// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. #include #include #include #include #include "windows.h" #include "psapi.h" #include "env/gcenv.structs.h" #include "env/gcenv.base.h" #include "env/gcenv.os.h" GCSystemInfo g_SystemInfo; typedef BOOL (WINAPI *PGET_PROCESS_MEMORY_INFO)(HANDLE handle, PROCESS_MEMORY_COUNTERS* memCounters, uint32_t cb); static PGET_PROCESS_MEMORY_INFO GCGetProcessMemoryInfo = 0; static size_t g_RestrictedPhysicalMemoryLimit = (size_t)UINTPTR_MAX; typedef BOOL (WINAPI *PIS_PROCESS_IN_JOB)(HANDLE processHandle, HANDLE jobHandle, BOOL* result); typedef BOOL (WINAPI *PQUERY_INFORMATION_JOB_OBJECT)(HANDLE jobHandle, JOBOBJECTINFOCLASS jobObjectInfoClass, void* lpJobObjectInfo, DWORD cbJobObjectInfoLength, LPDWORD lpReturnLength); namespace { void GetProcessMemoryLoad(LPMEMORYSTATUSEX pMSEX) { pMSEX->dwLength = sizeof(MEMORYSTATUSEX); BOOL fRet = ::GlobalMemoryStatusEx(pMSEX); assert(fRet); // If the machine has more RAM than virtual address limit, let us cap it. // Our GC can never use more than virtual address limit. if (pMSEX->ullAvailPhys > pMSEX->ullTotalVirtual) { pMSEX->ullAvailPhys = pMSEX->ullAvailVirtual; } } static size_t GetRestrictedPhysicalMemoryLimit() { LIMITED_METHOD_CONTRACT; // The limit was cached already if (g_RestrictedPhysicalMemoryLimit != (size_t)UINTPTR_MAX) return g_RestrictedPhysicalMemoryLimit; size_t job_physical_memory_limit = (size_t)UINTPTR_MAX; BOOL in_job_p = FALSE; HINSTANCE hinstKernel32 = 0; PIS_PROCESS_IN_JOB GCIsProcessInJob = 0; PQUERY_INFORMATION_JOB_OBJECT GCQueryInformationJobObject = 0; hinstKernel32 = LoadLibraryEx(L"kernel32.dll", nullptr, LOAD_LIBRARY_SEARCH_SYSTEM32); if (!hinstKernel32) goto exit; GCIsProcessInJob = (PIS_PROCESS_IN_JOB)GetProcAddress(hinstKernel32, "IsProcessInJob"); if (!GCIsProcessInJob) goto exit; if (!GCIsProcessInJob(GetCurrentProcess(), NULL, &in_job_p)) goto exit; if (in_job_p) { GCGetProcessMemoryInfo = (PGET_PROCESS_MEMORY_INFO)GetProcAddress(hinstKernel32, "K32GetProcessMemoryInfo"); if (!GCGetProcessMemoryInfo) goto exit; GCQueryInformationJobObject = (PQUERY_INFORMATION_JOB_OBJECT)GetProcAddress(hinstKernel32, "QueryInformationJobObject"); if (!GCQueryInformationJobObject) goto exit; JOBOBJECT_EXTENDED_LIMIT_INFORMATION limit_info; if (GCQueryInformationJobObject (NULL, JobObjectExtendedLimitInformation, &limit_info, sizeof(limit_info), NULL)) { size_t job_memory_limit = (size_t)UINTPTR_MAX; size_t job_process_memory_limit = (size_t)UINTPTR_MAX; size_t job_workingset_limit = (size_t)UINTPTR_MAX; // Notes on the NT job object: // // You can specific a bigger process commit or working set limit than // job limit which is pointless so we use the smallest of all 3 as // to calculate our "physical memory load" or "available physical memory" // when running inside a job object, ie, we treat this as the amount of physical memory // our process is allowed to use. // // The commit limit is already reflected by default when you run in a // job but the physical memory load is not. // if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_JOB_MEMORY) != 0) job_memory_limit = limit_info.JobMemoryLimit; if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_PROCESS_MEMORY) != 0) job_process_memory_limit = limit_info.ProcessMemoryLimit; if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_WORKINGSET) != 0) job_workingset_limit = limit_info.BasicLimitInformation.MaximumWorkingSetSize; job_physical_memory_limit = min (job_memory_limit, job_process_memory_limit); job_physical_memory_limit = min (job_physical_memory_limit, job_workingset_limit); MEMORYSTATUSEX ms; ::GetProcessMemoryLoad(&ms); // A sanity check in case someone set a larger limit than there is actual physical memory. job_physical_memory_limit = (size_t) min (job_physical_memory_limit, ms.ullTotalPhys); } } exit: if (job_physical_memory_limit == (size_t)UINTPTR_MAX) { job_physical_memory_limit = 0; FreeLibrary(hinstKernel32); } VolatileStore(&g_RestrictedPhysicalMemoryLimit, job_physical_memory_limit); return g_RestrictedPhysicalMemoryLimit; } } // anonymous namespace // Initialize the interface implementation // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::Initialize() { SYSTEM_INFO systemInfo; GetSystemInfo(&systemInfo); g_SystemInfo.dwNumberOfProcessors = systemInfo.dwNumberOfProcessors; g_SystemInfo.dwPageSize = systemInfo.dwPageSize; g_SystemInfo.dwAllocationGranularity = systemInfo.dwAllocationGranularity; return true; } // Shutdown the interface implementation void GCToOSInterface::Shutdown() { // nothing to do. } // Get numeric id of the current thread if possible on the // current platform. It is indended for logging purposes only. // Return: // Numeric id of the current thread or 0 if the uint64_t GCToOSInterface::GetCurrentThreadIdForLogging() { return ::GetCurrentThreadId(); } // Get id of the process uint32_t GCToOSInterface::GetCurrentProcessId() { return ::GetCurrentThreadId(); } // Set ideal affinity for the current thread // Parameters: // affinity - ideal processor affinity for the thread // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity) { bool success = true; #if !defined(FEATURE_CORESYSTEM) SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor); #else PROCESSOR_NUMBER proc; if (affinity->Group != -1) { proc.Group = (WORD)affinity->Group; proc.Number = (BYTE)affinity->Processor; proc.Reserved = 0; success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); } else { if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc)) { proc.Number = affinity->Processor; success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); } } #endif return success; } // Get the number of the current processor uint32_t GCToOSInterface::GetCurrentProcessorNumber() { assert(GCToOSInterface::CanGetCurrentProcessorNumber()); return ::GetCurrentProcessorNumber(); } // Check if the OS supports getting current processor number bool GCToOSInterface::CanGetCurrentProcessorNumber() { // on all Windows platforms we support this API exists return true; } // Flush write buffers of processors that are executing threads of the current process void GCToOSInterface::FlushProcessWriteBuffers() { ::FlushProcessWriteBuffers(); } // Break into a debugger void GCToOSInterface::DebugBreak() { ::DebugBreak(); } // Get number of logical processors uint32_t GCToOSInterface::GetLogicalCpuCount() { // TODO(segilles) processor detection return 1; } // Causes the calling thread to sleep for the specified number of milliseconds // Parameters: // sleepMSec - time to sleep before switching to another thread void GCToOSInterface::Sleep(uint32_t sleepMSec) { // TODO(segilles) CLR implementation of __SwitchToThread spins for short sleep durations // to avoid context switches - is that interesting or useful here? if (sleepMSec > 0) { ::SleepEx(sleepMSec, FALSE); } } // Causes the calling thread to yield execution to another thread that is ready to run on the current processor. // Parameters: // switchCount - number of times the YieldThread was called in a loop void GCToOSInterface::YieldThread(uint32_t switchCount) { UNREFERENCED_PARAMETER(switchCount); SwitchToThread(); } // Reserve virtual memory range. // Parameters: // address - starting virtual address, it can be NULL to let the function choose the starting address // size - size of the virtual memory range // alignment - requested memory alignment, 0 means no specific alignment requested // flags - flags to control special settings like write watching // Return: // Starting virtual address of the reserved range void* GCToOSInterface::VirtualReserve(size_t size, size_t alignment, uint32_t flags) { // Windows already ensures 64kb alignment on VirtualAlloc. The current CLR // implementation ignores it on Windows, other than making some sanity checks on it. UNREFERENCED_PARAMETER(alignment); assert((alignment & (alignment - 1)) == 0); assert(alignment <= 0x10000); DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE; return ::VirtualAlloc(nullptr, size, memFlags, PAGE_READWRITE); } // Release virtual memory range previously reserved using VirtualReserve // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualRelease(void* address, size_t size) { return !!::VirtualFree(address, 0, MEM_RELEASE); } // Commit virtual memory range. It must be part of a range reserved using VirtualReserve. // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualCommit(void* address, size_t size) { return ::VirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != nullptr; } // Decomit virtual memory range. // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualDecommit(void* address, size_t size) { return !!::VirtualFree(address, size, MEM_DECOMMIT); } // Reset virtual memory range. Indicates that data in the memory range specified by address and size is no // longer of interest, but it should not be decommitted. // Parameters: // address - starting virtual address // size - size of the virtual memory range // unlock - true if the memory range should also be unlocked // Return: // true if it has succeeded, false if it has failed. Returns false also if // unlocking was requested but the unlock failed. bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock) { bool success = ::VirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != nullptr; if (success && unlock) { ::VirtualUnlock(address, size); } return success; } // Check if the OS supports write watching bool GCToOSInterface::SupportsWriteWatch() { void* mem = GCToOSInterface::VirtualReserve(g_SystemInfo.dwAllocationGranularity, 0, VirtualReserveFlags::WriteWatch); if (mem != nullptr) { GCToOSInterface::VirtualRelease(mem, g_SystemInfo.dwAllocationGranularity); return true; } return false; } // Reset the write tracking state for the specified virtual memory range. // Parameters: // address - starting virtual address // size - size of the virtual memory range void GCToOSInterface::ResetWriteWatch(void* address, size_t size) { ::ResetWriteWatch(address, size); } // Retrieve addresses of the pages that are written to in a region of virtual memory // Parameters: // resetState - true indicates to reset the write tracking state // address - starting virtual address // size - size of the virtual memory range // pageAddresses - buffer that receives an array of page addresses in the memory region // pageAddressesCount - on input, size of the lpAddresses array, in array elements // on output, the number of page addresses that are returned in the array. // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount) { uint32_t flags = resetState ? 1 : 0; ULONG granularity; bool success = ::GetWriteWatch(flags, address, size, pageAddresses, (ULONG_PTR*)pageAddressesCount, &granularity) == 0; if (success) { assert(granularity == OS_PAGE_SIZE); } return success; } // Get size of the largest cache on the processor die // Parameters: // trueSize - true to return true cache size, false to return scaled up size based on // the processor architecture // Return: // Size of the cache size_t GCToOSInterface::GetLargestOnDieCacheSize(bool trueSize) { // TODO(segilles) processor detection (see src/vm/util.cpp:1935) return 0; } // Get affinity mask of the current process // Parameters: // processMask - affinity mask for the specified process // systemMask - affinity mask for the system // Return: // true if it has succeeded, false if it has failed // Remarks: // A process affinity mask is a bit vector in which each bit represents the processors that // a process is allowed to run on. A system affinity mask is a bit vector in which each bit // represents the processors that are configured into a system. // A process affinity mask is a subset of the system affinity mask. A process is only allowed // to run on the processors configured into a system. Therefore, the process affinity mask cannot // specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor. bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask) { return !!::GetProcessAffinityMask(::GetCurrentProcess(), (PDWORD_PTR)processMask, (PDWORD_PTR)systemMask); } // Get number of processors assigned to the current process // Return: // The number of processors uint32_t GCToOSInterface::GetCurrentProcessCpuCount() { // TODO(segilles) this does not take into account process affinity return g_SystemInfo.dwNumberOfProcessors; } // Return the size of the user-mode portion of the virtual address space of this process. // Return: // non zero if it has succeeded, 0 if it has failed size_t GCToOSInterface::GetVirtualMemoryLimit() { MEMORYSTATUSEX memStatus; if (::GlobalMemoryStatusEx(&memStatus)) { return (size_t)memStatus.ullAvailVirtual; } return 0; } // Get the physical memory that this process can use. // Return: // non zero if it has succeeded, 0 if it has failed // Remarks: // If a process runs with a restricted memory limit, it returns the limit. If there's no limit // specified, it returns amount of actual physical memory. uint64_t GCToOSInterface::GetPhysicalMemoryLimit() { size_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); if (restricted_limit != 0) return restricted_limit; MEMORYSTATUSEX memStatus; if (::GlobalMemoryStatusEx(&memStatus)) { return memStatus.ullTotalPhys; } return 0; } // Get memory status // Parameters: // memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory // that is in use (0 indicates no memory use and 100 indicates full memory use). // available_physical - The amount of physical memory currently available, in bytes. // available_page_file - The maximum amount of memory the current process can commit, in bytes. void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file) { uint64_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); if (restricted_limit != 0) { PROCESS_MEMORY_COUNTERS pmc; if (GCGetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { if (memory_load) *memory_load = (uint32_t)((float)pmc.WorkingSetSize * 100.0 / (float)restricted_limit); if (available_physical) *available_physical = restricted_limit - pmc.WorkingSetSize; // Available page file doesn't mean much when physical memory is restricted since // we don't know how much of it is available to this process so we are not going to // bother to make another OS call for it. if (available_page_file) *available_page_file = 0; return; } } MEMORYSTATUSEX ms; ::GetProcessMemoryLoad(&ms); if (memory_load != nullptr) *memory_load = ms.dwMemoryLoad; if (available_physical != nullptr) *available_physical = ms.ullAvailPhys; if (available_page_file != nullptr) *available_page_file = ms.ullAvailPageFile; } // Get a high precision performance counter // Return: // The counter value int64_t GCToOSInterface::QueryPerformanceCounter() { LARGE_INTEGER ts; if (!::QueryPerformanceCounter(&ts)) { assert(false && "Failed to query performance counter"); } return ts.QuadPart; } // Get a frequency of the high precision performance counter // Return: // The counter frequency int64_t GCToOSInterface::QueryPerformanceFrequency() { LARGE_INTEGER ts; if (!::QueryPerformanceFrequency(&ts)) { assert(false && "Failed to query performance counter"); } return ts.QuadPart; } // Get a time stamp with a low precision // Return: // Time stamp in milliseconds uint32_t GCToOSInterface::GetLowPrecisionTimeStamp() { return ::GetTickCount(); } // Parameters of the GC thread stub struct GCThreadStubParam { GCThreadFunction GCThreadFunction; void* GCThreadParam; }; // GC thread stub to convert GC thread function to an OS specific thread function static DWORD GCThreadStub(void* param) { GCThreadStubParam *stubParam = (GCThreadStubParam*)param; GCThreadFunction function = stubParam->GCThreadFunction; void* threadParam = stubParam->GCThreadParam; delete stubParam; function(threadParam); return 0; } // Create a new thread for GC use // Parameters: // function - the function to be executed by the thread // param - parameters of the thread // affinity - processor affinity of the thread // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::CreateThread(GCThreadFunction function, void* param, GCThreadAffinity* affinity) { uint32_t thread_id; std::unique_ptr stubParam(new (std::nothrow) GCThreadStubParam()); if (!stubParam) { return false; } stubParam->GCThreadFunction = function; stubParam->GCThreadParam = param; HANDLE gc_thread = ::CreateThread( nullptr, 512 * 1024 /* Thread::StackSize_Medium */, (LPTHREAD_START_ROUTINE)GCThreadStub, stubParam.get(), CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, (DWORD*)&thread_id); if (!gc_thread) { return false; } stubParam.release(); bool result = !!::SetThreadPriority(gc_thread, /* THREAD_PRIORITY_ABOVE_NORMAL );*/ THREAD_PRIORITY_HIGHEST ); assert(result && "failed to set thread priority"); if (affinity->Group != GCThreadAffinity::None) { assert(affinity->Processor != GCThreadAffinity::None); GROUP_AFFINITY ga; ga.Group = (WORD)affinity->Group; ga.Reserved[0] = 0; // reserve must be filled with zero ga.Reserved[1] = 0; // otherwise call may fail ga.Reserved[2] = 0; ga.Mask = (size_t)1 << affinity->Processor; bool result = !!::SetThreadGroupAffinity(gc_thread, &ga, nullptr); assert(result && "failed to set thread affinity"); } else if (affinity->Processor != GCThreadAffinity::None) { ::SetThreadAffinityMask(gc_thread, (DWORD_PTR)1 << affinity->Processor); } ResumeThread(gc_thread); CloseHandle(gc_thread); return true; } // Initialize the critical section void CLRCriticalSection::Initialize() { ::InitializeCriticalSection(&m_cs); } // Destroy the critical section void CLRCriticalSection::Destroy() { ::DeleteCriticalSection(&m_cs); } // Enter the critical section. Blocks until the section can be entered. void CLRCriticalSection::Enter() { ::EnterCriticalSection(&m_cs); } // Leave the critical section void CLRCriticalSection::Leave() { ::LeaveCriticalSection(&m_cs); } // WindowsEvent is an implementation of GCEvent that forwards // directly to Win32 APIs. class GCEvent::Impl { private: HANDLE m_hEvent; public: Impl() : m_hEvent(INVALID_HANDLE_VALUE) {} bool IsValid() const { return m_hEvent != INVALID_HANDLE_VALUE; } void Set() { assert(IsValid()); BOOL result = SetEvent(m_hEvent); assert(result && "SetEvent failed"); } void Reset() { assert(IsValid()); BOOL result = ResetEvent(m_hEvent); assert(result && "ResetEvent failed"); } uint32_t Wait(uint32_t timeout, bool alertable) { UNREFERENCED_PARAMETER(alertable); assert(IsValid()); return WaitForSingleObject(m_hEvent, timeout); } void CloseEvent() { assert(IsValid()); BOOL result = CloseHandle(m_hEvent); assert(result && "CloseHandle failed"); m_hEvent = INVALID_HANDLE_VALUE; } bool CreateAutoEvent(bool initialState) { m_hEvent = CreateEvent(nullptr, false, initialState, nullptr); return IsValid(); } bool CreateManualEvent(bool initialState) { m_hEvent = CreateEvent(nullptr, true, initialState, nullptr); return IsValid(); } }; GCEvent::GCEvent() : m_impl(nullptr) { } void GCEvent::CloseEvent() { assert(m_impl != nullptr); m_impl->CloseEvent(); } void GCEvent::Set() { assert(m_impl != nullptr); m_impl->Set(); } void GCEvent::Reset() { assert(m_impl != nullptr); m_impl->Reset(); } uint32_t GCEvent::Wait(uint32_t timeout, bool alertable) { assert(m_impl != nullptr); return m_impl->Wait(timeout, alertable); } bool GCEvent::CreateAutoEventNoThrow(bool initialState) { // [DESKTOP TODO] The difference between events and OS events is // whether or not the hosting API is made aware of them. When (if) // we implement hosting support for Local GC, we will need to be // aware of the host here. return CreateOSAutoEventNoThrow(initialState); } bool GCEvent::CreateManualEventNoThrow(bool initialState) { // [DESKTOP TODO] The difference between events and OS events is // whether or not the hosting API is made aware of them. When (if) // we implement hosting support for Local GC, we will need to be // aware of the host here. return CreateOSManualEventNoThrow(initialState); } bool GCEvent::CreateOSAutoEventNoThrow(bool initialState) { assert(m_impl == nullptr); std::unique_ptr event(new (std::nothrow) GCEvent::Impl()); if (!event) { return false; } if (!event->CreateAutoEvent(initialState)) { return false; } m_impl = event.release(); return true; } bool GCEvent::CreateOSManualEventNoThrow(bool initialState) { assert(m_impl == nullptr); std::unique_ptr event(new (std::nothrow) GCEvent::Impl()); if (!event) { return false; } if (!event->CreateManualEvent(initialState)) { return false; } m_impl = event.release(); return true; }