// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*************************************************************************************/ /* StressLog.h */ /*************************************************************************************/ /* StressLog is a binary, memory based circular queue of logging messages. It is intended to be used in retail builds during stress runs (activated by registry key), so to help find bugs that only turn up during stress runs. It is meant to have very low overhead and can not cause deadlocks, etc. It is however thread safe */ /* The log has a very simple structure, and it meant to be dumped from a NTSD extention (eg. strike). There is no memory allocation system calls etc to purtub things */ /* see the tools/strike/stressdump.cpp for the dumper utility that parses this log */ /*************************************************************************************/ #ifndef StressLog_h #define StressLog_h 1 #include "log.h" #if defined(STRESS_LOG) && !defined(FEATURE_NO_STRESSLOG) #include "holder.h" #include "staticcontract.h" #include "mscoree.h" #include "clrinternal.h" #ifdef STRESS_LOG_READONLY #include // offsetof #else //STRESS_LOG_READONLY #include "clrhost.h" #endif //STRESS_LOG_READONLY #ifndef _ASSERTE #define _ASSERTE(expr) #endif /* The STRESS_LOG* macros work like printf. In fact the use printf in their implementation so all printf format specifications work. In addition the Stress log dumper knows about certain suffixes for the %p format specification (normally used to print a pointer) %pM // The pointer is a MethodDesc %pT // The pointer is a type (MethodTable) %pV // The pointer is a C++ Vtable pointer (useful for distinguishing different types of frames %pK // The pointer is a code address (used for stack track) */ /* STRESS_LOG_VA was added to allow sendign GC trace output to the stress log. msg must be enclosed in ()'s and contain a format string followed by 0 - 4 arguments. The arguments must be numbers or string literals. LogMsgOL is overloaded so that all of the possible sets of parameters are covered. This was done becasue GC Trace uses dprintf which dosen't contain info on how many arguments are getting passed in and using va_args would require parsing the format string during the GC */ #define STRESS_LOG_VA(msg) do { \ if (StressLog::LogOn(LF_GC, LL_ALWAYS)) \ StressLog::LogMsgOL msg; \ LogSpewAlways msg; \ } while(0) #define STRESS_LOG0(facility, level, msg) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 0, msg); \ LOG((facility, level, msg)); \ } while(0) #define STRESS_LOG1(facility, level, msg, data1) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 1, msg, (void*)(size_t)(data1));\ LOG((facility, level, msg, data1)); \ } while(0) #define STRESS_LOG2(facility, level, msg, data1, data2) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 2, msg, \ (void*)(size_t)(data1), (void*)(size_t)(data2)); \ LOG((facility, level, msg, data1, data2)); \ } while(0) #define STRESS_LOG2_CHECK_EE_STARTED(facility, level, msg, data1, data2) do { \ if (g_fEEStarted) \ STRESS_LOG2(facility, level, msg, data1, data2); \ else \ LOG((facility, level, msg, data1, data2)); \ } while(0) #define STRESS_LOG3(facility, level, msg, data1, data2, data3) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 3, msg, \ (void*)(size_t)(data1),(void*)(size_t)(data2),(void*)(size_t)(data3)); \ LOG((facility, level, msg, data1, data2, data3)); \ } while(0) #define STRESS_LOG4(facility, level, msg, data1, data2, data3, data4) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 4, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4)); \ LOG((facility, level, msg, data1, data2, data3, data4)); \ } while(0) #define STRESS_LOG5(facility, level, msg, data1, data2, data3, data4, data5) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 5, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5)); \ } while(0) #define STRESS_LOG6(facility, level, msg, data1, data2, data3, data4, data5, data6) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 6, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5), (void*)(size_t)(data6)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5, data6)); \ } while(0) #define STRESS_LOG7(facility, level, msg, data1, data2, data3, data4, data5, data6, data7) do { \ if (StressLog::LogOn(facility, level)) \ StressLog::LogMsg(level, facility, 7, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5), (void*)(size_t)(data6), (void*)(size_t)(data7)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5, data6, data7)); \ } while(0) #define STRESS_LOG_COND0(facility, level, msg) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 0, msg); \ LOG((facility, level, msg)); \ } while(0) #define STRESS_LOG_COND1(facility, level, cond, msg, data1) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 1, msg, (void*)(size_t)(data1)); \ LOG((facility, level, msg, data1)); \ } while(0) #define STRESS_LOG_COND2(facility, level, cond, msg, data1, data2) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 2, msg, \ (void*)(size_t)(data1), (void*)(size_t)(data2)); \ LOG((facility, level, msg, data1, data2)); \ } while(0) #define STRESS_LOG_COND3(facility, level, cond, msg, data1, data2, data3) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 3, msg, \ (void*)(size_t)(data1),(void*)(size_t)(data2),(void*)(size_t)(data3)); \ LOG((facility, level, msg, data1, data2, data3)); \ } while(0) #define STRESS_LOG_COND4(facility, level, cond, msg, data1, data2, data3, data4) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 4, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4)); \ LOG((facility, level, msg, data1, data2, data3, data4)); \ } while(0) #define STRESS_LOG_COND5(facility, level, cond, msg, data1, data2, data3, data4, data5) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 5, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5)); \ } while(0) #define STRESS_LOG_COND6(facility, level, cond, msg, data1, data2, data3, data4, data5, data6) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 6, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5), (void*)(size_t)(data6)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5, data6)); \ } while(0) #define STRESS_LOG_COND7(facility, level, cond, msg, data1, data2, data3, data4, data5, data6, data7) do { \ if (StressLog::LogOn(facility, level) && (cond)) \ StressLog::LogMsg(level, facility, 7, msg, (void*)(size_t)(data1), \ (void*)(size_t)(data2),(void*)(size_t)(data3),(void*)(size_t)(data4), \ (void*)(size_t)(data5), (void*)(size_t)(data6), (void*)(size_t)(data7)); \ LOG((facility, level, msg, data1, data2, data3, data4, data5, data6, data7)); \ } while(0) #define STRESS_LOG_RESERVE_MEM(numChunks) do { \ if (StressLog::StressLogOn(LF_ALL, LL_ALWAYS)) \ {StressLog::ReserveStressLogChunks (numChunks);} \ } while(0) // !!! WARNING !!! // !!! DO NOT ADD STRESS_LOG8, as the stress log infrastructure supports a maximum of 7 arguments // !!! WARNING !!! #define STRESS_LOG_PLUG_MOVE(plug_start, plug_end, plug_delta) do { \ if (StressLog::LogOn(LF_GC, LL_INFO1000)) \ StressLog::LogMsg(LL_INFO1000, LF_GC, 3, ThreadStressLog::gcPlugMoveMsg(), \ (void*)(size_t)(plug_start), (void*)(size_t)(plug_end), (void*)(size_t)(plug_delta)); \ LOG((LF_GC, LL_INFO10000, ThreadStressLog::gcPlugMoveMsg(), (plug_start), (plug_end), (plug_delta))); \ } while(0) #define STRESS_LOG_ROOT_PROMOTE(root_addr, objPtr, methodTable) do { \ if (StressLog::LogOn(LF_GC|LF_GCROOTS, LL_INFO1000)) \ StressLog::LogMsg(LL_INFO1000, LF_GC|LF_GCROOTS, 3, ThreadStressLog::gcRootPromoteMsg(), \ (void*)(size_t)(root_addr), (void*)(size_t)(objPtr), (void*)(size_t)(methodTable)); \ LOG((LF_GC|LF_GCROOTS, LL_INFO1000000, ThreadStressLog::gcRootPromoteMsg(), (root_addr), (objPtr), (methodTable))); \ } while(0) #define STRESS_LOG_ROOT_RELOCATE(root_addr, old_value, new_value, methodTable) do { \ if (StressLog::LogOn(LF_GC|LF_GCROOTS, LL_INFO1000) && ((size_t)(old_value) != (size_t)(new_value))) \ StressLog::LogMsg(LL_INFO1000, LF_GC|LF_GCROOTS, 4, ThreadStressLog::gcRootMsg(), \ (void*)(size_t)(root_addr), (void*)(size_t)(old_value), \ (void*)(size_t)(new_value), (void*)(size_t)(methodTable)); \ LOG((LF_GC|LF_GCROOTS, LL_INFO10000, ThreadStressLog::gcRootMsg(), (root_addr), (old_value), (new_value), (methodTable))); \ } while(0) #define STRESS_LOG_GC_START(gcCount, Gen, collectClasses) do { \ if (StressLog::LogOn(LF_GCROOTS|LF_GC|LF_GCALLOC, LL_INFO10)) \ StressLog::LogMsg(LL_INFO10, LF_GCROOTS|LF_GC|LF_GCALLOC, 3, ThreadStressLog::gcStartMsg(), \ (void*)(size_t)(gcCount), (void*)(size_t)(Gen), (void*)(size_t)(collectClasses)); \ LOG((LF_GCROOTS|LF_GC|LF_GCALLOC, LL_INFO10, ThreadStressLog::gcStartMsg(), (gcCount), (Gen), (collectClasses))); \ } while(0) #define STRESS_LOG_GC_END(gcCount, Gen, collectClasses) do { \ if (StressLog::LogOn(LF_GCROOTS|LF_GC|LF_GCALLOC, LL_INFO10)) \ StressLog::LogMsg(LL_INFO10, LF_GCROOTS|LF_GC|LF_GCALLOC, 3, ThreadStressLog::gcEndMsg(), \ (void*)(size_t)(gcCount), (void*)(size_t)(Gen), (void*)(size_t)(collectClasses), 0); \ LOG((LF_GCROOTS|LF_GC|LF_GCALLOC, LL_INFO10, ThreadStressLog::gcEndMsg(), (gcCount), (Gen), (collectClasses))); \ } while(0) #if defined(_DEBUG) #define MAX_CALL_STACK_TRACE 20 #define STRESS_LOG_OOM_STACK(size) do { \ CantAllocHolder caHolder; \ if (StressLog::LogOn(LF_EEMEM, LL_ALWAYS)) \ { \ StressLog::LogMsgOL("OOM on alloc of size %x \n", (void*)(size_t)(size)); \ StressLog::LogCallStack ("OOM"); \ } \ } while(0) #define STRESS_LOG_GC_STACK do { \ if (StressLog::LogOn(LF_GC |LF_GCINFO, LL_ALWAYS)) \ { \ StressLog::LogMsgOL("GC is triggered \n"); \ StressLog::LogCallStack ("GC"); \ } \ } while(0) #else //!_DEBUG #define STRESS_LOG_OOM_STACK(size) #define STRESS_LOG_GC_STACK #endif //_DEBUG class ThreadStressLog; /*************************************************************************************/ /* a log is a circular queue of messages */ class StressLog { public: static void Initialize(unsigned facilities, unsigned level, unsigned maxBytesPerThread, unsigned maxBytesTotal, HMODULE hMod); static void Terminate(BOOL fProcessDetach=FALSE); static void ThreadDetach(ThreadStressLog *msgs); // call at DllMain THREAD_DETACH if you want to recycle thread logs static int NewChunk () { return InterlockedIncrement (&theLog.totalChunk); } static int ChunkDeleted () { return InterlockedDecrement (&theLog.totalChunk); } //the result is not 100% accurate. If multiple threads call this funciton at the same time, //we could allow the total size be bigger than required. But the memory won't grow forever //and this is not critical so we don't try to fix the race static BOOL AllowNewChunk (LONG numChunksInCurThread); //preallocate Stress log chunks for current thread. The memory we could preallocate is still //bounded by per thread size limit and total size limit. If chunksToReserve is 0, we will try to //preallocate up to per thread size limit static BOOL ReserveStressLogChunks (unsigned chunksToReserve); // used by out of process debugger to dump the stress log to 'fileName' // IDebugDataSpaces is the NTSD execution callback for getting process memory. // This function is defined in the tools\strike\stressLogDump.cpp file static HRESULT Dump(ULONG64 logAddr, const char* fileName, struct IDebugDataSpaces* memCallBack); static BOOL StressLogOn(unsigned facility, unsigned level); static BOOL ETWLogOn(unsigned facility, unsigned level); static BOOL LogOn(unsigned facility, unsigned level); // private: unsigned facilitiesToLog; // Bitvector of facilities to log (see loglf.h) unsigned levelToLog; // log level (see log.h) unsigned MaxSizePerThread; // maximum number of bytes each thread should have before wrapping unsigned MaxSizeTotal; //maximum memory allowed for stress log Volatile totalChunk; //current number of total chunks allocated Volatile logs; // the list of logs for every thread. Volatile TLSslot; // Each thread gets a log this is used to fetch each threads log Volatile deadCount; // count of dead threads in the log CRITSEC_COOKIE lock; // lock unsigned __int64 tickFrequency; // number of ticks per second unsigned __int64 startTimeStamp; // start time from when tick counter started FILETIME startTime; // time the application started SIZE_T moduleOffset; // Used to compute format strings. // private: static void Enter(CRITSEC_COOKIE dummy = NULL); static void Leave(CRITSEC_COOKIE dummy = NULL); static ThreadStressLog* CreateThreadStressLog(); static ThreadStressLog* CreateThreadStressLogHelper(); static BOOL InlinedStressLogOn(unsigned facility, unsigned level); static BOOL InlinedETWLogOn(unsigned facility, unsigned level); static void LogMsg(unsigned level, unsigned facility, int cArgs, const char* format, ... ); // Support functions for STRESS_LOG_VA // We disable the warning "conversion from 'type' to 'type' of greater size" since everything will // end up on the stack, and LogMsg will know the size of the variable based on the format string. #ifdef _MSC_VER #pragma warning( push ) #pragma warning( disable : 4312 ) #endif static void LogMsgOL(const char* format) { LogMsg(LL_ALWAYS, LF_GC, 0, format); } template < typename T1 > static void LogMsgOL(const char* format, T1 data1) { static_assert_no_msg(sizeof(T1) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 1, format, (void*)(size_t)data1); } template < typename T1, typename T2 > static void LogMsgOL(const char* format, T1 data1, T2 data2) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 2, format, (void*)(size_t)data1, (void*)(size_t)data2); } template < typename T1, typename T2, typename T3 > static void LogMsgOL(const char* format, T1 data1, T2 data2, T3 data3) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*) && sizeof(T3) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 3, format, (void*)(size_t)data1, (void*)(size_t)data2, (void*)(size_t)data3); } template < typename T1, typename T2, typename T3, typename T4 > static void LogMsgOL(const char* format, T1 data1, T2 data2, T3 data3, T4 data4) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*) && sizeof(T3) <= sizeof(void*) && sizeof(T4) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 4, format, (void*)(size_t)data1, (void*)(size_t)data2, (void*)(size_t)data3, (void*)(size_t)data4); } template < typename T1, typename T2, typename T3, typename T4, typename T5 > static void LogMsgOL(const char* format, T1 data1, T2 data2, T3 data3, T4 data4, T5 data5) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*) && sizeof(T3) <= sizeof(void*) && sizeof(T4) <= sizeof(void*) && sizeof(T5) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 5, format, (void*)(size_t)data1, (void*)(size_t)data2, (void*)(size_t)data3, (void*)(size_t)data4, (void*)(size_t)data5); } template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6 > static void LogMsgOL(const char* format, T1 data1, T2 data2, T3 data3, T4 data4, T5 data5, T6 data6) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*) && sizeof(T3) <= sizeof(void*) && sizeof(T4) <= sizeof(void*) && sizeof(T5) <= sizeof(void*) && sizeof(T6) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 6, format, (void*)(size_t)data1, (void*)(size_t)data2, (void*)(size_t)data3, (void*)(size_t)data4, (void*)(size_t)data5, (void*)(size_t)data6); } template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7 > static void LogMsgOL(const char* format, T1 data1, T2 data2, T3 data3, T4 data4, T5 data5, T6 data6, T7 data7) { static_assert_no_msg(sizeof(T1) <= sizeof(void*) && sizeof(T2) <= sizeof(void*) && sizeof(T3) <= sizeof(void*) && sizeof(T4) <= sizeof(void*) && sizeof(T5) <= sizeof(void*) && sizeof(T6) <= sizeof(void*) && sizeof(T7) <= sizeof(void*)); LogMsg(LL_ALWAYS, LF_GC, 7, format, (void*)(size_t)data1, (void*)(size_t)data2, (void*)(size_t)data3, (void*)(size_t)data4, (void*)(size_t)data5, (void*)(size_t)data6, (void*)(size_t)data7); } #ifdef _MSC_VER #pragma warning( pop ) #endif // We can only log the stacktrace on DEBUG builds! #ifdef _DEBUG typedef USHORT (__stdcall *PFNRtlCaptureStackBackTrace)( IN ULONG FramesToSkip, IN ULONG FramesToCapture, OUT PVOID * BackTrace, OUT PULONG BackTraceHash); PFNRtlCaptureStackBackTrace RtlCaptureStackBackTrace; static void LogCallStack(const char *const callTag); #endif //_DEBUG // private: // static variables static StressLog theLog; // We only have one log, and this is it }; typedef Holder, HSV_NoValidation> StressLogLockHolder; #if defined(DACCESS_COMPILE) inline BOOL StressLog::LogOn(unsigned facility, unsigned level) { STATIC_CONTRACT_LEAF; STATIC_CONTRACT_SUPPORTS_DAC; // StressLog isn't dacized, and besides we don't want to log to it in DAC builds. return FALSE; } #endif /*************************************************************************************/ /* private classes */ #if defined(_MSC_VER) #pragma warning(disable:4200 4201) // don't warn about 0 sized array below or unnamed structures #endif // The order of fields is important. Keep the prefix length as the first field. // And make sure the timeStamp field is naturally alligned, so we don't waste // space on 32-bit platforms struct StressMsg { union { struct { DWORD_PTR numberOfArgs : 3; // at most 7 arguments DWORD_PTR formatOffset : 29; // offset of string in mscorwks }; DWORD_PTR fmtOffsCArgs; // for optimized access }; DWORD_PTR facility; // facility used to log the entry unsigned __int64 timeStamp; // time when mssg was logged void* args[0]; // size given by numberOfArgs static const size_t maxArgCnt = 7; static const size_t maxOffset = 0x20000000; static size_t maxMsgSize () { return sizeof(StressMsg) + maxArgCnt*sizeof(void*); } friend class ThreadStressLog; friend class StressLog; }; #ifdef _WIN64 #define STRESSLOG_CHUNK_SIZE (32 * 1024) #else //_WIN64 #define STRESSLOG_CHUNK_SIZE (16 * 1024) #endif //_WIN64 #define GC_STRESSLOG_MULTIPLY 5 // a chunk of memory for stress log struct StressLogChunk { StressLogChunk * prev; StressLogChunk * next; char buf[STRESSLOG_CHUNK_SIZE]; DWORD dwSig1; DWORD dwSig2; #if !defined(STRESS_LOG_READONLY) static HANDLE s_LogChunkHeap; void * operator new (size_t) throw() { if (IsInCantAllocStressLogRegion ()) { return NULL; } _ASSERTE (s_LogChunkHeap != NULL); //no need to zero memory because we could handle garbage contents return ClrHeapAlloc (s_LogChunkHeap, 0, S_SIZE_T(sizeof (StressLogChunk))); } void operator delete (void * chunk) { _ASSERTE (s_LogChunkHeap != NULL); ClrHeapFree (s_LogChunkHeap, 0, chunk); } #endif //!STRESS_LOG_READONLY StressLogChunk (StressLogChunk * p = NULL, StressLogChunk * n = NULL) :prev (p), next (n), dwSig1 (0xCFCFCFCF), dwSig2 (0xCFCFCFCF) {} char * StartPtr () { return buf; } char * EndPtr () { return buf + STRESSLOG_CHUNK_SIZE; } BOOL IsValid () const { return dwSig1 == 0xCFCFCFCF && dwSig2 == 0xCFCFCFCF; } }; // This class implements a circular stack of variable sized elements // .The buffer between startPtr-endPtr is used in a circular manner // to store instances of the variable-sized struct StressMsg. // The StressMsg are always aligned to endPtr, while the space // left between startPtr and the last element is 0-padded. // .curPtr points to the most recently written log message // .readPtr points to the next log message to be dumped // .hasWrapped is TRUE while dumping the log, if we had wrapped // past the endPtr marker, back to startPtr // The AdvanceRead/AdvanceWrite operations simply update the // readPtr / curPtr fields. thecaller is responsible for reading/writing // to the corresponding field class ThreadStressLog { ThreadStressLog* next; // we keep a linked list of these unsigned threadId; // the id for the thread using this buffer BOOL isDead; // Is this thread dead StressMsg* curPtr; // where packets are being put on the queue StressMsg* readPtr; // where we are reading off the queue (used during dumping) BOOL readHasWrapped; // set when read ptr has passed chunListTail BOOL writeHasWrapped; // set when write ptr has passed chunListHead StressLogChunk * chunkListHead; //head of a list of stress log chunks StressLogChunk * chunkListTail; //tail of a list of stress log chunks StressLogChunk * curReadChunk; //the stress log chunk we are currently reading StressLogChunk * curWriteChunk; //the stress log chunk we are currently writing LONG chunkListLength; // how many stress log chunks are in this stress log #ifdef STRESS_LOG_READONLY FORCEINLINE StressMsg* AdvanceRead(); #endif //STRESS_LOG_READONLY FORCEINLINE StressMsg* AdvanceWrite(int cArgs); #ifdef STRESS_LOG_READONLY inline StressMsg* AdvReadPastBoundary(); #endif //STRESS_LOG_READONLY inline StressMsg* AdvWritePastBoundary(int cArgs); #ifdef STRESS_LOG_READONLY ThreadStressLog* FindLatestThreadLog() const; #endif //STRESS_LOG_READONLY friend class StressLog; #ifndef STRESS_LOG_READONLY FORCEINLINE BOOL GrowChunkList () { _ASSERTE (chunkListLength >= 1); if (!StressLog::AllowNewChunk (chunkListLength)) { return FALSE; } StressLogChunk * newChunk = new StressLogChunk (chunkListTail, chunkListHead); if (newChunk == NULL) { return FALSE; } StressLog::NewChunk (); chunkListLength++; chunkListHead->prev = newChunk; chunkListTail->next = newChunk; chunkListHead = newChunk; return TRUE; } #endif //!STRESS_LOG_READONLY public: #ifndef STRESS_LOG_READONLY ThreadStressLog () { chunkListHead = chunkListTail = curWriteChunk = NULL; StressLogChunk * newChunk =new StressLogChunk; //OOM or in cantalloc region if (newChunk == NULL) { return; } StressLog::NewChunk (); newChunk->prev = newChunk; newChunk->next = newChunk; chunkListHead = chunkListTail = newChunk; next = NULL; threadId = 0; isDead = TRUE; curPtr = NULL; readPtr = NULL; writeHasWrapped = FALSE; curReadChunk = NULL; curWriteChunk = NULL; chunkListLength = 1; } #endif //!STRESS_LOG_READONLY ~ThreadStressLog () { //no thing to do if the list is empty (failed to initialize) if (chunkListHead == NULL) { return; } #ifndef STRESS_LOG_READONLY _ASSERTE (chunkListLength >= 1 && chunkListLength <= StressLog::theLog.totalChunk); #endif //!STRESS_LOG_READONLY StressLogChunk * chunk = chunkListHead; do { StressLogChunk * tmp = chunk; chunk = chunk->next; delete tmp; #ifndef STRESS_LOG_READONLY StressLog::ChunkDeleted (); #endif //!STRESS_LOG_READONLY } while (chunk != chunkListHead); } void Activate () { #ifndef STRESS_LOG_READONLY //there is no need to zero buffers because we could handle garbage contents threadId = GetCurrentThreadId (); isDead = FALSE; curWriteChunk = chunkListTail; curPtr = (StressMsg *)curWriteChunk->EndPtr (); writeHasWrapped = FALSE; #else //STRESS_LOG_READONLY curReadChunk = curWriteChunk; readPtr = curPtr; readHasWrapped = FALSE; // the last written log, if it wrapped around may have partially overwritten // a previous record. Update curPtr to reflect the last safe beginning of a record, // but curPtr shouldn't wrap around, otherwise it'll break our assumptions about stress // log curPtr = (StressMsg*)((char*)curPtr - StressMsg::maxMsgSize()); if (curPtr < (StressMsg*)curWriteChunk->StartPtr()) { curPtr = (StressMsg *)curWriteChunk->StartPtr(); } //corner case: the log is empty if (readPtr == (StressMsg *)curReadChunk->EndPtr ()) { AdvReadPastBoundary(); } #endif //!STRESS_LOG_READONLY } BOOL IsValid () const { return chunkListHead != NULL && (!curWriteChunk || curWriteChunk->IsValid ()); } #ifdef STRESS_LOG_READONLY // Called while dumping. Returns true after all messages in log were dumped FORCEINLINE BOOL CompletedDump () { return readPtr->timeStamp == 0 //if read has passed end of list but write has not passed head of list yet, we are done //if write has also wrapped, we are at the end if read pointer passed write pointer || (readHasWrapped && (!writeHasWrapped || (curReadChunk == curWriteChunk && readPtr >= curPtr))); } #endif //STRESS_LOG_READONLY static const char* gcStartMsg() { STATIC_CONTRACT_LEAF; return "{ =========== BEGINGC %d, (requested generation = %lu, collect_classes = %lu) ==========\n"; } static const char* gcEndMsg() { STATIC_CONTRACT_LEAF; return "========== ENDGC %d (gen = %lu, collect_classes = %lu) ===========}\n"; } static const char* gcRootMsg() { STATIC_CONTRACT_LEAF; return " GC Root %p RELOCATED %p -> %p MT = %pT\n"; } static const char* gcRootPromoteMsg() { STATIC_CONTRACT_LEAF; return " IGCHeap::Promote: Promote GC Root *%p = %p MT = %pT\n"; } static const char* gcPlugMoveMsg() { STATIC_CONTRACT_LEAF; return "GC_HEAP RELOCATING Objects in heap within range [%p %p) by -0x%x bytes\n"; } static const char* TaskSwitchMsg() { STATIC_CONTRACT_LEAF; return "StressLog TaskSwitch Marker\n"; } void LogMsg ( DWORD_PTR facility, int cArgs, const char* format, ... ) { va_list Args; va_start(Args, format); LogMsg (facility, cArgs, format, Args); va_end(Args); } void LogMsg ( DWORD_PTR facility, int cArgs, const char* format, va_list Args); #ifdef STRESS_LOG_READONLY static size_t OffsetOfNext () {return offsetof (ThreadStressLog, next);} static size_t OffsetOfListHead () {return offsetof (ThreadStressLog, chunkListHead);} #endif //STRESS_LOG_READONLY }; #ifdef STRESS_LOG_READONLY /*********************************************************************************/ // Called when dumping the log (by StressLog::Dump()) // Updates readPtr to point to next stress messaage to be dumped // For convenience it returns the new value of readPtr inline StressMsg* ThreadStressLog::AdvanceRead() { STATIC_CONTRACT_LEAF; // advance the marker readPtr = (StressMsg*)((char*)readPtr + sizeof(StressMsg) + readPtr->numberOfArgs*sizeof(void*)); // wrap around if we need to if (readPtr >= (StressMsg *)curReadChunk->EndPtr ()) { AdvReadPastBoundary(); } return readPtr; } // It's the factored-out slow codepath for AdvanceRead() and // is only called by AdvanceRead(). // Updates readPtr to and returns the first stress message >= startPtr inline StressMsg* ThreadStressLog::AdvReadPastBoundary() { STATIC_CONTRACT_LEAF; //if we pass boundary of tail list, we need to set has Wrapped if (curReadChunk == chunkListTail) { readHasWrapped = TRUE; //If write has not wrapped, we know the contents from list head to //cur pointer is garbage, we don't need to read them if (!writeHasWrapped) { return readPtr; } } curReadChunk = curReadChunk->next; void** p = (void**)curReadChunk->StartPtr(); while (*p == NULL && (size_t)(p-(void**)curReadChunk->StartPtr ()) < (StressMsg::maxMsgSize()/sizeof(void*))) { ++p; } // if we failed to find a valid start of a StressMsg fallback to startPtr (since timeStamp==0) if (*p == NULL) { p = (void**) curReadChunk->StartPtr (); } readPtr = (StressMsg*)p; return readPtr; } #endif //STRESS_LOG_READONLY /*********************************************************************************/ // Called at runtime when writing the log (by StressLog::LogMsg()) // Updates curPtr to point to the next spot in the log where we can write // a stress message with cArgs arguments // For convenience it returns a pointer to the empty slot where we can // write the next stress message. // cArgs is the number of arguments in the message to be written. inline StressMsg* ThreadStressLog::AdvanceWrite(int cArgs) { STATIC_CONTRACT_LEAF; // _ASSERTE(cArgs <= StressMsg::maxArgCnt); // advance the marker StressMsg* p = (StressMsg*)((char*)curPtr - sizeof(StressMsg) - cArgs*sizeof(void*)); //past start of current chunk //wrap around if we need to if (p < (StressMsg*)curWriteChunk->StartPtr ()) { curPtr = AdvWritePastBoundary(cArgs); } else { curPtr = p; } return curPtr; } // It's the factored-out slow codepath for AdvanceWrite() and // is only called by AdvanceWrite(). // Returns the stress message flushed against endPtr // In addition it writes NULLs b/w the startPtr and curPtr inline StressMsg* ThreadStressLog::AdvWritePastBoundary(int cArgs) { STATIC_CONTRACT_WRAPPER; #ifndef STRESS_LOG_READONLY //zeroed out remaining buffer memset (curWriteChunk->StartPtr (), 0, (BYTE *)curPtr - (BYTE *)curWriteChunk->StartPtr ()); //if we are already at head of the list, try to grow the list if (curWriteChunk == chunkListHead) { GrowChunkList (); } #endif //!STRESS_LOG_READONLY curWriteChunk = curWriteChunk->prev; #ifndef STRESS_LOG_READONLY if (curWriteChunk == chunkListTail) { writeHasWrapped = TRUE; } #endif //STRESS_LOG_READONLY curPtr = (StressMsg*)((char*)curWriteChunk->EndPtr () - sizeof(StressMsg) - cArgs * sizeof(void*)); return curPtr; } #else // STRESS_LOG #define STRESS_LOG_VA(msg) do { } while(0) #define STRESS_LOG0(facility, level, msg) do { } while(0) #define STRESS_LOG1(facility, level, msg, data1) do { } while(0) #define STRESS_LOG2(facility, level, msg, data1, data2) do { } while(0) #define STRESS_LOG2_CHECK_EE_STARTED(facility, level, msg, data1, data2)do { } while(0) #define STRESS_LOG3(facility, level, msg, data1, data2, data3) do { } while(0) #define STRESS_LOG4(facility, level, msg, data1, data2, data3, data4) do { } while(0) #define STRESS_LOG5(facility, level, msg, data1, data2, data3, data4, data5) do { } while(0) #define STRESS_LOG6(facility, level, msg, data1, data2, data3, data4, data5, data6) do { } while(0) #define STRESS_LOG7(facility, level, msg, data1, data2, data3, data4, data5, data6, data7) do { } while(0) #define STRESS_LOG_PLUG_MOVE(plug_start, plug_end, plug_delta) do { } while(0) #define STRESS_LOG_ROOT_PROMOTE(root_addr, objPtr, methodTable) do { } while(0) #define STRESS_LOG_ROOT_RELOCATE(root_addr, old_value, new_value, methodTable) do { } while(0) #define STRESS_LOG_GC_START(gcCount, Gen, collectClasses) do { } while(0) #define STRESS_LOG_GC_END(gcCount, Gen, collectClasses) do { } while(0) #define STRESS_LOG_OOM_STACK(size) do { } while(0) #define STRESS_LOG_GC_STACK(size) do { } while(0) #define STRESS_LOG_RESERVE_MEM(numChunks) do {} while (0) #endif // STRESS_LOG #endif // StressLog_h