// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. // // This class contains all the data & functionality for code generation // of a method, except for the target-specific elements, which are // primarily in the Target class. // #ifndef _CODEGEN_H_ #define _CODEGEN_H_ #include "compiler.h" // temporary?? #include "codegeninterface.h" #include "regset.h" #include "jitgcinfo.h" #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) || defined(_TARGET_ARM_) #define FOREACH_REGISTER_FILE(file) \ for ((file) = &(this->intRegState); (file) != NULL; \ (file) = ((file) == &(this->intRegState)) ? &(this->floatRegState) : NULL) #else #define FOREACH_REGISTER_FILE(file) (file) = &(this->intRegState); #endif class CodeGen : public CodeGenInterface { friend class emitter; friend class DisAssembler; public: // This could use further abstraction CodeGen(Compiler* theCompiler); virtual void genGenerateCode(void** codePtr, ULONG* nativeSizeOfCode); // TODO-Cleanup: Abstract out the part of this that finds the addressing mode, and // move it to Lower virtual bool genCreateAddrMode(GenTree* addr, bool fold, bool* revPtr, GenTree** rv1Ptr, GenTree** rv2Ptr, #if SCALED_ADDR_MODES unsigned* mulPtr, #endif // SCALED_ADDR_MODES ssize_t* cnsPtr); private: #if defined(_TARGET_XARCH_) // Bit masks used in negating a float or double number. // This is to avoid creating more than one data constant for these bitmasks when a // method has more than one GT_NEG operation on floating point values. CORINFO_FIELD_HANDLE negBitmaskFlt; CORINFO_FIELD_HANDLE negBitmaskDbl; // Bit masks used in computing Math.Abs() of a float or double number. CORINFO_FIELD_HANDLE absBitmaskFlt; CORINFO_FIELD_HANDLE absBitmaskDbl; // Bit mask used in U8 -> double conversion to adjust the result. CORINFO_FIELD_HANDLE u8ToDblBitmask; // Generates SSE2 code for the given tree as "Operand BitWiseOp BitMask" void genSSE2BitwiseOp(GenTree* treeNode); // Generates SSE41 code for the given tree as a round operation void genSSE41RoundOp(GenTreeOp* treeNode); #endif // defined(_TARGET_XARCH_) void genPrepForCompiler(); void genPrepForEHCodegen(); inline RegState* regStateForType(var_types t) { return varTypeIsFloating(t) ? &floatRegState : &intRegState; } inline RegState* regStateForReg(regNumber reg) { return genIsValidFloatReg(reg) ? &floatRegState : &intRegState; } regNumber genFramePointerReg() { if (isFramePointerUsed()) { return REG_FPBASE; } else { return REG_SPBASE; } } static bool genShouldRoundFP(); GenTreeIndir indirForm(var_types type, GenTree* base); GenTreeIntCon intForm(var_types type, ssize_t value); void genRangeCheck(GenTree* node); void genLockedInstructions(GenTreeOp* node); #ifdef _TARGET_XARCH_ void genCodeForLockAdd(GenTreeOp* node); #endif #ifdef REG_OPT_RSVD // On some targets such as the ARM we may need to have an extra reserved register // that is used when addressing stack based locals and stack based temps. // This method returns the regNumber that should be used when an extra register // is needed to access the stack based locals and stack based temps. // regNumber rsGetRsvdReg() { // We should have already added this register to the mask // of reserved registers in regSet.rdMaskResvd noway_assert((regSet.rsMaskResvd & RBM_OPT_RSVD) != 0); return REG_OPT_RSVD; } #endif // REG_OPT_RSVD //------------------------------------------------------------------------- bool genUseBlockInit; // true if we plan to block-initialize the local stack frame unsigned genInitStkLclCnt; // The count of local variables that we need to zero init // Keeps track of how many bytes we've pushed on the processor's stack. // unsigned genStackLevel; void SubtractStackLevel(unsigned adjustment) { assert(genStackLevel >= adjustment); unsigned newStackLevel = genStackLevel - adjustment; if (genStackLevel != newStackLevel) { JITDUMP("Adjusting stack level from %d to %d\n", genStackLevel, newStackLevel); } genStackLevel = newStackLevel; } void AddStackLevel(unsigned adjustment) { unsigned newStackLevel = genStackLevel + adjustment; if (genStackLevel != newStackLevel) { JITDUMP("Adjusting stack level from %d to %d\n", genStackLevel, newStackLevel); } genStackLevel = newStackLevel; } void SetStackLevel(unsigned newStackLevel) { if (genStackLevel != newStackLevel) { JITDUMP("Setting stack level from %d to %d\n", genStackLevel, newStackLevel); } genStackLevel = newStackLevel; } #if STACK_PROBES // Stack Probes bool genNeedPrologStackProbe; void genGenerateStackProbe(); #endif //------------------------------------------------------------------------- void genReportEH(); // Allocates storage for the GC info, writes the GC info into that storage, records the address of the // GC info of the method with the EE, and returns a pointer to the "info" portion (just post-header) of // the GC info. Requires "codeSize" to be the size of the generated code, "prologSize" and "epilogSize" // to be the sizes of the prolog and epilog, respectively. In DEBUG, makes a check involving the // "codePtr", assumed to be a pointer to the start of the generated code. CLANG_FORMAT_COMMENT_ANCHOR; #ifdef JIT32_GCENCODER void* genCreateAndStoreGCInfo(unsigned codeSize, unsigned prologSize, unsigned epilogSize DEBUGARG(void* codePtr)); void* genCreateAndStoreGCInfoJIT32(unsigned codeSize, unsigned prologSize, unsigned epilogSize DEBUGARG(void* codePtr)); #else // !JIT32_GCENCODER void genCreateAndStoreGCInfo(unsigned codeSize, unsigned prologSize, unsigned epilogSize DEBUGARG(void* codePtr)); void genCreateAndStoreGCInfoX64(unsigned codeSize, unsigned prologSize DEBUGARG(void* codePtr)); #endif // !JIT32_GCENCODER /************************************************************************** * PROTECTED *************************************************************************/ protected: // the current (pending) label ref, a label which has been referenced but not yet seen BasicBlock* genPendingCallLabel; #ifdef DEBUG // Last instr we have displayed for dspInstrs unsigned genCurDispOffset; static const char* genInsName(instruction ins); #endif // DEBUG //------------------------------------------------------------------------- // JIT-time constants for use in multi-dimensional array code generation. unsigned genOffsetOfMDArrayLowerBound(var_types elemType, unsigned rank, unsigned dimension); unsigned genOffsetOfMDArrayDimensionSize(var_types elemType, unsigned rank, unsigned dimension); #ifdef DEBUG static const char* genSizeStr(emitAttr size); #endif // DEBUG void genCodeForBBlist(); public: void genSpillVar(GenTree* tree); protected: void genEmitHelperCall(unsigned helper, int argSize, emitAttr retSize, regNumber callTarget = REG_NA); void genGCWriteBarrier(GenTree* tgt, GCInfo::WriteBarrierForm wbf); BasicBlock* genCreateTempLabel(); void genDefineTempLabel(BasicBlock* label); void genAdjustSP(target_ssize_t delta); void genAdjustStackLevel(BasicBlock* block); void genExitCode(BasicBlock* block); void genJumpToThrowHlpBlk(emitJumpKind jumpKind, SpecialCodeKind codeKind, BasicBlock* failBlk = nullptr); void genCheckOverflow(GenTree* tree); //------------------------------------------------------------------------- // // Prolog/epilog generation // //------------------------------------------------------------------------- // // Prolog functions and data (there are a few exceptions for more generally used things) // void genEstablishFramePointer(int delta, bool reportUnwindData); void genFnPrologCalleeRegArgs(regNumber xtraReg, bool* pXtraRegClobbered, RegState* regState); void genEnregisterIncomingStackArgs(); void genCheckUseBlockInit(); #if defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) void genClearStackVec3ArgUpperBits(); #endif // UNIX_AMD64_ABI && FEATURE_SIMD #if defined(_TARGET_ARM64_) bool genInstrWithConstant(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, regNumber tmpReg, bool inUnwindRegion = false); void genStackPointerAdjustment(ssize_t spAdjustment, regNumber tmpReg, bool* pTmpRegIsZero); void genPrologSaveRegPair(regNumber reg1, regNumber reg2, int spOffset, int spDelta, bool useSaveNextPair, regNumber tmpReg, bool* pTmpRegIsZero); void genPrologSaveReg(regNumber reg1, int spOffset, int spDelta, regNumber tmpReg, bool* pTmpRegIsZero); void genEpilogRestoreRegPair(regNumber reg1, regNumber reg2, int spOffset, int spDelta, bool useSaveNextPair, regNumber tmpReg, bool* pTmpRegIsZero); void genEpilogRestoreReg(regNumber reg1, int spOffset, int spDelta, regNumber tmpReg, bool* pTmpRegIsZero); #ifdef DEBUG static void genCheckSPOffset(bool isRegsCountOdd, int spOffset, int slotSize); #endif // DEBUG // A simple struct to keep register pairs for prolog and epilog. struct RegPair { regNumber reg1; regNumber reg2; bool useSaveNextPair; RegPair(regNumber reg1) : reg1(reg1), reg2(REG_NA), useSaveNextPair(false) { } RegPair(regNumber reg1, regNumber reg2) : reg1(reg1), reg2(reg2), useSaveNextPair(false) { assert(reg2 == REG_NEXT(reg1)); } }; static void genBuildRegPairsStack(regMaskTP regsMask, ArrayStack* regStack); static void genSetUseSaveNextPairs(ArrayStack* regStack); static int genGetSlotSizeForRegsInMask(regMaskTP regsMask); void genSaveCalleeSavedRegisterGroup(regMaskTP regsMask, int spDelta, int spOffset DEBUGARG(bool isRegsToSaveCountOdd)); void genRestoreCalleeSavedRegisterGroup(regMaskTP regsMask, int spDelta, int spOffset DEBUGARG(bool isRegsToRestoreCountOdd)); void genSaveCalleeSavedRegistersHelp(regMaskTP regsToSaveMask, int lowestCalleeSavedOffset, int spDelta); void genRestoreCalleeSavedRegistersHelp(regMaskTP regsToRestoreMask, int lowestCalleeSavedOffset, int spDelta); void genPushCalleeSavedRegisters(regNumber initReg, bool* pInitRegZeroed); #else void genPushCalleeSavedRegisters(); #endif void genAllocLclFrame(unsigned frameSize, regNumber initReg, bool* pInitRegZeroed, regMaskTP maskArgRegsLiveIn); #if defined(_TARGET_ARM_) void genPushFltRegs(regMaskTP regMask); void genPopFltRegs(regMaskTP regMask); regMaskTP genStackAllocRegisterMask(unsigned frameSize, regMaskTP maskCalleeSavedFloat); regMaskTP genJmpCallArgMask(); void genFreeLclFrame(unsigned frameSize, /* IN OUT */ bool* pUnwindStarted, bool jmpEpilog); void genMov32RelocatableDisplacement(BasicBlock* block, regNumber reg); void genMov32RelocatableDataLabel(unsigned value, regNumber reg); void genMov32RelocatableImmediate(emitAttr size, BYTE* addr, regNumber reg); bool genUsedPopToReturn; // True if we use the pop into PC to return, // False if we didn't and must branch to LR to return. // A set of information that is used by funclet prolog and epilog generation. It is collected once, before // funclet prologs and epilogs are generated, and used by all funclet prologs and epilogs, which must all be the // same. struct FuncletFrameInfoDsc { regMaskTP fiSaveRegs; // Set of registers saved in the funclet prolog (includes LR) unsigned fiFunctionCallerSPtoFPdelta; // Delta between caller SP and the frame pointer unsigned fiSpDelta; // Stack pointer delta unsigned fiPSP_slot_SP_offset; // PSP slot offset from SP int fiPSP_slot_CallerSP_offset; // PSP slot offset from Caller SP }; FuncletFrameInfoDsc genFuncletInfo; #elif defined(_TARGET_ARM64_) // A set of information that is used by funclet prolog and epilog generation. It is collected once, before // funclet prologs and epilogs are generated, and used by all funclet prologs and epilogs, which must all be the // same. struct FuncletFrameInfoDsc { regMaskTP fiSaveRegs; // Set of callee-saved registers saved in the funclet prolog (includes LR) int fiFunction_CallerSP_to_FP_delta; // Delta between caller SP and the frame pointer in the parent function // (negative) int fiSP_to_FPLR_save_delta; // FP/LR register save offset from SP (positive) int fiSP_to_PSP_slot_delta; // PSP slot offset from SP (positive) int fiSP_to_CalleeSave_delta; // First callee-saved register slot offset from SP (positive) int fiCallerSP_to_PSP_slot_delta; // PSP slot offset from Caller SP (negative) int fiFrameType; // Funclet frame types are numbered. See genFuncletProlog() for details. int fiSpDelta1; // Stack pointer delta 1 (negative) int fiSpDelta2; // Stack pointer delta 2 (negative) }; FuncletFrameInfoDsc genFuncletInfo; #elif defined(_TARGET_AMD64_) // A set of information that is used by funclet prolog and epilog generation. It is collected once, before // funclet prologs and epilogs are generated, and used by all funclet prologs and epilogs, which must all be the // same. struct FuncletFrameInfoDsc { unsigned fiFunction_InitialSP_to_FP_delta; // Delta between Initial-SP and the frame pointer unsigned fiSpDelta; // Stack pointer delta int fiPSP_slot_InitialSP_offset; // PSP slot offset from Initial-SP }; FuncletFrameInfoDsc genFuncletInfo; #endif // _TARGET_AMD64_ #if defined(_TARGET_XARCH_) // Save/Restore callee saved float regs to stack void genPreserveCalleeSavedFltRegs(unsigned lclFrameSize); void genRestoreCalleeSavedFltRegs(unsigned lclFrameSize); // Generate VZeroupper instruction to avoid AVX/SSE transition penalty void genVzeroupperIfNeeded(bool check256bitOnly = true); #endif // _TARGET_XARCH_ void genZeroInitFltRegs(const regMaskTP& initFltRegs, const regMaskTP& initDblRegs, const regNumber& initReg); regNumber genGetZeroReg(regNumber initReg, bool* pInitRegZeroed); void genZeroInitFrame(int untrLclHi, int untrLclLo, regNumber initReg, bool* pInitRegZeroed); void genReportGenericContextArg(regNumber initReg, bool* pInitRegZeroed); void genSetGSSecurityCookie(regNumber initReg, bool* pInitRegZeroed); void genFinalizeFrame(); #ifdef PROFILING_SUPPORTED void genProfilingEnterCallback(regNumber initReg, bool* pInitRegZeroed); void genProfilingLeaveCallback(unsigned helper = CORINFO_HELP_PROF_FCN_LEAVE); #endif // PROFILING_SUPPORTED void genPrologPadForReJit(); // clang-format off void genEmitCall(int callType, CORINFO_METHOD_HANDLE methHnd, INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) void* addr X86_ARG(int argSize), emitAttr retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(emitAttr secondRetSize), IL_OFFSETX ilOffset, regNumber base = REG_NA, bool isJump = false); // clang-format on // clang-format off void genEmitCall(int callType, CORINFO_METHOD_HANDLE methHnd, INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) GenTreeIndir* indir X86_ARG(int argSize), emitAttr retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(emitAttr secondRetSize), IL_OFFSETX ilOffset); // clang-format on // // Epilog functions // CLANG_FORMAT_COMMENT_ANCHOR; #if defined(_TARGET_ARM_) bool genCanUsePopToReturn(regMaskTP maskPopRegsInt, bool jmpEpilog); #endif #if defined(_TARGET_ARM64_) void genPopCalleeSavedRegistersAndFreeLclFrame(bool jmpEpilog); #else // !defined(_TARGET_ARM64_) void genPopCalleeSavedRegisters(bool jmpEpilog = false); #endif // !defined(_TARGET_ARM64_) // // Common or driving functions // void genReserveProlog(BasicBlock* block); // currently unused void genReserveEpilog(BasicBlock* block); void genFnProlog(); void genFnEpilog(BasicBlock* block); #if FEATURE_EH_FUNCLETS void genReserveFuncletProlog(BasicBlock* block); void genReserveFuncletEpilog(BasicBlock* block); void genFuncletProlog(BasicBlock* block); void genFuncletEpilog(); void genCaptureFuncletPrologEpilogInfo(); void genSetPSPSym(regNumber initReg, bool* pInitRegZeroed); void genUpdateCurrentFunclet(BasicBlock* block); #if defined(_TARGET_ARM_) void genInsertNopForUnwinder(BasicBlock* block); #endif #else // FEATURE_EH_FUNCLETS // This is a no-op when there are no funclets! void genUpdateCurrentFunclet(BasicBlock* block) { return; } #if defined(_TARGET_ARM_) void genInsertNopForUnwinder(BasicBlock* block) { return; } #endif #endif // FEATURE_EH_FUNCLETS void genGeneratePrologsAndEpilogs(); #if defined(DEBUG) && defined(_TARGET_ARM64_) void genArm64EmitterUnitTests(); #endif #if defined(DEBUG) && defined(LATE_DISASM) && defined(_TARGET_AMD64_) void genAmd64EmitterUnitTests(); #endif //------------------------------------------------------------------------- // // End prolog/epilog generation // //------------------------------------------------------------------------- void genSinglePush(); void genSinglePop(); regMaskTP genPushRegs(regMaskTP regs, regMaskTP* byrefRegs, regMaskTP* noRefRegs); void genPopRegs(regMaskTP regs, regMaskTP byrefRegs, regMaskTP noRefRegs); /* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XX Debugging Support XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */ #ifdef DEBUG void genIPmappingDisp(unsigned mappingNum, Compiler::IPmappingDsc* ipMapping); void genIPmappingListDisp(); #endif // DEBUG void genIPmappingAdd(IL_OFFSETX offset, bool isLabel); void genIPmappingAddToFront(IL_OFFSETX offset); void genIPmappingGen(); void genEnsureCodeEmitted(IL_OFFSETX offsx); //------------------------------------------------------------------------- // scope info for the variables void genSetScopeInfo(unsigned which, UNATIVE_OFFSET startOffs, UNATIVE_OFFSET length, unsigned varNum, unsigned LVnum, bool avail, Compiler::siVarLoc& loc); void genSetScopeInfo(); protected: /* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XX ScopeInfo XX XX XX XX Keeps track of the scopes during code-generation. XX XX This is used to translate the local-variable debugging information XX XX from IL offsets to native code offsets. XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */ /*****************************************************************************/ /***************************************************************************** * ScopeInfo * * This class is called during code gen at block-boundaries, and when the * set of live variables changes. It keeps track of the scope of the variables * in terms of the native code PC. */ public: void siInit(); void siBeginBlock(BasicBlock* block); void siEndBlock(BasicBlock* block); virtual void siUpdate(); void siCheckVarScope(unsigned varNum, IL_OFFSET offs); void siCloseAllOpenScopes(); #ifdef DEBUG void siDispOpenScopes(); #endif /************************************************************************** * PROTECTED *************************************************************************/ protected: struct siScope { emitLocation scStartLoc; // emitter location of start of scope emitLocation scEndLoc; // emitter location of end of scope unsigned scVarNum; // index into lvaTable unsigned scLVnum; // 'which' in eeGetLVinfo() unsigned scStackLevel; // Only for stk-vars bool scAvailable : 1; // It has a home / Home recycled - TODO-Cleanup: it appears this is unused (always true) siScope* scPrev; siScope* scNext; }; siScope siOpenScopeList, siScopeList, *siOpenScopeLast, *siScopeLast; unsigned siScopeCnt; VARSET_TP siLastLife; // Life at last call to siUpdate() // Tracks the last entry for each tracked register variable siScope** siLatestTrackedScopes; IL_OFFSET siLastEndOffs; // IL offset of the (exclusive) end of the last block processed #if FEATURE_EH_FUNCLETS bool siInFuncletRegion; // Have we seen the start of the funclet region? #endif // FEATURE_EH_FUNCLETS // Functions siScope* siNewScope(unsigned LVnum, unsigned varNum); void siRemoveFromOpenScopeList(siScope* scope); void siEndTrackedScope(unsigned varIndex); void siEndScope(unsigned varNum); void siEndScope(siScope* scope); #ifdef DEBUG bool siVerifyLocalVarTab(); #endif #ifdef LATE_DISASM public: /* virtual */ const char* siRegVarName(size_t offs, size_t size, unsigned reg); /* virtual */ const char* siStackVarName(size_t offs, size_t size, unsigned reg, unsigned stkOffs); #endif // LATE_DISASM public: /* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XX PrologScopeInfo XX XX XX XX We need special handling in the prolog block, as the parameter variables XX XX may not be in the same position described by genLclVarTable - they all XX XX start out on the stack XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */ public: void psiBegProlog(); void psiAdjustStackLevel(unsigned size); void psiMoveESPtoEBP(); void psiMoveToReg(unsigned varNum, regNumber reg = REG_NA, regNumber otherReg = REG_NA); void psiMoveToStack(unsigned varNum); void psiEndProlog(); /************************************************************************** * PROTECTED *************************************************************************/ protected: struct psiScope { emitLocation scStartLoc; // emitter location of start of scope emitLocation scEndLoc; // emitter location of end of scope unsigned scSlotNum; // index into lclVarTab unsigned scLVnum; // 'which' in eeGetLVinfo() bool scRegister; union { struct { regNumberSmall scRegNum; // Used for: // - "other half" of long var on architectures with 32 bit size registers - x86. // - for System V structs it stores the second register // used to pass a register passed struct. regNumberSmall scOtherReg; } u1; struct { regNumberSmall scBaseReg; NATIVE_OFFSET scOffset; } u2; }; psiScope* scPrev; psiScope* scNext; }; psiScope psiOpenScopeList, psiScopeList, *psiOpenScopeLast, *psiScopeLast; unsigned psiScopeCnt; // Implementation Functions psiScope* psiNewPrologScope(unsigned LVnum, unsigned slotNum); void psiEndPrologScope(psiScope* scope); void psSetScopeOffset(psiScope* newScope, LclVarDsc* lclVarDsc1); /***************************************************************************** * TrnslLocalVarInfo * * This struct holds the LocalVarInfo in terms of the generated native code * after a call to genSetScopeInfo() */ #ifdef DEBUG struct TrnslLocalVarInfo { unsigned tlviVarNum; unsigned tlviLVnum; VarName tlviName; UNATIVE_OFFSET tlviStartPC; size_t tlviLength; bool tlviAvailable; Compiler::siVarLoc tlviVarLoc; }; // Array of scopes of LocalVars in terms of native code TrnslLocalVarInfo* genTrnslLocalVarInfo; unsigned genTrnslLocalVarCount; #endif void genSetRegToConst(regNumber targetReg, var_types targetType, GenTree* tree); void genCodeForTreeNode(GenTree* treeNode); void genCodeForBinary(GenTreeOp* treeNode); #if defined(_TARGET_X86_) void genCodeForLongUMod(GenTreeOp* node); #endif // _TARGET_X86_ void genCodeForDivMod(GenTreeOp* treeNode); void genCodeForMul(GenTreeOp* treeNode); void genCodeForMulHi(GenTreeOp* treeNode); void genLeaInstruction(GenTreeAddrMode* lea); void genSetRegToCond(regNumber dstReg, GenTree* tree); #if defined(_TARGET_ARMARCH_) void genScaledAdd(emitAttr attr, regNumber targetReg, regNumber baseReg, regNumber indexReg, int scale); #endif // _TARGET_ARMARCH_ #if defined(_TARGET_ARM_) void genCodeForMulLong(GenTreeMultiRegOp* treeNode); #endif // _TARGET_ARM_ #if !defined(_TARGET_64BIT_) void genLongToIntCast(GenTree* treeNode); #endif struct GenIntCastDesc { enum CheckKind { CHECK_NONE, CHECK_SMALL_INT_RANGE, CHECK_POSITIVE, #ifdef _TARGET_64BIT_ CHECK_UINT_RANGE, CHECK_POSITIVE_INT_RANGE, CHECK_INT_RANGE, #endif }; enum ExtendKind { COPY, ZERO_EXTEND_SMALL_INT, SIGN_EXTEND_SMALL_INT, #ifdef _TARGET_64BIT_ ZERO_EXTEND_INT, SIGN_EXTEND_INT, #endif }; private: CheckKind m_checkKind; unsigned m_checkSrcSize; int m_checkSmallIntMin; int m_checkSmallIntMax; ExtendKind m_extendKind; unsigned m_extendSrcSize; public: GenIntCastDesc(GenTreeCast* cast); CheckKind CheckKind() const { return m_checkKind; } unsigned CheckSrcSize() const { assert(m_checkKind != CHECK_NONE); return m_checkSrcSize; } int CheckSmallIntMin() const { assert(m_checkKind == CHECK_SMALL_INT_RANGE); return m_checkSmallIntMin; } int CheckSmallIntMax() const { assert(m_checkKind == CHECK_SMALL_INT_RANGE); return m_checkSmallIntMax; } ExtendKind ExtendKind() const { return m_extendKind; } unsigned ExtendSrcSize() const { return m_extendSrcSize; } }; void genIntCastOverflowCheck(GenTreeCast* cast, const GenIntCastDesc& desc, regNumber reg); void genIntToIntCast(GenTreeCast* cast); void genFloatToFloatCast(GenTree* treeNode); void genFloatToIntCast(GenTree* treeNode); void genIntToFloatCast(GenTree* treeNode); void genCkfinite(GenTree* treeNode); void genCodeForCompare(GenTreeOp* tree); void genIntrinsic(GenTree* treeNode); void genPutArgStk(GenTreePutArgStk* treeNode); void genPutArgReg(GenTreeOp* tree); #if FEATURE_ARG_SPLIT void genPutArgSplit(GenTreePutArgSplit* treeNode); #endif // FEATURE_ARG_SPLIT #if defined(_TARGET_XARCH_) unsigned getBaseVarForPutArgStk(GenTree* treeNode); #endif // _TARGET_XARCH_ unsigned getFirstArgWithStackSlot(); void genCompareFloat(GenTree* treeNode); void genCompareInt(GenTree* treeNode); #ifdef FEATURE_SIMD enum SIMDScalarMoveType{ SMT_ZeroInitUpper, // zero initlaize target upper bits SMT_ZeroInitUpper_SrcHasUpperZeros, // zero initialize target upper bits; source upper bits are known to be zero SMT_PreserveUpper // preserve target upper bits }; #ifdef _TARGET_ARM64_ insOpts genGetSimdInsOpt(emitAttr size, var_types elementType); #endif instruction getOpForSIMDIntrinsic(SIMDIntrinsicID intrinsicId, var_types baseType, unsigned* ival = nullptr); void genSIMDScalarMove( var_types targetType, var_types type, regNumber target, regNumber src, SIMDScalarMoveType moveType); void genSIMDZero(var_types targetType, var_types baseType, regNumber targetReg); void genSIMDIntrinsicInit(GenTreeSIMD* simdNode); void genSIMDIntrinsicInitN(GenTreeSIMD* simdNode); void genSIMDIntrinsicUnOp(GenTreeSIMD* simdNode); void genSIMDIntrinsicBinOp(GenTreeSIMD* simdNode); void genSIMDIntrinsicRelOp(GenTreeSIMD* simdNode); void genSIMDIntrinsicDotProduct(GenTreeSIMD* simdNode); void genSIMDIntrinsicSetItem(GenTreeSIMD* simdNode); void genSIMDIntrinsicGetItem(GenTreeSIMD* simdNode); void genSIMDIntrinsicShuffleSSE2(GenTreeSIMD* simdNode); void genSIMDIntrinsicUpperSave(GenTreeSIMD* simdNode); void genSIMDIntrinsicUpperRestore(GenTreeSIMD* simdNode); void genSIMDLo64BitConvert(SIMDIntrinsicID intrinsicID, var_types simdType, var_types baseType, regNumber tmpReg, regNumber tmpIntReg, regNumber targetReg); void genSIMDIntrinsic32BitConvert(GenTreeSIMD* simdNode); void genSIMDIntrinsic64BitConvert(GenTreeSIMD* simdNode); void genSIMDIntrinsicNarrow(GenTreeSIMD* simdNode); void genSIMDExtractUpperHalf(GenTreeSIMD* simdNode, regNumber srcReg, regNumber tgtReg); void genSIMDIntrinsicWiden(GenTreeSIMD* simdNode); void genSIMDIntrinsic(GenTreeSIMD* simdNode); // TYP_SIMD12 (i.e Vector3 of size 12 bytes) is not a hardware supported size and requires // two reads/writes on 64-bit targets. These routines abstract reading/writing of Vector3 // values through an indirection. Note that Vector3 locals allocated on stack would have // their size rounded to TARGET_POINTER_SIZE (which is 8 bytes on 64-bit targets) and hence // Vector3 locals could be treated as TYP_SIMD16 while reading/writing. void genStoreIndTypeSIMD12(GenTree* treeNode); void genLoadIndTypeSIMD12(GenTree* treeNode); void genStoreLclTypeSIMD12(GenTree* treeNode); void genLoadLclTypeSIMD12(GenTree* treeNode); #ifdef _TARGET_X86_ void genStoreSIMD12ToStack(regNumber operandReg, regNumber tmpReg); void genPutArgStkSIMD12(GenTree* treeNode); #endif // _TARGET_X86_ #endif // FEATURE_SIMD #ifdef FEATURE_HW_INTRINSICS void genHWIntrinsic(GenTreeHWIntrinsic* node); #if defined(_TARGET_XARCH_) void genHWIntrinsic_R_RM(GenTreeHWIntrinsic* node, instruction ins, emitAttr attr); void genHWIntrinsic_R_RM_I(GenTreeHWIntrinsic* node, instruction ins, int8_t ival); void genHWIntrinsic_R_R_RM(GenTreeHWIntrinsic* node, instruction ins, emitAttr attr); void genHWIntrinsic_R_R_RM( GenTreeHWIntrinsic* node, instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, GenTree* op2); void genHWIntrinsic_R_R_RM_I(GenTreeHWIntrinsic* node, instruction ins, int8_t ival); void genHWIntrinsic_R_R_RM_R(GenTreeHWIntrinsic* node, instruction ins); void genHWIntrinsic_R_R_R_RM( instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, GenTree* op3); void genBaseIntrinsic(GenTreeHWIntrinsic* node); void genSSEIntrinsic(GenTreeHWIntrinsic* node); void genSSE2Intrinsic(GenTreeHWIntrinsic* node); void genSSE41Intrinsic(GenTreeHWIntrinsic* node); void genSSE42Intrinsic(GenTreeHWIntrinsic* node); void genAvxOrAvx2Intrinsic(GenTreeHWIntrinsic* node); void genAESIntrinsic(GenTreeHWIntrinsic* node); void genBMI1OrBMI2Intrinsic(GenTreeHWIntrinsic* node); void genFMAIntrinsic(GenTreeHWIntrinsic* node); void genLZCNTIntrinsic(GenTreeHWIntrinsic* node); void genPCLMULQDQIntrinsic(GenTreeHWIntrinsic* node); void genPOPCNTIntrinsic(GenTreeHWIntrinsic* node); void genXCNTIntrinsic(GenTreeHWIntrinsic* node, instruction ins); template void genHWIntrinsicJumpTableFallback(NamedIntrinsic intrinsic, regNumber nonConstImmReg, regNumber baseReg, regNumber offsReg, HWIntrinsicSwitchCaseBody emitSwCase); #endif // defined(_TARGET_XARCH_) #if defined(_TARGET_ARM64_) instruction getOpForHWIntrinsic(GenTreeHWIntrinsic* node, var_types instrType); void genHWIntrinsicUnaryOp(GenTreeHWIntrinsic* node); void genHWIntrinsicCrcOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdBinaryOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdExtractOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdInsertOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdSelectOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdSetAllOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdUnaryOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdBinaryRMWOp(GenTreeHWIntrinsic* node); void genHWIntrinsicSimdTernaryRMWOp(GenTreeHWIntrinsic* node); void genHWIntrinsicShaHashOp(GenTreeHWIntrinsic* node); void genHWIntrinsicShaRotateOp(GenTreeHWIntrinsic* node); template void genHWIntrinsicSwitchTable(regNumber swReg, regNumber tmpReg, int swMax, HWIntrinsicSwitchCaseBody emitSwCase); #endif // defined(_TARGET_XARCH_) #endif // FEATURE_HW_INTRINSICS #if !defined(_TARGET_64BIT_) // CodeGen for Long Ints void genStoreLongLclVar(GenTree* treeNode); #endif // !defined(_TARGET_64BIT_) void genProduceReg(GenTree* tree); void genUnspillRegIfNeeded(GenTree* tree); regNumber genConsumeReg(GenTree* tree); void genCopyRegIfNeeded(GenTree* tree, regNumber needReg); void genConsumeRegAndCopy(GenTree* tree, regNumber needReg); void genConsumeIfReg(GenTree* tree) { if (!tree->isContained()) { (void)genConsumeReg(tree); } } void genRegCopy(GenTree* tree); void genTransferRegGCState(regNumber dst, regNumber src); void genConsumeAddress(GenTree* addr); void genConsumeAddrMode(GenTreeAddrMode* mode); void genSetBlockSize(GenTreeBlk* blkNode, regNumber sizeReg); void genConsumeBlockSrc(GenTreeBlk* blkNode); void genSetBlockSrc(GenTreeBlk* blkNode, regNumber srcReg); void genConsumeBlockOp(GenTreeBlk* blkNode, regNumber dstReg, regNumber srcReg, regNumber sizeReg); #ifdef FEATURE_PUT_STRUCT_ARG_STK void genConsumePutStructArgStk(GenTreePutArgStk* putArgStkNode, regNumber dstReg, regNumber srcReg, regNumber sizeReg); #endif // FEATURE_PUT_STRUCT_ARG_STK #if FEATURE_ARG_SPLIT void genConsumeArgSplitStruct(GenTreePutArgSplit* putArgNode); #endif // FEATURE_ARG_SPLIT void genConsumeRegs(GenTree* tree); void genConsumeOperands(GenTreeOp* tree); void genEmitGSCookieCheck(bool pushReg); void genSetRegToIcon(regNumber reg, ssize_t val, var_types type = TYP_INT, insFlags flags = INS_FLAGS_DONT_CARE); void genCodeForShift(GenTree* tree); #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) void genCodeForShiftLong(GenTree* tree); #endif #ifdef _TARGET_XARCH_ void genCodeForShiftRMW(GenTreeStoreInd* storeInd); void genCodeForBT(GenTreeOp* bt); #endif // _TARGET_XARCH_ void genCodeForCast(GenTreeOp* tree); void genCodeForLclAddr(GenTree* tree); void genCodeForIndexAddr(GenTreeIndexAddr* tree); void genCodeForIndir(GenTreeIndir* tree); void genCodeForNegNot(GenTree* tree); void genCodeForBswap(GenTree* tree); void genCodeForLclVar(GenTreeLclVar* tree); void genCodeForLclFld(GenTreeLclFld* tree); void genCodeForStoreLclFld(GenTreeLclFld* tree); void genCodeForStoreLclVar(GenTreeLclVar* tree); void genCodeForReturnTrap(GenTreeOp* tree); void genCodeForJcc(GenTreeCC* tree); void genCodeForSetcc(GenTreeCC* setcc); void genCodeForStoreInd(GenTreeStoreInd* tree); void genCodeForSwap(GenTreeOp* tree); void genCodeForCpObj(GenTreeObj* cpObjNode); void genCodeForCpBlk(GenTreeBlk* cpBlkNode); void genCodeForCpBlkRepMovs(GenTreeBlk* cpBlkNode); void genCodeForCpBlkUnroll(GenTreeBlk* cpBlkNode); void genCodeForPhysReg(GenTreePhysReg* tree); void genCodeForNullCheck(GenTreeOp* tree); void genCodeForCmpXchg(GenTreeCmpXchg* tree); void genAlignStackBeforeCall(GenTreePutArgStk* putArgStk); void genAlignStackBeforeCall(GenTreeCall* call); void genRemoveAlignmentAfterCall(GenTreeCall* call, unsigned bias = 0); #if defined(UNIX_X86_ABI) unsigned curNestedAlignment; // Keep track of alignment adjustment required during codegen. unsigned maxNestedAlignment; // The maximum amount of alignment adjustment required. void SubtractNestedAlignment(unsigned adjustment) { assert(curNestedAlignment >= adjustment); unsigned newNestedAlignment = curNestedAlignment - adjustment; if (curNestedAlignment != newNestedAlignment) { JITDUMP("Adjusting stack nested alignment from %d to %d\n", curNestedAlignment, newNestedAlignment); } curNestedAlignment = newNestedAlignment; } void AddNestedAlignment(unsigned adjustment) { unsigned newNestedAlignment = curNestedAlignment + adjustment; if (curNestedAlignment != newNestedAlignment) { JITDUMP("Adjusting stack nested alignment from %d to %d\n", curNestedAlignment, newNestedAlignment); } curNestedAlignment = newNestedAlignment; if (curNestedAlignment > maxNestedAlignment) { JITDUMP("Max stack nested alignment changed from %d to %d\n", maxNestedAlignment, curNestedAlignment); maxNestedAlignment = curNestedAlignment; } } #endif #ifndef _TARGET_X86_ void genPutArgStkFieldList(GenTreePutArgStk* putArgStk, unsigned outArgVarNum); #endif // !_TARGET_X86_ #ifdef FEATURE_PUT_STRUCT_ARG_STK #ifdef _TARGET_X86_ bool genAdjustStackForPutArgStk(GenTreePutArgStk* putArgStk); void genPushReg(var_types type, regNumber srcReg); void genPutArgStkFieldList(GenTreePutArgStk* putArgStk); #endif // _TARGET_X86_ void genPutStructArgStk(GenTreePutArgStk* treeNode); unsigned genMove8IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset); unsigned genMove4IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset); unsigned genMove2IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset); unsigned genMove1IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset); void genStructPutArgRepMovs(GenTreePutArgStk* putArgStkNode); void genStructPutArgUnroll(GenTreePutArgStk* putArgStkNode); void genStoreRegToStackArg(var_types type, regNumber reg, int offset); #endif // FEATURE_PUT_STRUCT_ARG_STK void genCodeForLoadOffset(instruction ins, emitAttr size, regNumber dst, GenTree* base, unsigned offset); void genCodeForStoreOffset(instruction ins, emitAttr size, regNumber src, GenTree* base, unsigned offset); #ifdef _TARGET_ARM64_ void genCodeForLoadPairOffset(regNumber dst, regNumber dst2, GenTree* base, unsigned offset); void genCodeForStorePairOffset(regNumber src, regNumber src2, GenTree* base, unsigned offset); #endif // _TARGET_ARM64_ void genCodeForStoreBlk(GenTreeBlk* storeBlkNode); void genCodeForInitBlk(GenTreeBlk* initBlkNode); void genCodeForInitBlkRepStos(GenTreeBlk* initBlkNode); void genCodeForInitBlkUnroll(GenTreeBlk* initBlkNode); void genJumpTable(GenTree* tree); void genTableBasedSwitch(GenTree* tree); void genCodeForArrIndex(GenTreeArrIndex* treeNode); void genCodeForArrOffset(GenTreeArrOffs* treeNode); instruction genGetInsForOper(genTreeOps oper, var_types type); bool genEmitOptimizedGCWriteBarrier(GCInfo::WriteBarrierForm writeBarrierForm, GenTree* addr, GenTree* data); void genCallInstruction(GenTreeCall* call); void genJmpMethod(GenTree* jmp); BasicBlock* genCallFinally(BasicBlock* block); void genCodeForJumpTrue(GenTreeOp* jtrue); #ifdef _TARGET_ARM64_ void genCodeForJumpCompare(GenTreeOp* tree); #endif // _TARGET_ARM64_ #if FEATURE_EH_FUNCLETS void genEHCatchRet(BasicBlock* block); #else // !FEATURE_EH_FUNCLETS void genEHFinallyOrFilterRet(BasicBlock* block); #endif // !FEATURE_EH_FUNCLETS void genMultiRegCallStoreToLocal(GenTree* treeNode); // Deals with codegen for muti-register struct returns. bool isStructReturn(GenTree* treeNode); void genStructReturn(GenTree* treeNode); #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) void genLongReturn(GenTree* treeNode); #endif // _TARGET_X86_ || _TARGET_ARM_ #if defined(_TARGET_X86_) void genFloatReturn(GenTree* treeNode); #endif // _TARGET_X86_ #if defined(_TARGET_ARM64_) void genSimpleReturn(GenTree* treeNode); #endif // _TARGET_ARM64_ void genReturn(GenTree* treeNode); void genLclHeap(GenTree* tree); bool genIsRegCandidateLocal(GenTree* tree) { if (!tree->IsLocal()) { return false; } const LclVarDsc* varDsc = &compiler->lvaTable[tree->gtLclVarCommon.gtLclNum]; return (varDsc->lvIsRegCandidate()); } #ifdef FEATURE_PUT_STRUCT_ARG_STK #ifdef _TARGET_X86_ bool m_pushStkArg; #else // !_TARGET_X86_ unsigned m_stkArgVarNum; unsigned m_stkArgOffset; #endif // !_TARGET_X86_ #endif // !FEATURE_PUT_STRUCT_ARG_STK #if defined(DEBUG) && defined(_TARGET_XARCH_) void genStackPointerCheck(bool doStackPointerCheck, unsigned lvaStackPointerVar); #endif // defined(DEBUG) && defined(_TARGET_XARCH_) #ifdef DEBUG GenTree* lastConsumedNode; void genNumberOperandUse(GenTree* const operand, int& useNum) const; void genCheckConsumeNode(GenTree* const node); #else // !DEBUG inline void genCheckConsumeNode(GenTree* treeNode) { } #endif // DEBUG /* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XX Instruction XX XX XX XX The interface to generate a machine-instruction. XX XX Currently specific to x86 XX XX TODO-Cleanup: Consider factoring this out of CodeGen XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */ public: void instInit(); void instGen(instruction ins); #ifdef _TARGET_XARCH_ void instNop(unsigned size); #endif void inst_JMP(emitJumpKind jmp, BasicBlock* tgtBlock); void inst_SET(emitJumpKind condition, regNumber reg); void inst_RV(instruction ins, regNumber reg, var_types type, emitAttr size = EA_UNKNOWN); void inst_RV_RV(instruction ins, regNumber reg1, regNumber reg2, var_types type = TYP_I_IMPL, emitAttr size = EA_UNKNOWN, insFlags flags = INS_FLAGS_DONT_CARE); void inst_RV_RV_RV(instruction ins, regNumber reg1, regNumber reg2, regNumber reg3, emitAttr size, insFlags flags = INS_FLAGS_DONT_CARE); void inst_IV(instruction ins, int val); void inst_IV_handle(instruction ins, int val); void inst_RV_IV( instruction ins, regNumber reg, target_ssize_t val, emitAttr size, insFlags flags = INS_FLAGS_DONT_CARE); void inst_ST_RV(instruction ins, TempDsc* tmp, unsigned ofs, regNumber reg, var_types type); void inst_ST_IV(instruction ins, TempDsc* tmp, unsigned ofs, int val, var_types type); void inst_SA_RV(instruction ins, unsigned ofs, regNumber reg, var_types type); void inst_SA_IV(instruction ins, unsigned ofs, int val, var_types type); void inst_RV_ST( instruction ins, regNumber reg, TempDsc* tmp, unsigned ofs, var_types type, emitAttr size = EA_UNKNOWN); void inst_FS_ST(instruction ins, emitAttr size, TempDsc* tmp, unsigned ofs); void inst_TT(instruction ins, GenTree* tree, unsigned offs = 0, int shfv = 0, emitAttr size = EA_UNKNOWN); void inst_TT_RV(instruction ins, GenTree* tree, regNumber reg, unsigned offs = 0, emitAttr size = EA_UNKNOWN, insFlags flags = INS_FLAGS_DONT_CARE); void inst_RV_TT(instruction ins, regNumber reg, GenTree* tree, unsigned offs = 0, emitAttr size = EA_UNKNOWN, insFlags flags = INS_FLAGS_DONT_CARE); void inst_FS_TT(instruction ins, GenTree* tree); void inst_RV_SH(instruction ins, emitAttr size, regNumber reg, unsigned val, insFlags flags = INS_FLAGS_DONT_CARE); void inst_TT_SH(instruction ins, GenTree* tree, unsigned val, unsigned offs = 0); void inst_RV_CL(instruction ins, regNumber reg, var_types type = TYP_I_IMPL); void inst_TT_CL(instruction ins, GenTree* tree, unsigned offs = 0); #if defined(_TARGET_XARCH_) void inst_RV_RV_IV(instruction ins, emitAttr size, regNumber reg1, regNumber reg2, unsigned ival); #endif void inst_RV_RR(instruction ins, emitAttr size, regNumber reg1, regNumber reg2); void inst_RV_ST(instruction ins, emitAttr size, regNumber reg, GenTree* tree); void inst_mov_RV_ST(regNumber reg, GenTree* tree); void inst_set_SV_var(GenTree* tree); #ifdef _TARGET_ARM_ bool arm_Valid_Imm_For_Instr(instruction ins, target_ssize_t imm, insFlags flags); bool arm_Valid_Disp_For_LdSt(target_ssize_t disp, var_types type); bool arm_Valid_Imm_For_Alu(target_ssize_t imm); bool arm_Valid_Imm_For_Mov(target_ssize_t imm); bool arm_Valid_Imm_For_Small_Mov(regNumber reg, target_ssize_t imm, insFlags flags); bool arm_Valid_Imm_For_Add(target_ssize_t imm, insFlags flag); bool arm_Valid_Imm_For_Add_SP(target_ssize_t imm); bool arm_Valid_Imm_For_BL(ssize_t addr); bool ins_Writes_Dest(instruction ins); #endif bool isMoveIns(instruction ins); instruction ins_Move_Extend(var_types srcType, bool srcInReg); instruction ins_Copy(var_types dstType); instruction ins_CopyIntToFloat(var_types srcType, var_types dstTyp); instruction ins_CopyFloatToInt(var_types srcType, var_types dstTyp); static instruction ins_FloatStore(var_types type = TYP_DOUBLE); static instruction ins_FloatCopy(var_types type = TYP_DOUBLE); instruction ins_FloatConv(var_types to, var_types from); instruction ins_FloatCompare(var_types type); instruction ins_MathOp(genTreeOps oper, var_types type); instruction ins_FloatSqrt(var_types type); void instGen_Return(unsigned stkArgSize); #ifdef _TARGET_ARM64_ void instGen_MemoryBarrier(insBarrier barrierType = INS_BARRIER_ISH); #else void instGen_MemoryBarrier(); #endif void instGen_Set_Reg_To_Zero(emitAttr size, regNumber reg, insFlags flags = INS_FLAGS_DONT_CARE); void instGen_Set_Reg_To_Imm(emitAttr size, regNumber reg, ssize_t imm, insFlags flags = INS_FLAGS_DONT_CARE); void instGen_Compare_Reg_To_Zero(emitAttr size, regNumber reg); void instGen_Compare_Reg_To_Reg(emitAttr size, regNumber reg1, regNumber reg2); void instGen_Compare_Reg_To_Imm(emitAttr size, regNumber reg, target_ssize_t imm); void instGen_Load_Reg_From_Lcl(var_types srcType, regNumber dstReg, int varNum, int offs); void instGen_Store_Reg_Into_Lcl(var_types dstType, regNumber srcReg, int varNum, int offs); void instGen_Store_Imm_Into_Lcl( var_types dstType, emitAttr sizeAttr, ssize_t imm, int varNum, int offs, regNumber regToUse = REG_NA); #ifdef DEBUG void __cdecl instDisp(instruction ins, bool noNL, const char* fmt, ...); #endif #ifdef _TARGET_XARCH_ instruction genMapShiftInsToShiftByConstantIns(instruction ins, int shiftByValue); #endif // _TARGET_XARCH_ // Maps a GenCondition code to a sequence of conditional jumps or other conditional instructions // such as X86's SETcc. A sequence of instructions rather than just a single one is required for // certain floating point conditions. // For example, X86's UCOMISS sets ZF to indicate equality but it also sets it, together with PF, // to indicate an unordered result. So for GenCondition::FEQ we first need to check if PF is 0 // and then jump if ZF is 1: // JP fallThroughBlock // JE jumpDestBlock // fallThroughBlock: // ... // jumpDestBlock: // // This is very similar to the way shortcircuit evaluation of bool AND and OR operators works so // in order to make the GenConditionDesc mapping tables easier to read, a bool expression-like // pattern is used to encode the above: // { EJ_jnp, GT_AND, EJ_je } // { EJ_jp, GT_OR, EJ_jne } // // For more details check inst_JCC and inst_SETCC functions. // struct GenConditionDesc { emitJumpKind jumpKind1; genTreeOps oper; emitJumpKind jumpKind2; char padTo4Bytes; static const GenConditionDesc& Get(GenCondition condition) { assert(condition.GetCode() < _countof(map)); const GenConditionDesc& desc = map[condition.GetCode()]; assert(desc.jumpKind1 != EJ_NONE); assert((desc.oper == GT_NONE) || (desc.oper == GT_AND) || (desc.oper == GT_OR)); assert((desc.oper == GT_NONE) == (desc.jumpKind2 == EJ_NONE)); return desc; } private: static const GenConditionDesc map[32]; }; void inst_JCC(GenCondition condition, BasicBlock* target); void inst_SETCC(GenCondition condition, var_types type, regNumber dstReg); }; /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XX Instruction XX XX Inline functions XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */ #ifdef _TARGET_XARCH_ /***************************************************************************** * * Generate a floating-point instruction that has one operand given by * a tree (which has been made addressable). */ inline void CodeGen::inst_FS_TT(instruction ins, GenTree* tree) { assert(instIsFP(ins)); assert(varTypeIsFloating(tree->gtType)); inst_TT(ins, tree, 0); } #endif /***************************************************************************** * * Generate a "shift reg, cl" instruction. */ inline void CodeGen::inst_RV_CL(instruction ins, regNumber reg, var_types type) { inst_RV(ins, reg, type); } #endif // _CODEGEN_H_