); } // Call removeMethod outside of RW lock // At this point we don't need to worry about race conditions and we can avoid deadlocks // if removeMethod waits on finalizer thread removeMethod(token); } internal static void RemoveAllEventHandlers(Action removeMethod) { object instanceKey = GetInstanceKey(removeMethod); List tokensToRemove = new List(); // // The whole add/remove code has to be protected by a reader/writer lock // Add/Remove cannot run at the same time with cache cleanup but Add/Remove can run at the same time // s_eventCacheRWLock.AcquireReaderLock(Timeout.Infinite); try { TokenListCount tokenListCount; ConditionalWeakTable registrationTokens = GetEventRegistrationTokenTableNoCreate(instanceKey, removeMethod, out tokenListCount); if (registrationTokens == null) { // We have no information regarding this particular instance (IUnknown*/type) - just return // This is necessary to avoid leaking empty dictionary/conditionalWeakTables for this instance return; } lock (registrationTokens) { // Copy all tokens to tokensToRemove array which later we'll call removeMethod on // outside this lock foreach (EventRegistrationTokenListWithCount tokens in registrationTokens.Values) { tokens.CopyTo(tokensToRemove); } // Clear the table - at this point all event handlers are no longer in the cache // but they are not removed yet registrationTokens.Clear(); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Cache cleared for managed instance = " + instanceKey + "\n"); } } finally { s_eventCacheRWLock.ReleaseReaderLock(); } // // Remove all handlers outside the lock // BCLDebug.Log("INTEROP", "[WinRT_Eventing] Start removing all events for instance = " + instanceKey + "\n"); CallRemoveMethods(removeMethod, tokensToRemove); BCLDebug.Log("INTEROP", "[WinRT_Eventing] Finished removing all events for instance = " + instanceKey + "\n"); } internal class ReaderWriterLockTimedOutException : ApplicationException { } /// Discussed @ https://blogs.msdn.microsoft.com/vancem/2006/03/29/analysis-of-reader-writer-lock/ /// /// /// A reader-writer lock implementation that is intended to be simple, yet very /// efficient. In particular only 1 interlocked operation is taken for any lock /// operation (we use spin locks to achieve this). The spin lock is never held /// for more than a few instructions (in particular, we never call event APIs /// or in fact any non-trivial API while holding the spin lock). /// /// Currently this ReaderWriterLock does not support recurision, however it is /// not hard to add /// internal class MyReaderWriterLock { // Lock specifiation for myLock: This lock protects exactly the local fields associted // instance of MyReaderWriterLock. It does NOT protect the memory associted with the // the events that hang off this lock (eg writeEvent, readEvent upgradeEvent). private int myLock; // Who owns the lock owners > 0 => readers // owners = -1 means there is one writer. Owners must be >= -1. private int owners; // These variables allow use to avoid Setting events (which is expensive) if we don't have to. private uint numWriteWaiters; // maximum number of threads that can be doing a WaitOne on the writeEvent private uint numReadWaiters; // maximum number of threads that can be doing a WaitOne on the readEvent // conditions we wait on. private EventWaitHandle writeEvent; // threads waiting to aquire a write lock go here. private EventWaitHandle readEvent; // threads waiting to aquire a read lock go here (will be released in bulk) internal MyReaderWriterLock() { // All state can start out zeroed. } internal void AcquireReaderLock(int millisecondsTimeout) { EnterMyLock(); for (;;) { // We can enter a read lock if there are only read-locks have been given out // and a writer is not trying to get in. if (owners >= 0 && numWriteWaiters == 0) { // Good case, there is no contention, we are basically done owners++; // Indicate we have another reader break; } // Drat, we need to wait. Mark that we have waiters and wait. if (readEvent == null) // Create the needed event { LazyCreateEvent(ref readEvent, false); continue; // since we left the lock, start over. } WaitOnEvent(readEvent, ref numReadWaiters, millisecondsTimeout); } ExitMyLock(); } internal void AcquireWriterLock(int millisecondsTimeout) { EnterMyLock(); for (;;) { if (owners == 0) { // Good case, there is no contention, we are basically done owners = -1; // indicate we have a writer. break; } // Drat, we need to wait. Mark that we have waiters and wait. if (writeEvent == null) // create the needed event. { LazyCreateEvent(ref writeEvent, true); continue; // since we left the lock, start over. } WaitOnEvent(writeEvent, ref numWriteWaiters, millisecondsTimeout); } ExitMyLock(); } internal void ReleaseReaderLock() { EnterMyLock(); Debug.Assert(owners > 0, "ReleasingReaderLock: releasing lock and no read lock taken"); --owners; ExitAndWakeUpAppropriateWaiters(); } internal void ReleaseWriterLock() { EnterMyLock(); Debug.Assert(owners == -1, "Calling ReleaseWriterLock when no write lock is held"); owners++; ExitAndWakeUpAppropriateWaiters(); } /// /// A routine for lazily creating a event outside the lock (so if errors /// happen they are outside the lock and that we don't do much work /// while holding a spin lock). If all goes well, reenter the lock and /// set 'waitEvent' /// private void LazyCreateEvent(ref EventWaitHandle waitEvent, bool makeAutoResetEvent) { Debug.Assert(myLock != 0, "Lock must be held"); Debug.Assert(waitEvent == null, "Wait event must be null"); ExitMyLock(); EventWaitHandle newEvent; if (makeAutoResetEvent) newEvent = new AutoResetEvent(false); else newEvent = new ManualResetEvent(false); EnterMyLock(); if (waitEvent == null) // maybe someone snuck in. waitEvent = newEvent; } /// /// Waits on 'waitEvent' with a timeout of 'millisceondsTimeout. /// Before the wait 'numWaiters' is incremented and is restored before leaving this routine. /// private void WaitOnEvent(EventWaitHandle waitEvent, ref uint numWaiters, int millisecondsTimeout) { Debug.Assert(myLock != 0, "Lock must be held"); waitEvent.Reset(); numWaiters++; bool waitSuccessful = false; ExitMyLock(); // Do the wait outside of any lock try { if (!waitEvent.WaitOne(millisecondsTimeout, false)) throw new ReaderWriterLockTimedOutException(); waitSuccessful = true; } finally { EnterMyLock(); --numWaiters; if (!waitSuccessful) // We are going to throw for some reason. Exit myLock. ExitMyLock(); } } /// /// Determines the appropriate events to set, leaves the locks, and sets the events. /// private void ExitAndWakeUpAppropriateWaiters() { Debug.Assert(myLock != 0, "Lock must be held"); if (owners == 0 && numWriteWaiters > 0) { ExitMyLock(); // Exit before signaling to improve efficiency (wakee will need the lock) writeEvent.Set(); // release one writer. } else if (owners >= 0 && numReadWaiters != 0) { ExitMyLock(); // Exit before signaling to improve efficiency (wakee will need the lock) readEvent.Set(); // release all readers. } else ExitMyLock(); } private void EnterMyLock() { if (Interlocked.CompareExchange(ref myLock, 1, 0) != 0) EnterMyLockSpin(); } private void EnterMyLockSpin() { for (int i = 0; ; i++) { if (i < 3 && Environment.ProcessorCount > 1) Thread.SpinWait(20); // Wait a few dozen instructions to let another processor release lock. else Thread.Sleep(0); // Give up my quantum. if (Interlocked.CompareExchange(ref myLock, 1, 0) == 0) return; } } private void ExitMyLock() { Debug.Assert(myLock != 0, "Exiting spin lock that is not held"); myLock = 0; } }; } // // Call removeMethod on each token and aggregate all exceptions thrown from removeMethod into one in case of failure // internal static void CallRemoveMethods(Action removeMethod, List tokensToRemove) { List exceptions = new List(); foreach (EventRegistrationToken token in tokensToRemove) { try { removeMethod(token); } catch (Exception ex) { exceptions.Add(ex); } BCLDebug.Log("INTEROP", "[WinRT_Eventing] Event unsubscribed for token = " + token.m_value + "\n"); } if (exceptions.Count > 0) throw new AggregateException(exceptions.ToArray()); } internal static unsafe string HStringToString(IntPtr hstring) { Contract.Requires(Environment.IsWinRTSupported); // There is no difference between a null and empty HSTRING if (hstring == IntPtr.Zero) { return String.Empty; } unsafe { uint length; char* rawBuffer = UnsafeNativeMethods.WindowsGetStringRawBuffer(hstring, &length); return new String(rawBuffer, 0, checked((int)length)); } } internal static Exception GetExceptionForHR(int hresult, Exception innerException, string messageResource) { Exception e = null; if (innerException != null) { string message = innerException.Message; if (message == null && messageResource != null) { message = SR.GetResourceString(messageResource); } e = new Exception(message, innerException); } else { string message = (messageResource != null ? SR.GetResourceString(messageResource): null); e = new Exception(message); } e.SetErrorCode(hresult); return e; } internal static Exception GetExceptionForHR(int hresult, Exception innerException) { return GetExceptionForHR(hresult, innerException, null); } private static bool s_haveBlueErrorApis = true; private static bool RoOriginateLanguageException(int error, string message, IntPtr languageException) { if (s_haveBlueErrorApis) { try { return UnsafeNativeMethods.RoOriginateLanguageException(error, message, languageException); } catch (EntryPointNotFoundException) { s_haveBlueErrorApis = false; } } return false; } private static void RoReportUnhandledError(IRestrictedErrorInfo error) { if (s_haveBlueErrorApis) { try { UnsafeNativeMethods.RoReportUnhandledError(error); } catch (EntryPointNotFoundException) { s_haveBlueErrorApis = false; } } } private static Guid s_iidIErrorInfo = new Guid(0x1CF2B120, 0x547D, 0x101B, 0x8E, 0x65, 0x08, 0x00, 0x2B, 0x2B, 0xD1, 0x19); /// /// Report that an exception has occurred which went user unhandled. This allows the global error handler /// for the application to be invoked to process the error. /// /// true if the error was reported, false if not (ie running on Win8) [FriendAccessAllowed] internal static bool ReportUnhandledError(Exception e) { // Only report to the WinRT global exception handler in modern apps if (!AppDomain.IsAppXModel()) { return false; } // If we don't have the capability to report to the global error handler, early out if (!s_haveBlueErrorApis) { return false; } if (e != null) { IntPtr exceptionIUnknown = IntPtr.Zero; IntPtr exceptionIErrorInfo = IntPtr.Zero; try { // Get an IErrorInfo for the current exception and originate it as a langauge error in order to have // Windows generate an IRestrictedErrorInfo corresponding to the exception object. We can then // notify the global error handler that this IRestrictedErrorInfo instance represents an exception that // went unhandled in managed code. // // Note that we need to get an IUnknown for the exception object and then QI for IErrorInfo since Exception // doesn't implement IErrorInfo in managed code - only its CCW does. exceptionIUnknown = Marshal.GetIUnknownForObject(e); if (exceptionIUnknown != IntPtr.Zero) { Marshal.QueryInterface(exceptionIUnknown, ref s_iidIErrorInfo, out exceptionIErrorInfo); if (exceptionIErrorInfo != IntPtr.Zero) { if (RoOriginateLanguageException(Marshal.GetHRForException_WinRT(e), e.Message, exceptionIErrorInfo)) { IRestrictedErrorInfo restrictedError = UnsafeNativeMethods.GetRestrictedErrorInfo(); if (restrictedError != null) { RoReportUnhandledError(restrictedError); return true; } } } } } finally { if (exceptionIErrorInfo != IntPtr.Zero) { Marshal.Release(exceptionIErrorInfo); } if (exceptionIUnknown != IntPtr.Zero) { Marshal.Release(exceptionIUnknown); } } } // If we got here, then some step of the marshaling failed, which means the GEH was not invoked return false; } #if FEATURE_COMINTEROP_WINRT_MANAGED_ACTIVATION // Get an IActivationFactory * for a managed type internal static IntPtr GetActivationFactoryForType(Type type) { ManagedActivationFactory activationFactory = GetManagedActivationFactory(type); return Marshal.GetComInterfaceForObject(activationFactory, typeof(IActivationFactory)); } internal static ManagedActivationFactory GetManagedActivationFactory(Type type) { ManagedActivationFactory activationFactory = new ManagedActivationFactory(type); // If the type has any associated factory interfaces (i.e. supports non-default activation // or has statics), the CCW for this instance of ManagedActivationFactory must support them. Marshal.InitializeManagedWinRTFactoryObject(activationFactory, (RuntimeType)type); return activationFactory; } #endif // FEATURE_COMINTEROP_WINRT_MANAGED_ACTIVATION // // Get activation factory object for a specified WinRT type // If the WinRT type is a native type, we'll always create a unique RCW for it, // This is necessary because WinRT factories are often implemented as a singleton, // and getting back a RCW for such WinRT factory would usually get back a RCW from // another apartment, even if the interface pointe returned from GetActivationFactory // is a raw pointer. As a result, user would randomly get back RCWs for activation // factories from other apartments and make transiton to those apartments and cause // deadlocks and create objects in incorrect apartments // public static IActivationFactory GetActivationFactory(Type type) { if (type == null) throw new ArgumentNullException(nameof(type)); if (type.IsWindowsRuntimeObject && type.IsImport) { return (IActivationFactory)Marshal.GetNativeActivationFactory(type); } else { #if FEATURE_COMINTEROP_WINRT_MANAGED_ACTIVATION return GetManagedActivationFactory(type); #else // Managed factories are not supported so as to minimize public surface (and test effort) throw new NotSupportedException(); #endif } } // HSTRING marshaling methods: public static IntPtr StringToHString(String s) { if (!Environment.IsWinRTSupported) throw new PlatformNotSupportedException(SR.PlatformNotSupported_WinRT); if (s == null) throw new ArgumentNullException(nameof(s)); unsafe { IntPtr hstring; int hrCreate = UnsafeNativeMethods.WindowsCreateString(s, s.Length, &hstring); Marshal.ThrowExceptionForHR(hrCreate, new IntPtr(-1)); return hstring; } } public static String PtrToStringHString(IntPtr ptr) { if (!Environment.IsWinRTSupported) { throw new PlatformNotSupportedException(SR.PlatformNotSupported_WinRT); } return HStringToString(ptr); } public static void FreeHString(IntPtr ptr) { if (!Environment.IsWinRTSupported) throw new PlatformNotSupportedException(SR.PlatformNotSupported_WinRT); if (ptr != IntPtr.Zero) { UnsafeNativeMethods.WindowsDeleteString(ptr); } } } }