// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. // // Implementation of the GC environment // #include "common.h" #include "windows.h" #include "gcenv.h" #include "gc.h" MethodTable * g_pFreeObjectMethodTable; int32_t g_TrapReturningThreads; bool g_fFinalizerRunOnShutDown; GCSystemInfo g_SystemInfo; static LARGE_INTEGER g_performanceFrequency; // Initialize the interface implementation // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::Initialize() { if (!::QueryPerformanceFrequency(&g_performanceFrequency)) { return false; } SYSTEM_INFO systemInfo; GetSystemInfo(&systemInfo); g_SystemInfo.dwNumberOfProcessors = systemInfo.dwNumberOfProcessors; g_SystemInfo.dwPageSize = systemInfo.dwPageSize; g_SystemInfo.dwAllocationGranularity = systemInfo.dwAllocationGranularity; return true; } // Shutdown the interface implementation void GCToOSInterface::Shutdown() { } // Get numeric id of the current thread if possible on the // current platform. It is indended for logging purposes only. // Return: // Numeric id of the current thread or 0 if the uint64_t GCToOSInterface::GetCurrentThreadIdForLogging() { return ::GetCurrentThreadId(); } // Get id of the process // Return: // Id of the current process uint32_t GCToOSInterface::GetCurrentProcessId() { return ::GetCurrentProcessId(); } // Set ideal affinity for the current thread // Parameters: // affinity - ideal processor affinity for the thread // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity) { bool success = true; #if !defined(FEATURE_CORESYSTEM) SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor); #else PROCESSOR_NUMBER proc; if (affinity->Group != -1) { proc.Group = (WORD)affinity->Group; proc.Number = (BYTE)affinity->Processor; proc.Reserved = 0; success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); } else { if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc)) { proc.Number = affinity->Processor; success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); } } #endif return success; } // Get the number of the current processor uint32_t GCToOSInterface::GetCurrentProcessorNumber() { _ASSERTE(GCToOSInterface::CanGetCurrentProcessorNumber()); return ::GetCurrentProcessorNumber(); } // Check if the OS supports getting current processor number bool GCToOSInterface::CanGetCurrentProcessorNumber() { return true; } // Flush write buffers of processors that are executing threads of the current process void GCToOSInterface::FlushProcessWriteBuffers() { ::FlushProcessWriteBuffers(); } // Break into a debugger void GCToOSInterface::DebugBreak() { ::DebugBreak(); } // Get number of logical processors uint32_t GCToOSInterface::GetLogicalCpuCount() { return g_SystemInfo.dwNumberOfProcessors; } // Causes the calling thread to sleep for the specified number of milliseconds // Parameters: // sleepMSec - time to sleep before switching to another thread void GCToOSInterface::Sleep(uint32_t sleepMSec) { ::Sleep(sleepMSec); } // Causes the calling thread to yield execution to another thread that is ready to run on the current processor. // Parameters: // switchCount - number of times the YieldThread was called in a loop void GCToOSInterface::YieldThread(uint32_t switchCount) { SwitchToThread(); } // Reserve virtual memory range. // Parameters: // address - starting virtual address, it can be NULL to let the function choose the starting address // size - size of the virtual memory range // alignment - requested memory alignment // flags - flags to control special settings like write watching // Return: // Starting virtual address of the reserved range void* GCToOSInterface::VirtualReserve(void* address, size_t size, size_t alignment, uint32_t flags) { DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE; return ::VirtualAlloc(0, size, memFlags, PAGE_READWRITE); } // Release virtual memory range previously reserved using VirtualReserve // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualRelease(void* address, size_t size) { UNREFERENCED_PARAMETER(size); return !!::VirtualFree(address, 0, MEM_RELEASE); } // Commit virtual memory range. It must be part of a range reserved using VirtualReserve. // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualCommit(void* address, size_t size) { return ::VirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != NULL; } // Decomit virtual memory range. // Parameters: // address - starting virtual address // size - size of the virtual memory range // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualDecommit(void* address, size_t size) { return !!::VirtualFree(address, size, MEM_DECOMMIT); } // Reset virtual memory range. Indicates that data in the memory range specified by address and size is no // longer of interest, but it should not be decommitted. // Parameters: // address - starting virtual address // size - size of the virtual memory range // unlock - true if the memory range should also be unlocked // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock) { bool success = ::VirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != NULL; if (success && unlock) { // Remove the page range from the working set ::VirtualUnlock(address, size); } return success; } // Check if the OS supports write watching bool GCToOSInterface::SupportsWriteWatch() { return false; } // Reset the write tracking state for the specified virtual memory range. // Parameters: // address - starting virtual address // size - size of the virtual memory range void GCToOSInterface::ResetWriteWatch(void* address, size_t size) { } // Retrieve addresses of the pages that are written to in a region of virtual memory // Parameters: // resetState - true indicates to reset the write tracking state // address - starting virtual address // size - size of the virtual memory range // pageAddresses - buffer that receives an array of page addresses in the memory region // pageAddressesCount - on input, size of the lpAddresses array, in array elements // on output, the number of page addresses that are returned in the array. // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount) { return false; } // Get size of the largest cache on the processor die // Parameters: // trueSize - true to return true cache size, false to return scaled up size based on // the processor architecture // Return: // Size of the cache size_t GCToOSInterface::GetLargestOnDieCacheSize(bool trueSize) { // TODO: implement return 0; } // Get affinity mask of the current process // Parameters: // processMask - affinity mask for the specified process // systemMask - affinity mask for the system // Return: // true if it has succeeded, false if it has failed // Remarks: // A process affinity mask is a bit vector in which each bit represents the processors that // a process is allowed to run on. A system affinity mask is a bit vector in which each bit // represents the processors that are configured into a system. // A process affinity mask is a subset of the system affinity mask. A process is only allowed // to run on the processors configured into a system. Therefore, the process affinity mask cannot // specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor. bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask) { return false; } // Get number of processors assigned to the current process // Return: // The number of processors uint32_t GCToOSInterface::GetCurrentProcessCpuCount() { return g_SystemInfo.dwNumberOfProcessors; } // Return the size of the user-mode portion of the virtual address space of this process. // Return: // non zero if it has succeeded, 0 if it has failed size_t GCToOSInterface::GetVirtualMemoryLimit() { MEMORYSTATUSEX memStatus; memStatus.dwLength = sizeof(MEMORYSTATUSEX); BOOL fRet = GlobalMemoryStatusEx(&memStatus); _ASSERTE(fRet); return (size_t)memStatus.ullTotalVirtual; } // Get the physical memory that this process can use. // Return: // non zero if it has succeeded, 0 if it has failed uint64_t GCToOSInterface::GetPhysicalMemoryLimit() { MEMORYSTATUSEX memStatus; memStatus.dwLength = sizeof(MEMORYSTATUSEX); BOOL fRet = GlobalMemoryStatusEx(&memStatus); _ASSERTE(fRet); return memStatus.ullTotalPhys; } // Get memory status // Parameters: // memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory // that is in use (0 indicates no memory use and 100 indicates full memory use). // available_physical - The amount of physical memory currently available, in bytes. // available_page_file - The maximum amount of memory the current process can commit, in bytes. void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file) { MEMORYSTATUSEX memStatus; memStatus.dwLength = sizeof(MEMORYSTATUSEX); BOOL fRet = GlobalMemoryStatusEx(&memStatus); _ASSERTE (fRet); // If the machine has more RAM than virtual address limit, let us cap it. // The GC can never use more than virtual address limit. if (memStatus.ullAvailPhys > memStatus.ullTotalVirtual) { memStatus.ullAvailPhys = memStatus.ullAvailVirtual; } if (memory_load != NULL) *memory_load = memStatus.dwMemoryLoad; if (available_physical != NULL) *available_physical = memStatus.ullAvailPhys; if (available_page_file != NULL) *available_page_file = memStatus.ullAvailPageFile; } // Get a high precision performance counter // Return: // The counter value int64_t GCToOSInterface::QueryPerformanceCounter() { LARGE_INTEGER ts; if (!::QueryPerformanceCounter(&ts)) { _ASSERTE(!"Fatal Error - cannot query performance counter."); abort(); } return ts.QuadPart; } // Get a frequency of the high precision performance counter // Return: // The counter frequency int64_t GCToOSInterface::QueryPerformanceFrequency() { return g_performanceFrequency.QuadPart; } // Get a time stamp with a low precision // Return: // Time stamp in milliseconds uint32_t GCToOSInterface::GetLowPrecisionTimeStamp() { return ::GetTickCount(); } // Parameters of the GC thread stub struct GCThreadStubParam { GCThreadFunction GCThreadFunction; void* GCThreadParam; }; // GC thread stub to convert GC thread function to an OS specific thread function static DWORD __stdcall GCThreadStub(void* param) { GCThreadStubParam *stubParam = (GCThreadStubParam*)param; GCThreadFunction function = stubParam->GCThreadFunction; void* threadParam = stubParam->GCThreadParam; delete stubParam; function(threadParam); return 0; } // Create a new thread // Parameters: // function - the function to be executed by the thread // param - parameters of the thread // affinity - processor affinity of the thread // Return: // true if it has succeeded, false if it has failed bool GCToOSInterface::CreateThread(GCThreadFunction function, void* param, GCThreadAffinity* affinity) { DWORD thread_id; GCThreadStubParam* stubParam = new (nothrow) GCThreadStubParam(); if (stubParam == NULL) { return false; } stubParam->GCThreadFunction = function; stubParam->GCThreadParam = param; HANDLE gc_thread = ::CreateThread(NULL, 0, GCThreadStub, stubParam, CREATE_SUSPENDED, &thread_id); if (!gc_thread) { delete stubParam; return false; } SetThreadPriority(gc_thread, /* THREAD_PRIORITY_ABOVE_NORMAL );*/ THREAD_PRIORITY_HIGHEST ); ResumeThread(gc_thread); CloseHandle(gc_thread); return true; } // Initialize the critical section void CLRCriticalSection::Initialize() { ::InitializeCriticalSection(&m_cs); } // Destroy the critical section void CLRCriticalSection::Destroy() { ::DeleteCriticalSection(&m_cs); } // Enter the critical section. Blocks until the section can be entered. void CLRCriticalSection::Enter() { ::EnterCriticalSection(&m_cs); } // Leave the critical section void CLRCriticalSection::Leave() { ::LeaveCriticalSection(&m_cs); }