// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. #if defined(_TARGET_ARM64_) // The ARM64 instructions are all 32 bits in size. // we use an unsigned int to hold the encoded instructions. // This typedef defines the type that we use to hold encoded instructions. // typedef unsigned int code_t; static bool strictArmAsm; /************************************************************************/ /* Routines that compute the size of / encode instructions */ /************************************************************************/ struct CnsVal { ssize_t cnsVal; #ifdef RELOC_SUPPORT bool cnsReloc; #endif }; #ifdef DEBUG /************************************************************************/ /* Debug-only routines to display instructions */ /************************************************************************/ const char* emitFPregName(unsigned reg, bool varName = true); const char* emitVectorRegName(regNumber reg); void emitDispInst(instruction ins); void emitDispReloc(int value, bool addComma); void emitDispImm(ssize_t imm, bool addComma, bool alwaysHex = false); void emitDispFloatZero(); void emitDispFloatImm(ssize_t imm8); void emitDispImmOptsLSL12(ssize_t imm, insOpts opt); void emitDispCond(insCond cond); void emitDispFlags(insCflags flags); void emitDispBarrier(insBarrier barrier); void emitDispShiftOpts(insOpts opt); void emitDispExtendOpts(insOpts opt); void emitDispLSExtendOpts(insOpts opt); void emitDispReg(regNumber reg, emitAttr attr, bool addComma); void emitDispVectorReg(regNumber reg, insOpts opt, bool addComma); void emitDispVectorRegIndex(regNumber reg, emitAttr elemsize, ssize_t index, bool addComma); void emitDispArrangement(insOpts opt); void emitDispShiftedReg(regNumber reg, insOpts opt, ssize_t imm, emitAttr attr); void emitDispExtendReg(regNumber reg, insOpts opt, ssize_t imm); void emitDispAddrRI(regNumber reg, insOpts opt, ssize_t imm); void emitDispAddrRRExt(regNumber reg1, regNumber reg2, insOpts opt, bool isScaled, emitAttr size); void emitDispIns(instrDesc* id, bool isNew, bool doffs, bool asmfm, unsigned offs = 0, BYTE* pCode = 0, size_t sz = 0, insGroup* ig = NULL); #endif // DEBUG /************************************************************************/ /* Private members that deal with target-dependent instr. descriptors */ /************************************************************************/ private: instrDesc* emitNewInstrAmd(emitAttr attr, int dsp); instrDesc* emitNewInstrAmdCns(emitAttr attr, int dsp, int cns); instrDesc* emitNewInstrCallDir(int argCnt, VARSET_VALARG_TP GCvars, regMaskTP gcrefRegs, regMaskTP byrefRegs, emitAttr retSize, emitAttr secondRetSize); instrDesc* emitNewInstrCallInd(int argCnt, ssize_t disp, VARSET_VALARG_TP GCvars, regMaskTP gcrefRegs, regMaskTP byrefRegs, emitAttr retSize, emitAttr secondRetSize); void emitGetInsCns(instrDesc* id, CnsVal* cv); ssize_t emitGetInsAmdCns(instrDesc* id, CnsVal* cv); void emitGetInsDcmCns(instrDesc* id, CnsVal* cv); ssize_t emitGetInsAmdAny(instrDesc* id); /************************************************************************/ /* Private helpers for instruction output */ /************************************************************************/ private: bool emitInsIsCompare(instruction ins); bool emitInsIsLoad(instruction ins); bool emitInsIsStore(instruction ins); bool emitInsIsLoadOrStore(instruction ins); emitAttr emitInsAdjustLoadStoreAttr(instruction ins, emitAttr attr); emitAttr emitInsTargetRegSize(instrDesc* id); emitAttr emitInsLoadStoreSize(instrDesc* id); emitter::insFormat emitInsFormat(instruction ins); emitter::code_t emitInsCode(instruction ins, insFormat fmt); // Generate code for a load or store operation and handle the case of contained GT_LEA op1 with [base + index<) in the architecture manual. static code_t insEncodeInvertedCond(insCond cond); // Returns an encoding for the imm which represents the flags. static code_t insEncodeFlags(insCflags flags); // Returns the encoding for the Shift Count bits to be used for Arm64 encodings static code_t insEncodeShiftCount(ssize_t imm, emitAttr size); // Returns the encoding to select the datasize for most Arm64 instructions static code_t insEncodeDatasize(emitAttr size); // Returns the encoding to select the datasize for the general load/store Arm64 instructions static code_t insEncodeDatasizeLS(code_t code, emitAttr size); // Returns the encoding to select the datasize for the vector load/store Arm64 instructions static code_t insEncodeDatasizeVLS(code_t code, emitAttr size); // Returns the encoding to select the datasize for the vector load/store pair Arm64 instructions static code_t insEncodeDatasizeVPLS(code_t code, emitAttr size); // Returns the encoding to select the datasize for bitfield Arm64 instructions static code_t insEncodeDatasizeBF(code_t code, emitAttr size); // Returns the encoding to select the vectorsize for SIMD Arm64 instructions static code_t insEncodeVectorsize(emitAttr size); // Returns the encoding to select 'index' for an Arm64 vector elem instruction static code_t insEncodeVectorIndex(emitAttr elemsize, ssize_t index); // Returns the encoding to select 'index2' for an Arm64 'ins' elem instruction static code_t insEncodeVectorIndex2(emitAttr elemsize, ssize_t index2); // Returns the encoding to select 'index' for an Arm64 'mul' elem instruction static code_t insEncodeVectorIndexLMH(emitAttr elemsize, ssize_t index); // Returns the encoding to shift by 'shift' bits for an Arm64 vector or scalar instruction static code_t insEncodeVectorShift(emitAttr size, ssize_t shift); // Returns the encoding to select the 1/2/4/8 byte elemsize for an Arm64 vector instruction static code_t insEncodeElemsize(emitAttr size); // Returns the encoding to select the 4/8 byte elemsize for an Arm64 float vector instruction static code_t insEncodeFloatElemsize(emitAttr size); // Returns the encoding to select the index for an Arm64 float vector by elem instruction static code_t insEncodeFloatIndex(emitAttr elemsize, ssize_t index); // Returns the encoding to select the 'conversion' operation for a type 'fmt' Arm64 instruction static code_t insEncodeConvertOpt(insFormat fmt, insOpts conversion); // Returns the encoding to have the Rn register of a ld/st reg be Pre/Post/Not indexed updated static code_t insEncodeIndexedOpt(insOpts opt); // Returns the encoding to have the Rn register of a ld/st pair be Pre/Post/Not indexed updated static code_t insEncodePairIndexedOpt(instruction ins, insOpts opt); // Returns the encoding to apply a Shift Type on the Rm register static code_t insEncodeShiftType(insOpts opt); // Returns the encoding to apply a 12 bit left shift to the immediate static code_t insEncodeShiftImm12(insOpts opt); // Returns the encoding to have the Rm register use an extend operation static code_t insEncodeExtend(insOpts opt); // Returns the encoding to scale the Rm register by {0,1,2,3,4} in an extend operation static code_t insEncodeExtendScale(ssize_t imm); // Returns the encoding to have the Rm register be auto scaled by the ld/st size static code_t insEncodeReg3Scale(bool isScaled); // Returns true if 'reg' represents an integer register. static bool isIntegerRegister(regNumber reg) { return (reg >= REG_INT_FIRST) && (reg <= REG_INT_LAST); } // Returns true if 'value' is a legal unsigned immediate 8 bit encoding (such as for fMOV). static bool isValidUimm8(ssize_t value) { return (0 <= value) && (value <= 0xFFLL); }; // Returns true if 'value' is a legal unsigned immediate 12 bit encoding (such as for CMP, CMN). static bool isValidUimm12(ssize_t value) { return (0 <= value) && (value <= 0xFFFLL); }; // Returns true if 'value' is a legal unsigned immediate 16 bit encoding (such as for MOVZ, MOVN, MOVK). static bool isValidUimm16(ssize_t value) { return (0 <= value) && (value <= 0xFFFFLL); }; // Returns true if 'value' is a legal signed immediate 26 bit encoding (such as for B or BL). static bool isValidSimm26(ssize_t value) { return (-0x2000000LL <= value) && (value <= 0x1FFFFFFLL); }; // Returns true if 'value' is a legal signed immediate 19 bit encoding (such as for B.cond, CBNZ, CBZ). static bool isValidSimm19(ssize_t value) { return (-0x40000LL <= value) && (value <= 0x3FFFFLL); }; // Returns true if 'value' is a legal signed immediate 14 bit encoding (such as for TBNZ, TBZ). static bool isValidSimm14(ssize_t value) { return (-0x2000LL <= value) && (value <= 0x1FFFLL); }; // Returns true if 'value' represents a valid 'bitmask immediate' encoding. static bool isValidImmNRS(size_t value, emitAttr size) { return (value >= 0) && (value < 0x2000); } // any unsigned 13-bit immediate // Returns true if 'value' represents a valid 'halfword immediate' encoding. static bool isValidImmHWVal(size_t value, emitAttr size) { return (value >= 0) && (value < 0x40000); } // any unsigned 18-bit immediate // Returns true if 'value' represents a valid 'byteShifted immediate' encoding. static bool isValidImmBSVal(size_t value, emitAttr size) { return (value >= 0) && (value < 0x800); } // any unsigned 11-bit immediate // The return value replaces REG_ZR with REG_SP static regNumber encodingZRtoSP(regNumber reg) { return (reg == REG_ZR) ? REG_SP : reg; } // ZR (R31) encodes the SP register // The return value replaces REG_SP with REG_ZR static regNumber encodingSPtoZR(regNumber reg) { return (reg == REG_SP) ? REG_ZR : reg; } // SP is encoded using ZR (R31) // For the given 'ins' returns the reverse instruction, if one exists, otherwise returns INS_INVALID static instruction insReverse(instruction ins); // For the given 'datasize' and 'elemsize' returns the insOpts that specifies the vector register arrangement static insOpts optMakeArrangement(emitAttr datasize, emitAttr elemsize); // For the given 'datasize' and 'opt' returns true if it specifies a valid vector register arrangement static bool isValidArrangement(emitAttr datasize, insOpts opt); // For the given 'arrangement' returns the 'datasize' specified by the vector register arrangement static emitAttr optGetDatasize(insOpts arrangement); // For the given 'arrangement' returns the 'elemsize' specified by the vector register arrangement static emitAttr optGetElemsize(insOpts arrangement); // For the given 'arrangement' returns the 'widen-arrangement' specified by the vector register arrangement static insOpts optWidenElemsize(insOpts arrangement); // For the given 'conversion' returns the 'dstsize' specified by the conversion option static emitAttr optGetDstsize(insOpts conversion); // For the given 'conversion' returns the 'srcsize' specified by the conversion option static emitAttr optGetSrcsize(insOpts conversion); // For the given 'datasize', 'elemsize' and 'index' returns true, if it specifies a valid 'index' // for an element of size 'elemsize' in a vector register of size 'datasize' static bool isValidVectorIndex(emitAttr datasize, emitAttr elemsize, ssize_t index); /************************************************************************/ /* Public inline informational methods */ /************************************************************************/ public: // true if this 'imm' can be encoded as a input operand to a mov instruction static bool emitIns_valid_imm_for_mov(INT64 imm, emitAttr size); // true if this 'imm' can be encoded as a input operand to a vector movi instruction static bool emitIns_valid_imm_for_movi(INT64 imm, emitAttr size); // true if this 'immDbl' can be encoded as a input operand to a fmov instruction static bool emitIns_valid_imm_for_fmov(double immDbl); // true if this 'imm' can be encoded as a input operand to an add instruction static bool emitIns_valid_imm_for_add(INT64 imm, emitAttr size); // true if this 'imm' can be encoded as a input operand to a cmp instruction static bool emitIns_valid_imm_for_cmp(INT64 imm, emitAttr size); // true if this 'imm' can be encoded as a input operand to an alu instruction static bool emitIns_valid_imm_for_alu(INT64 imm, emitAttr size); // true if this 'imm' can be encoded as the offset in a ldr/str instruction static bool emitIns_valid_imm_for_ldst_offset(INT64 imm, emitAttr size); // true if 'imm' can use the left shifted by 12 bits encoding static bool canEncodeWithShiftImmBy12(INT64 imm); // Normalize the 'imm' so that the upper bits, as defined by 'size' are zero static INT64 normalizeImm64(INT64 imm, emitAttr size); // Normalize the 'imm' so that the upper bits, as defined by 'size' are zero static INT32 normalizeImm32(INT32 imm, emitAttr size); // true if 'imm' can be encoded using a 'bitmask immediate', also returns the encoding if wbBMI is non-null static bool canEncodeBitMaskImm(INT64 imm, emitAttr size, emitter::bitMaskImm* wbBMI = nullptr); // true if 'imm' can be encoded using a 'halfword immediate', also returns the encoding if wbHWI is non-null static bool canEncodeHalfwordImm(INT64 imm, emitAttr size, emitter::halfwordImm* wbHWI = nullptr); // true if 'imm' can be encoded using a 'byteShifted immediate', also returns the encoding if wbBSI is non-null static bool canEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL, emitter::byteShiftedImm* wbBSI = nullptr); // true if 'immDbl' can be encoded using a 'float immediate', also returns the encoding if wbFPI is non-null static bool canEncodeFloatImm8(double immDbl, emitter::floatImm8* wbFPI = nullptr); // Returns the number of bits used by the given 'size'. inline static unsigned getBitWidth(emitAttr size) { assert(size <= EA_8BYTE); return (unsigned)size * BITS_PER_BYTE; } // Returns true if the imm represents a valid bit shift or bit position for the given 'size' [0..31] or [0..63] inline static unsigned isValidImmShift(ssize_t imm, emitAttr size) { return (imm >= 0) && (imm < getBitWidth(size)); } inline static bool isValidGeneralDatasize(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE); } inline static bool isValidScalarDatasize(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE); } inline static bool isValidVectorDatasize(emitAttr size) { return (size == EA_16BYTE) || (size == EA_8BYTE); } inline static bool isValidGeneralLSDatasize(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE); } inline static bool isValidVectorLSDatasize(emitAttr size) { return (size == EA_16BYTE) || (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE); } inline static bool isValidVectorLSPDatasize(emitAttr size) { return (size == EA_16BYTE) || (size == EA_8BYTE) || (size == EA_4BYTE); } inline static bool isValidVectorElemsize(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE); } inline static bool isValidVectorFcvtsize(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE); } inline static bool isValidVectorElemsizeFloat(emitAttr size) { return (size == EA_8BYTE) || (size == EA_4BYTE); } inline static bool isGeneralRegister(regNumber reg) { return (reg >= REG_INT_FIRST) && (reg <= REG_LR); } // Excludes REG_ZR inline static bool isGeneralRegisterOrZR(regNumber reg) { return (reg >= REG_INT_FIRST) && (reg <= REG_ZR); } // Includes REG_ZR inline static bool isGeneralRegisterOrSP(regNumber reg) { return isGeneralRegister(reg) || (reg == REG_SP); } // Includes REG_SP, Excludes REG_ZR inline static bool isVectorRegister(regNumber reg) { return (reg >= REG_FP_FIRST && reg <= REG_FP_LAST); } inline static bool isFloatReg(regNumber reg) { return isVectorRegister(reg); } inline static bool insOptsNone(insOpts opt) { return (opt == INS_OPTS_NONE); } inline static bool insOptsIndexed(insOpts opt) { return (opt == INS_OPTS_PRE_INDEX) || (opt == INS_OPTS_POST_INDEX); } inline static bool insOptsPreIndex(insOpts opt) { return (opt == INS_OPTS_PRE_INDEX); } inline static bool insOptsPostIndex(insOpts opt) { return (opt == INS_OPTS_POST_INDEX); } inline static bool insOptsLSL12(insOpts opt) // special 12-bit shift only used for imm12 { return (opt == INS_OPTS_LSL12); } inline static bool insOptsAnyShift(insOpts opt) { return ((opt >= INS_OPTS_LSL) && (opt <= INS_OPTS_ROR)); } inline static bool insOptsAluShift(insOpts opt) // excludes ROR { return ((opt >= INS_OPTS_LSL) && (opt <= INS_OPTS_ASR)); } inline static bool insOptsVectorImmShift(insOpts opt) { return ((opt == INS_OPTS_LSL) || (opt == INS_OPTS_MSL)); } inline static bool insOptsLSL(insOpts opt) { return (opt == INS_OPTS_LSL); } inline static bool insOptsLSR(insOpts opt) { return (opt == INS_OPTS_LSR); } inline static bool insOptsASR(insOpts opt) { return (opt == INS_OPTS_ASR); } inline static bool insOptsROR(insOpts opt) { return (opt == INS_OPTS_ROR); } inline static bool insOptsAnyExtend(insOpts opt) { return ((opt >= INS_OPTS_UXTB) && (opt <= INS_OPTS_SXTX)); } inline static bool insOptsLSExtend(insOpts opt) { return ((opt == INS_OPTS_NONE) || (opt == INS_OPTS_LSL) || (opt == INS_OPTS_UXTW) || (opt == INS_OPTS_SXTW) || (opt == INS_OPTS_UXTX) || (opt == INS_OPTS_SXTX)); } inline static bool insOpts32BitExtend(insOpts opt) { return ((opt == INS_OPTS_UXTW) || (opt == INS_OPTS_SXTW)); } inline static bool insOpts64BitExtend(insOpts opt) { return ((opt == INS_OPTS_UXTX) || (opt == INS_OPTS_SXTX)); } inline static bool insOptsAnyArrangement(insOpts opt) { return ((opt >= INS_OPTS_8B) && (opt <= INS_OPTS_2D)); } inline static bool insOptsConvertFloatToFloat(insOpts opt) { return ((opt >= INS_OPTS_S_TO_D) && (opt <= INS_OPTS_D_TO_H)); } inline static bool insOptsConvertFloatToInt(insOpts opt) { return ((opt >= INS_OPTS_S_TO_4BYTE) && (opt <= INS_OPTS_D_TO_8BYTE)); } inline static bool insOptsConvertIntToFloat(insOpts opt) { return ((opt >= INS_OPTS_4BYTE_TO_S) && (opt <= INS_OPTS_8BYTE_TO_D)); } static bool isValidImmCond(ssize_t imm); static bool isValidImmCondFlags(ssize_t imm); static bool isValidImmCondFlagsImm5(ssize_t imm); /************************************************************************/ /* The public entry points to output instructions */ /************************************************************************/ public: void emitIns(instruction ins); void emitIns_I(instruction ins, emitAttr attr, ssize_t imm); void emitIns_R(instruction ins, emitAttr attr, regNumber reg); void emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t imm, insOpts opt = INS_OPTS_NONE); void emitIns_R_F(instruction ins, emitAttr attr, regNumber reg, double immDbl, insOpts opt = INS_OPTS_NONE); void emitIns_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insOpts opt = INS_OPTS_NONE); void emitIns_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insFlags flags) { emitIns_R_R(ins, attr, reg1, reg2); } void emitIns_R_I_I( instruction ins, emitAttr attr, regNumber reg1, ssize_t imm1, ssize_t imm2, insOpts opt = INS_OPTS_NONE); void emitIns_R_R_I( instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, insOpts opt = INS_OPTS_NONE); // Checks for a large immediate that needs a second instruction void emitIns_R_R_Imm(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm); void emitIns_R_R_R( instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt = INS_OPTS_NONE); void emitIns_R_R_R_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, ssize_t imm, insOpts opt = INS_OPTS_NONE); void emitIns_R_R_R_Ext(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt = INS_OPTS_NONE, int shiftAmount = -1); void emitIns_R_R_I_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int imm1, int imm2); void emitIns_R_R_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, regNumber reg4); void emitIns_R_COND(instruction ins, emitAttr attr, regNumber reg, insCond cond); void emitIns_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCond cond); void emitIns_R_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insCond cond); void emitIns_R_R_FLAGS_COND( instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCflags flags, insCond cond); void emitIns_R_I_FLAGS_COND(instruction ins, emitAttr attr, regNumber reg1, int imm, insCflags flags, insCond cond); void emitIns_BARR(instruction ins, insBarrier barrier); void emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fdlHnd, int offs); void emitIns_S(instruction ins, emitAttr attr, int varx, int offs); void emitIns_S_R(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs); void emitIns_R_S(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs); void emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val); void emitIns_R_C( instruction ins, emitAttr attr, regNumber reg, regNumber tmpReg, CORINFO_FIELD_HANDLE fldHnd, int offs); void emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs); void emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fdlHnd, ssize_t offs, ssize_t val); void emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg); void emitIns_R_D(instruction ins, emitAttr attr, unsigned offs, regNumber reg); void emitIns_J_R(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg); void emitIns_I_AR( instruction ins, emitAttr attr, int val, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL); void emitIns_R_AR( instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL); void emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t disp); void emitIns_AR_R( instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL); void emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp); void emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp); void emitIns_R_ARX( instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, unsigned mul, int disp); enum EmitCallType { // I have included here, but commented out, all the values used by the x86 emitter. // However, ARM has a much reduced instruction set, and so the ARM emitter only // supports a subset of the x86 variants. By leaving them commented out, it becomes // a compile time error if code tries to use them (and hopefully see this comment // and know why they are unavailible on ARM), while making it easier to stay // in-sync with x86 and possibly add them back in if needed. EC_FUNC_TOKEN, // Direct call to a helper/static/nonvirtual/global method // EC_FUNC_TOKEN_INDIR, // Indirect call to a helper/static/nonvirtual/global method EC_FUNC_ADDR, // Direct call to an absolute address // EC_FUNC_VIRTUAL, // Call to a virtual method (using the vtable) EC_INDIR_R, // Indirect call via register // EC_INDIR_SR, // Indirect call via stack-reference (local var) // EC_INDIR_C, // Indirect call via static class var // EC_INDIR_ARD, // Indirect call via an addressing mode EC_COUNT }; void emitIns_Call(EmitCallType callType, CORINFO_METHOD_HANDLE methHnd, INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE void* addr, ssize_t argSize, emitAttr retSize, emitAttr secondRetSize, VARSET_VALARG_TP ptrVars, regMaskTP gcrefRegs, regMaskTP byrefRegs, IL_OFFSETX ilOffset = BAD_IL_OFFSET, regNumber ireg = REG_NA, regNumber xreg = REG_NA, unsigned xmul = 0, ssize_t disp = 0, bool isJump = false, bool isNoGC = false, bool isProfLeaveCB = false); BYTE* emitOutputLJ(insGroup* ig, BYTE* dst, instrDesc* i); unsigned emitOutputCall(insGroup* ig, BYTE* dst, instrDesc* i, code_t code); BYTE* emitOutputLoadLabel(BYTE* dst, BYTE* srcAddr, BYTE* dstAddr, instrDescJmp* id); BYTE* emitOutputShortBranch(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, instrDescJmp* id); BYTE* emitOutputShortAddress(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg); BYTE* emitOutputShortConstant( BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg, emitAttr opSize); /***************************************************************************** * * Given an instrDesc, return true if it's a conditional jump. */ inline bool emitIsCondJump(instrDesc* jmp) { return ((jmp->idInsFmt() == IF_BI_0B) || (jmp->idInsFmt() == IF_LARGEJMP)); } /***************************************************************************** * * Given an instrDesc, return true if it's a compare and jump. */ inline bool emitIsCmpJump(instrDesc* jmp) { return ((jmp->idInsFmt() == IF_BI_1A) || (jmp->idInsFmt() == IF_BI_1B)); } /***************************************************************************** * * Given a instrDesc, return true if it's an unconditional jump. */ inline bool emitIsUncondJump(instrDesc* jmp) { return (jmp->idInsFmt() == IF_BI_0A); } /***************************************************************************** * * Given a instrDesc, return true if it's a direct call. */ inline bool emitIsDirectCall(instrDesc* call) { return (call->idInsFmt() == IF_BI_0C); } /***************************************************************************** * * Given a instrDesc, return true if it's a load label instruction. */ inline bool emitIsLoadLabel(instrDesc* jmp) { return ((jmp->idInsFmt() == IF_DI_1E) || // adr or arp (jmp->idInsFmt() == IF_LARGEADR)); } /***************************************************************************** * * Given a instrDesc, return true if it's a load constant instruction. */ inline bool emitIsLoadConstant(instrDesc* jmp) { return ((jmp->idInsFmt() == IF_LS_1A) || // ldr (jmp->idInsFmt() == IF_LARGELDC)); } #endif // _TARGET_ARM64_