// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================ ** ** ** ** Purpose: Some floating-point math operations ** ** ===========================================================*/ //This class contains only static members and doesn't require serialization. using System; using System.Runtime; using System.Runtime.CompilerServices; using System.Runtime.ConstrainedExecution; using System.Runtime.Versioning; using System.Diagnostics.Contracts; namespace System { public static class Math { private static double doubleRoundLimit = 1e16d; private const int maxRoundingDigits = 15; // This table is required for the Round function which can specify the number of digits to round to private static double[] roundPower10Double = new double[] { 1E0, 1E1, 1E2, 1E3, 1E4, 1E5, 1E6, 1E7, 1E8, 1E9, 1E10, 1E11, 1E12, 1E13, 1E14, 1E15 }; public const double PI = 3.14159265358979323846; public const double E = 2.7182818284590452354; [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Acos(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Asin(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Atan(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Atan2(double y, double x); public static Decimal Ceiling(Decimal d) { return Decimal.Ceiling(d); } [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Ceiling(double a); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Cos(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Cosh(double value); public static Decimal Floor(Decimal d) { return Decimal.Floor(d); } [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Floor(double d); private static unsafe double InternalRound(double value, int digits, MidpointRounding mode) { if (Abs(value) < doubleRoundLimit) { Double power10 = roundPower10Double[digits]; value *= power10; if (mode == MidpointRounding.AwayFromZero) { double fraction = SplitFractionDouble(&value); if (Abs(fraction) >= 0.5d) { value += Sign(fraction); } } else { // On X86 this can be inlined to just a few instructions value = Round(value); } value /= power10; } return value; } private unsafe static double InternalTruncate(double d) { SplitFractionDouble(&d); return d; } [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Sin(double a); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Tan(double a); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Sinh(double value); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Tanh(double value); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Round(double a); public static double Round(double value, int digits) { if ((digits < 0) || (digits > maxRoundingDigits)) throw new ArgumentOutOfRangeException(nameof(digits), SR.ArgumentOutOfRange_RoundingDigits); Contract.EndContractBlock(); return InternalRound(value, digits, MidpointRounding.ToEven); } public static double Round(double value, MidpointRounding mode) { return Round(value, 0, mode); } public static double Round(double value, int digits, MidpointRounding mode) { if ((digits < 0) || (digits > maxRoundingDigits)) throw new ArgumentOutOfRangeException(nameof(digits), SR.ArgumentOutOfRange_RoundingDigits); if (mode < MidpointRounding.ToEven || mode > MidpointRounding.AwayFromZero) { throw new ArgumentException(SR.Format(SR.Argument_InvalidEnumValue, mode, nameof(MidpointRounding)), nameof(mode)); } Contract.EndContractBlock(); return InternalRound(value, digits, mode); } public static Decimal Round(Decimal d) { return Decimal.Round(d, 0); } public static Decimal Round(Decimal d, int decimals) { return Decimal.Round(d, decimals); } public static Decimal Round(Decimal d, MidpointRounding mode) { return Decimal.Round(d, 0, mode); } public static Decimal Round(Decimal d, int decimals, MidpointRounding mode) { return Decimal.Round(d, decimals, mode); } [MethodImplAttribute(MethodImplOptions.InternalCall)] private static unsafe extern double SplitFractionDouble(double* value); public static Decimal Truncate(Decimal d) { return Decimal.Truncate(d); } public static double Truncate(double d) { return InternalTruncate(d); } [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Sqrt(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Log(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Log10(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Exp(double d); [MethodImplAttribute(MethodImplOptions.InternalCall)] public static extern double Pow(double x, double y); public static double IEEERemainder(double x, double y) { if (Double.IsNaN(x)) { return x; // IEEE 754-2008: NaN payload must be preserved } if (Double.IsNaN(y)) { return y; // IEEE 754-2008: NaN payload must be preserved } double regularMod = x % y; if (Double.IsNaN(regularMod)) { return Double.NaN; } if (regularMod == 0) { if (Double.IsNegative(x)) { return Double.NegativeZero; } } double alternativeResult; alternativeResult = regularMod - (Math.Abs(y) * Math.Sign(x)); if (Math.Abs(alternativeResult) == Math.Abs(regularMod)) { double divisionResult = x / y; double roundedResult = Math.Round(divisionResult); if (Math.Abs(roundedResult) > Math.Abs(divisionResult)) { return alternativeResult; } else { return regularMod; } } if (Math.Abs(alternativeResult) < Math.Abs(regularMod)) { return alternativeResult; } else { return regularMod; } } /*================================Abs========================================= **Returns the absolute value of it's argument. ============================================================================*/ [CLSCompliant(false)] public static sbyte Abs(sbyte value) { if (value >= 0) return value; else return AbsHelper(value); } private static sbyte AbsHelper(sbyte value) { Contract.Requires(value < 0, "AbsHelper should only be called for negative values! (workaround for JIT inlining)"); if (value == SByte.MinValue) throw new OverflowException(SR.Overflow_NegateTwosCompNum); Contract.EndContractBlock(); return ((sbyte)(-value)); } public static short Abs(short value) { if (value >= 0) return value; else return AbsHelper(value); } private static short AbsHelper(short value) { Contract.Requires(value < 0, "AbsHelper should only be called for negative values! (workaround for JIT inlining)"); if (value == Int16.MinValue) throw new OverflowException(SR.Overflow_NegateTwosCompNum); Contract.EndContractBlock(); return (short)-value; } public static int Abs(int value) { if (value >= 0) return value; else return AbsHelper(value); } private static int AbsHelper(int value) { Contract.Requires(value < 0, "AbsHelper should only be called for negative values! (workaround for JIT inlining)"); if (value == Int32.MinValue) throw new OverflowException(SR.Overflow_NegateTwosCompNum); Contract.EndContractBlock(); return -value; } public static long Abs(long value) { if (value >= 0) return value; else return AbsHelper(value); } private static long AbsHelper(long value) { Contract.Requires(value < 0, "AbsHelper should only be called for negative values! (workaround for JIT inlining)"); if (value == Int64.MinValue) throw new OverflowException(SR.Overflow_NegateTwosCompNum); Contract.EndContractBlock(); return -value; } [MethodImplAttribute(MethodImplOptions.InternalCall)] extern public static float Abs(float value); // This is special code to handle NaN (We need to make sure NaN's aren't // negated). In CSharp, the else clause here should always be taken if // value is NaN, since the normal case is taken if and only if value < 0. // To illustrate this completely, a compiler has translated this into: // "load value; load 0; bge; ret -value ; ret value". // The bge command branches for comparisons with the unordered NaN. So // it runs the else case, which returns +value instead of negating it. // return (value < 0) ? -value : value; [MethodImplAttribute(MethodImplOptions.InternalCall)] extern public static double Abs(double value); // This is special code to handle NaN (We need to make sure NaN's aren't // negated). In CSharp, the else clause here should always be taken if // value is NaN, since the normal case is taken if and only if value < 0. // To illustrate this completely, a compiler has translated this into: // "load value; load 0; bge; ret -value ; ret value". // The bge command branches for comparisons with the unordered NaN. So // it runs the else case, which returns +value instead of negating it. // return (value < 0) ? -value : value; public static Decimal Abs(Decimal value) { return Decimal.Abs(value); } /*================================MAX========================================= **Returns the larger of val1 and val2 ============================================================================*/ [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static sbyte Max(sbyte val1, sbyte val2) { return (val1 >= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static byte Max(byte val1, byte val2) { return (val1 >= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static short Max(short val1, short val2) { return (val1 >= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static ushort Max(ushort val1, ushort val2) { return (val1 >= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static int Max(int val1, int val2) { return (val1 >= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static uint Max(uint val1, uint val2) { return (val1 >= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static long Max(long val1, long val2) { return (val1 >= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static ulong Max(ulong val1, ulong val2) { return (val1 >= val2) ? val1 : val2; } public static float Max(float val1, float val2) { if (val1 > val2) return val1; if (Single.IsNaN(val1)) return val1; return val2; } public static double Max(double val1, double val2) { if (val1 > val2) return val1; if (Double.IsNaN(val1)) return val1; return val2; } public static Decimal Max(Decimal val1, Decimal val2) { return Decimal.Max(val1, val2); } /*================================MIN========================================= **Returns the smaller of val1 and val2. ============================================================================*/ [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static sbyte Min(sbyte val1, sbyte val2) { return (val1 <= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static byte Min(byte val1, byte val2) { return (val1 <= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static short Min(short val1, short val2) { return (val1 <= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static ushort Min(ushort val1, ushort val2) { return (val1 <= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static int Min(int val1, int val2) { return (val1 <= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static uint Min(uint val1, uint val2) { return (val1 <= val2) ? val1 : val2; } [System.Runtime.Versioning.NonVersionable] public static long Min(long val1, long val2) { return (val1 <= val2) ? val1 : val2; } [CLSCompliant(false)] [System.Runtime.Versioning.NonVersionable] public static ulong Min(ulong val1, ulong val2) { return (val1 <= val2) ? val1 : val2; } public static float Min(float val1, float val2) { if (val1 < val2) return val1; if (Single.IsNaN(val1)) return val1; return val2; } public static double Min(double val1, double val2) { if (val1 < val2) return val1; if (Double.IsNaN(val1)) return val1; return val2; } public static Decimal Min(Decimal val1, Decimal val2) { return Decimal.Min(val1, val2); } /*=====================================Clamp==================================== ** ==============================================================================*/ [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Byte Clamp(Byte value, Byte min, Byte max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Decimal Clamp(Decimal value, Decimal min, Decimal max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Double Clamp(Double value, Double min, Double max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Int16 Clamp(Int16 value, Int16 min, Int16 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Int32 Clamp(Int32 value, Int32 min, Int32 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Int64 Clamp(Int64 value, Int64 min, Int64 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] [CLSCompliant(false)] public static SByte Clamp(SByte value, SByte min, SByte max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Single Clamp(Single value, Single min, Single max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] [CLSCompliant(false)] public static UInt16 Clamp(UInt16 value, UInt16 min, UInt16 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] [CLSCompliant(false)] public static UInt32 Clamp(UInt32 value, UInt32 min, UInt32 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] [CLSCompliant(false)] public static UInt64 Clamp(UInt64 value, UInt64 min, UInt64 max) { if (min > max) ThrowMinMaxException(min, max); if (value < min) return min; else if (value > max) return max; return value; } private static void ThrowMinMaxException(T min, T max) { throw new ArgumentException(SR.Format(SR.Argument_MinMaxValue, min, max)); } /*=====================================Log====================================== ** ==============================================================================*/ public static double Log(double a, double newBase) { if (Double.IsNaN(a)) { return a; // IEEE 754-2008: NaN payload must be preserved } if (Double.IsNaN(newBase)) { return newBase; // IEEE 754-2008: NaN payload must be preserved } if (newBase == 1) return Double.NaN; if (a != 1 && (newBase == 0 || Double.IsPositiveInfinity(newBase))) return Double.NaN; return (Log(a) / Log(newBase)); } // Sign function for VB. Returns -1, 0, or 1 if the sign of the number // is negative, 0, or positive. Throws for floating point NaN's. [CLSCompliant(false)] public static int Sign(sbyte value) { if (value < 0) return -1; else if (value > 0) return 1; else return 0; } // Sign function for VB. Returns -1, 0, or 1 if the sign of the number // is negative, 0, or positive. Throws for floating point NaN's. public static int Sign(short value) { if (value < 0) return -1; else if (value > 0) return 1; else return 0; } // Sign function for VB. Returns -1, 0, or 1 if the sign of the number // is negative, 0, or positive. Throws for floating point NaN's. public static int Sign(int value) { if (value < 0) return -1; else if (value > 0) return 1; else return 0; } public static int Sign(long value) { if (value < 0) return -1; else if (value > 0) return 1; else return 0; } public static int Sign(float value) { if (value < 0) return -1; else if (value > 0) return 1; else if (value == 0) return 0; throw new ArithmeticException(SR.Arithmetic_NaN); } public static int Sign(double value) { if (value < 0) return -1; else if (value > 0) return 1; else if (value == 0) return 0; throw new ArithmeticException(SR.Arithmetic_NaN); } public static int Sign(Decimal value) { if (value < 0) return -1; else if (value > 0) return 1; else return 0; } public static long BigMul(int a, int b) { return ((long)a) * b; } public static int DivRem(int a, int b, out int result) { // TODO https://github.com/dotnet/coreclr/issues/3439: // Restore to using % and / when the JIT is able to eliminate one of the idivs. // In the meantime, a * and - is measurably faster than an extra /. int div = a / b; result = a - (div * b); return div; } public static long DivRem(long a, long b, out long result) { // TODO https://github.com/dotnet/coreclr/issues/3439: // Restore to using % and / when the JIT is able to eliminate one of the idivs. // In the meantime, a * and - is measurably faster than an extra /. long div = a / b; result = a - (div * b); return div; } } }