// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================ ** ** ** ** Purpose: A representation of an IEEE double precision ** floating point number. ** ** ===========================================================*/ #nullable enable using System.Globalization; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.Versioning; using Internal.Runtime.CompilerServices; namespace System { [Serializable] [StructLayout(LayoutKind.Sequential)] [TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")] public readonly struct Double : IComparable, IConvertible, IFormattable, IComparable, IEquatable, ISpanFormattable { private readonly double m_value; // Do not rename (binary serialization) // // Public Constants // public const double MinValue = -1.7976931348623157E+308; public const double MaxValue = 1.7976931348623157E+308; // Note Epsilon should be a double whose hex representation is 0x1 // on little endian machines. public const double Epsilon = 4.9406564584124654E-324; public const double NegativeInfinity = (double)-1.0 / (double)(0.0); public const double PositiveInfinity = (double)1.0 / (double)(0.0); public const double NaN = (double)0.0 / (double)0.0; // We use this explicit definition to avoid the confusion between 0.0 and -0.0. internal const double NegativeZero = -0.0; /// Determines whether the specified value is finite (zero, subnormal, or normal). [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe bool IsFinite(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) < 0x7FF0000000000000; } /// Determines whether the specified value is infinite. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe bool IsInfinity(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000; } /// Determines whether the specified value is NaN. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe bool IsNaN(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) > 0x7FF0000000000000; } /// Determines whether the specified value is negative. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe bool IsNegative(double d) { return BitConverter.DoubleToInt64Bits(d) < 0; } /// Determines whether the specified value is negative infinity. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsNegativeInfinity(double d) { return (d == double.NegativeInfinity); } /// Determines whether the specified value is normal. [NonVersionable] // This is probably not worth inlining, it has branches and should be rarely called public static unsafe bool IsNormal(double d) { var bits = BitConverter.DoubleToInt64Bits(d); bits &= 0x7FFFFFFFFFFFFFFF; return (bits < 0x7FF0000000000000) && (bits != 0) && ((bits & 0x7FF0000000000000) != 0); } /// Determines whether the specified value is positive infinity. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsPositiveInfinity(double d) { return (d == double.PositiveInfinity); } /// Determines whether the specified value is subnormal. [NonVersionable] // This is probably not worth inlining, it has branches and should be rarely called public static unsafe bool IsSubnormal(double d) { var bits = BitConverter.DoubleToInt64Bits(d); bits &= 0x7FFFFFFFFFFFFFFF; return (bits < 0x7FF0000000000000) && (bits != 0) && ((bits & 0x7FF0000000000000) == 0); } // Compares this object to another object, returning an instance of System.Relation. // Null is considered less than any instance. // // If object is not of type Double, this method throws an ArgumentException. // // Returns a value less than zero if this object // public int CompareTo(object? value) { if (value == null) { return 1; } if (value is double) { double d = (double)value; if (m_value < d) return -1; if (m_value > d) return 1; if (m_value == d) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(d) ? 0 : -1); else return 1; } throw new ArgumentException(SR.Arg_MustBeDouble); } public int CompareTo(double value) { if (m_value < value) return -1; if (m_value > value) return 1; if (m_value == value) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(value) ? 0 : -1); else return 1; } // True if obj is another Double with the same value as the current instance. This is // a method of object equality, that only returns true if obj is also a double. public override bool Equals(object? obj) { if (!(obj is double)) { return false; } double temp = ((double)obj).m_value; // This code below is written this way for performance reasons i.e the != and == check is intentional. if (temp == m_value) { return true; } return IsNaN(temp) && IsNaN(m_value); } [NonVersionable] public static bool operator ==(double left, double right) { return left == right; } [NonVersionable] public static bool operator !=(double left, double right) { return left != right; } [NonVersionable] public static bool operator <(double left, double right) { return left < right; } [NonVersionable] public static bool operator >(double left, double right) { return left > right; } [NonVersionable] public static bool operator <=(double left, double right) { return left <= right; } [NonVersionable] public static bool operator >=(double left, double right) { return left >= right; } public bool Equals(double obj) { if (obj == m_value) { return true; } return IsNaN(obj) && IsNaN(m_value); } //The hashcode for a double is the absolute value of the integer representation //of that double. // [MethodImpl(MethodImplOptions.AggressiveInlining)] // 64-bit constants make the IL unusually large that makes the inliner to reject the method public override int GetHashCode() { var bits = Unsafe.As(ref Unsafe.AsRef(in m_value)); // Optimized check for IsNan() || IsZero() if (((bits - 1) & 0x7FFFFFFFFFFFFFFF) >= 0x7FF0000000000000) { // Ensure that all NaNs and both zeros have the same hash code bits &= 0x7FF0000000000000; } return unchecked((int)bits) ^ ((int)(bits >> 32)); } public override string ToString() { return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo); } public string ToString(string? format) { return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo); } public string ToString(IFormatProvider? provider) { return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider)); } public string ToString(string? format, IFormatProvider? provider) { return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider)); } public bool TryFormat(Span destination, out int charsWritten, ReadOnlySpan format = default, IFormatProvider? provider = null) { return Number.TryFormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider), destination, out charsWritten); } public static double Parse(string s) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo); } public static double Parse(string s, NumberStyles style) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, style, NumberFormatInfo.CurrentInfo); } public static double Parse(string s, IFormatProvider? provider) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider)); } public static double Parse(string s, NumberStyles style, IFormatProvider? provider) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, style, NumberFormatInfo.GetInstance(provider)); } // Parses a double from a String in the given style. If // a NumberFormatInfo isn't specified, the current culture's // NumberFormatInfo is assumed. // // This method will not throw an OverflowException, but will return // PositiveInfinity or NegativeInfinity for a number that is too // large or too small. public static double Parse(ReadOnlySpan s, NumberStyles style = NumberStyles.Float | NumberStyles.AllowThousands, IFormatProvider? provider = null) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return Number.ParseDouble(s, style, NumberFormatInfo.GetInstance(provider)); } public static bool TryParse(string? s, out double result) { if (s == null) { result = 0; return false; } return TryParse((ReadOnlySpan)s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); } public static bool TryParse(ReadOnlySpan s, out double result) { return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); } public static bool TryParse(string? s, NumberStyles style, IFormatProvider? provider, out double result) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) { result = 0; return false; } return TryParse((ReadOnlySpan)s, style, NumberFormatInfo.GetInstance(provider), out result); } public static bool TryParse(ReadOnlySpan s, NumberStyles style, IFormatProvider? provider, out double result) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result); } private static bool TryParse(ReadOnlySpan s, NumberStyles style, NumberFormatInfo info, out double result) { return Number.TryParseDouble(s, style, info, out result); } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.Double; } bool IConvertible.ToBoolean(IFormatProvider? provider) { return Convert.ToBoolean(m_value); } char IConvertible.ToChar(IFormatProvider? provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Double", "Char")); } sbyte IConvertible.ToSByte(IFormatProvider? provider) { return Convert.ToSByte(m_value); } byte IConvertible.ToByte(IFormatProvider? provider) { return Convert.ToByte(m_value); } short IConvertible.ToInt16(IFormatProvider? provider) { return Convert.ToInt16(m_value); } ushort IConvertible.ToUInt16(IFormatProvider? provider) { return Convert.ToUInt16(m_value); } int IConvertible.ToInt32(IFormatProvider? provider) { return Convert.ToInt32(m_value); } uint IConvertible.ToUInt32(IFormatProvider? provider) { return Convert.ToUInt32(m_value); } long IConvertible.ToInt64(IFormatProvider? provider) { return Convert.ToInt64(m_value); } ulong IConvertible.ToUInt64(IFormatProvider? provider) { return Convert.ToUInt64(m_value); } float IConvertible.ToSingle(IFormatProvider? provider) { return Convert.ToSingle(m_value); } double IConvertible.ToDouble(IFormatProvider? provider) { return m_value; } decimal IConvertible.ToDecimal(IFormatProvider? provider) { return Convert.ToDecimal(m_value); } DateTime IConvertible.ToDateTime(IFormatProvider? provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Double", "DateTime")); } object IConvertible.ToType(Type type, IFormatProvider? provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } } }