// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System; using System.Diagnostics; using System.Threading; using System.Globalization; using System.Runtime; using System.Runtime.InteropServices; using System.Runtime.CompilerServices; using System.Runtime.Serialization; using System.Runtime.Versioning; using System.Security; using CultureInfo = System.Globalization.CultureInfo; using Calendar = System.Globalization.Calendar; namespace System { // This value type represents a date and time. Every DateTime // object has a private field (Ticks) of type Int64 that stores the // date and time as the number of 100 nanosecond intervals since // 12:00 AM January 1, year 1 A.D. in the proleptic Gregorian Calendar. // // Starting from V2.0, DateTime also stored some context about its time // zone in the form of a 3-state value representing Unspecified, Utc or // Local. This is stored in the two top bits of the 64-bit numeric value // with the remainder of the bits storing the tick count. This information // is only used during time zone conversions and is not part of the // identity of the DateTime. Thus, operations like Compare and Equals // ignore this state. This is to stay compatible with earlier behavior // and performance characteristics and to avoid forcing people into dealing // with the effects of daylight savings. Note, that this has little effect // on how the DateTime works except in a context where its specific time // zone is needed, such as during conversions and some parsing and formatting // cases. // // There is also 4th state stored that is a special type of Local value that // is used to avoid data loss when round-tripping between local and UTC time. // See below for more information on this 4th state, although it is // effectively hidden from most users, who just see the 3-state DateTimeKind // enumeration. // // For compatibility, DateTime does not serialize the Kind data when used in // binary serialization. // // For a description of various calendar issues, look at // // [StructLayout(LayoutKind.Auto)] [Serializable] [System.Runtime.CompilerServices.TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")] public readonly partial struct DateTime : IComparable, IFormattable, IConvertible, IComparable, IEquatable, ISerializable, ISpanFormattable { // Number of 100ns ticks per time unit private const long TicksPerMillisecond = 10000; private const long TicksPerSecond = TicksPerMillisecond * 1000; private const long TicksPerMinute = TicksPerSecond * 60; private const long TicksPerHour = TicksPerMinute * 60; private const long TicksPerDay = TicksPerHour * 24; // Number of milliseconds per time unit private const int MillisPerSecond = 1000; private const int MillisPerMinute = MillisPerSecond * 60; private const int MillisPerHour = MillisPerMinute * 60; private const int MillisPerDay = MillisPerHour * 24; // Number of days in a non-leap year private const int DaysPerYear = 365; // Number of days in 4 years private const int DaysPer4Years = DaysPerYear * 4 + 1; // 1461 // Number of days in 100 years private const int DaysPer100Years = DaysPer4Years * 25 - 1; // 36524 // Number of days in 400 years private const int DaysPer400Years = DaysPer100Years * 4 + 1; // 146097 // Number of days from 1/1/0001 to 12/31/1600 private const int DaysTo1601 = DaysPer400Years * 4; // 584388 // Number of days from 1/1/0001 to 12/30/1899 private const int DaysTo1899 = DaysPer400Years * 4 + DaysPer100Years * 3 - 367; // Number of days from 1/1/0001 to 12/31/1969 internal const int DaysTo1970 = DaysPer400Years * 4 + DaysPer100Years * 3 + DaysPer4Years * 17 + DaysPerYear; // 719,162 // Number of days from 1/1/0001 to 12/31/9999 private const int DaysTo10000 = DaysPer400Years * 25 - 366; // 3652059 internal const long MinTicks = 0; internal const long MaxTicks = DaysTo10000 * TicksPerDay - 1; private const long MaxMillis = (long)DaysTo10000 * MillisPerDay; internal const long UnixEpochTicks = DaysTo1970 * TicksPerDay; private const long FileTimeOffset = DaysTo1601 * TicksPerDay; private const long DoubleDateOffset = DaysTo1899 * TicksPerDay; // The minimum OA date is 0100/01/01 (Note it's year 100). // The maximum OA date is 9999/12/31 private const long OADateMinAsTicks = (DaysPer100Years - DaysPerYear) * TicksPerDay; // All OA dates must be greater than (not >=) OADateMinAsDouble private const double OADateMinAsDouble = -657435.0; // All OA dates must be less than (not <=) OADateMaxAsDouble private const double OADateMaxAsDouble = 2958466.0; private const int DatePartYear = 0; private const int DatePartDayOfYear = 1; private const int DatePartMonth = 2; private const int DatePartDay = 3; private static readonly int[] s_daysToMonth365 = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}; private static readonly int[] s_daysToMonth366 = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}; public static readonly DateTime MinValue = new DateTime(MinTicks, DateTimeKind.Unspecified); public static readonly DateTime MaxValue = new DateTime(MaxTicks, DateTimeKind.Unspecified); public static readonly DateTime UnixEpoch = new DateTime(UnixEpochTicks, DateTimeKind.Utc); private const ulong TicksMask = 0x3FFFFFFFFFFFFFFF; private const ulong FlagsMask = 0xC000000000000000; private const ulong LocalMask = 0x8000000000000000; private const long TicksCeiling = 0x4000000000000000; private const ulong KindUnspecified = 0x0000000000000000; private const ulong KindUtc = 0x4000000000000000; private const ulong KindLocal = 0x8000000000000000; private const ulong KindLocalAmbiguousDst = 0xC000000000000000; private const int KindShift = 62; private const string TicksField = "ticks"; // Do not rename (binary serialization) private const string DateDataField = "dateData"; // Do not rename (binary serialization) // The data is stored as an unsigned 64-bit integer // Bits 01-62: The value of 100-nanosecond ticks where 0 represents 1/1/0001 12:00am, up until the value // 12/31/9999 23:59:59.9999999 // Bits 63-64: A four-state value that describes the DateTimeKind value of the date time, with a 2nd // value for the rare case where the date time is local, but is in an overlapped daylight // savings time hour and it is in daylight savings time. This allows distinction of these // otherwise ambiguous local times and prevents data loss when round tripping from Local to // UTC time. private readonly ulong _dateData; // Constructs a DateTime from a tick count. The ticks // argument specifies the date as the number of 100-nanosecond intervals // that have elapsed since 1/1/0001 12:00am. // public DateTime(long ticks) { if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentOutOfRangeException(nameof(ticks), SR.ArgumentOutOfRange_DateTimeBadTicks); _dateData = (ulong)ticks; } private DateTime(ulong dateData) { this._dateData = dateData; } public DateTime(long ticks, DateTimeKind kind) { if (ticks < MinTicks || ticks > MaxTicks) { throw new ArgumentOutOfRangeException(nameof(ticks), SR.ArgumentOutOfRange_DateTimeBadTicks); } if (kind < DateTimeKind.Unspecified || kind > DateTimeKind.Local) { throw new ArgumentException(SR.Argument_InvalidDateTimeKind, nameof(kind)); } _dateData = ((ulong)ticks | ((ulong)kind << KindShift)); } internal DateTime(long ticks, DateTimeKind kind, bool isAmbiguousDst) { if (ticks < MinTicks || ticks > MaxTicks) { throw new ArgumentOutOfRangeException(nameof(ticks), SR.ArgumentOutOfRange_DateTimeBadTicks); } Debug.Assert(kind == DateTimeKind.Local, "Internal Constructor is for local times only"); _dateData = ((ulong)ticks | (isAmbiguousDst ? KindLocalAmbiguousDst : KindLocal)); } // Constructs a DateTime from a given year, month, and day. The // time-of-day of the resulting DateTime is always midnight. // public DateTime(int year, int month, int day) { _dateData = (ulong)DateToTicks(year, month, day); } // Constructs a DateTime from a given year, month, and day for // the specified calendar. The // time-of-day of the resulting DateTime is always midnight. // public DateTime(int year, int month, int day, Calendar calendar) : this(year, month, day, 0, 0, 0, calendar) { } // Constructs a DateTime from a given year, month, day, hour, // minute, and second. // public DateTime(int year, int month, int day, int hour, int minute, int second) { if (second == 60 && s_systemSupportsLeapSeconds && IsValidTimeWithLeapSeconds(year, month, day, hour, minute, second, DateTimeKind.Unspecified)) { // if we have leap second (second = 60) then we'll need to check if it is valid time. // if it is valid, then we adjust the second to 59 so DateTime will consider this second is last second // in the specified minute. // if it is not valid time, we'll eventually throw. second = 59; } _dateData = (ulong)(DateToTicks(year, month, day) + TimeToTicks(hour, minute, second)); } public DateTime(int year, int month, int day, int hour, int minute, int second, DateTimeKind kind) { if (kind < DateTimeKind.Unspecified || kind > DateTimeKind.Local) { throw new ArgumentException(SR.Argument_InvalidDateTimeKind, nameof(kind)); } if (second == 60 && s_systemSupportsLeapSeconds && IsValidTimeWithLeapSeconds(year, month, day, hour, minute, second, kind)) { // if we have leap second (second = 60) then we'll need to check if it is valid time. // if it is valid, then we adjust the second to 59 so DateTime will consider this second is last second // in the specified minute. // if it is not valid time, we'll eventually throw. second = 59; } long ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second); _dateData = ((ulong)ticks | ((ulong)kind << KindShift)); } // Constructs a DateTime from a given year, month, day, hour, // minute, and second for the specified calendar. // public DateTime(int year, int month, int day, int hour, int minute, int second, Calendar calendar) { if (calendar == null) throw new ArgumentNullException(nameof(calendar)); int originalSecond = second; if (second == 60 && s_systemSupportsLeapSeconds) { // Reset the second value now and then we'll validate it later when we get the final Gregorian date. second = 59; } _dateData = (ulong)calendar.ToDateTime(year, month, day, hour, minute, second, 0).Ticks; if (originalSecond == 60) { DateTime dt = new DateTime(_dateData); if (!IsValidTimeWithLeapSeconds(dt.Year, dt.Month, dt.Day, dt.Hour, dt.Minute, 60, DateTimeKind.Unspecified)) { throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadHourMinuteSecond); } } } // Constructs a DateTime from a given year, month, day, hour, // minute, and second. // public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond) { if (millisecond < 0 || millisecond >= MillisPerSecond) { throw new ArgumentOutOfRangeException(nameof(millisecond), SR.Format(SR.ArgumentOutOfRange_Range, 0, MillisPerSecond - 1)); } if (second == 60 && s_systemSupportsLeapSeconds && IsValidTimeWithLeapSeconds(year, month, day, hour, minute, second, DateTimeKind.Unspecified)) { // if we have leap second (second = 60) then we'll need to check if it is valid time. // if it is valid, then we adjust the second to 59 so DateTime will consider this second is last second // in the specified minute. // if it is not valid time, we'll eventually throw. second = 59; } long ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second); ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentException(SR.Arg_DateTimeRange); _dateData = (ulong)ticks; } public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, DateTimeKind kind) { if (millisecond < 0 || millisecond >= MillisPerSecond) { throw new ArgumentOutOfRangeException(nameof(millisecond), SR.Format(SR.ArgumentOutOfRange_Range, 0, MillisPerSecond - 1)); } if (kind < DateTimeKind.Unspecified || kind > DateTimeKind.Local) { throw new ArgumentException(SR.Argument_InvalidDateTimeKind, nameof(kind)); } if (second == 60 && s_systemSupportsLeapSeconds && IsValidTimeWithLeapSeconds(year, month, day, hour, minute, second, kind)) { // if we have leap second (second = 60) then we'll need to check if it is valid time. // if it is valid, then we adjust the second to 59 so DateTime will consider this second is last second // in the specified minute. // if it is not valid time, we'll eventually throw. second = 59; } long ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second); ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentException(SR.Arg_DateTimeRange); _dateData = ((ulong)ticks | ((ulong)kind << KindShift)); } // Constructs a DateTime from a given year, month, day, hour, // minute, and second for the specified calendar. // public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, Calendar calendar) { if (calendar == null) throw new ArgumentNullException(nameof(calendar)); if (millisecond < 0 || millisecond >= MillisPerSecond) { throw new ArgumentOutOfRangeException(nameof(millisecond), SR.Format(SR.ArgumentOutOfRange_Range, 0, MillisPerSecond - 1)); } int originalSecond = second; if (second == 60 && s_systemSupportsLeapSeconds) { // Reset the second value now and then we'll validate it later when we get the final Gregorian date. second = 59; } long ticks = calendar.ToDateTime(year, month, day, hour, minute, second, 0).Ticks; ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentException(SR.Arg_DateTimeRange); _dateData = (ulong)ticks; if (originalSecond == 60) { DateTime dt = new DateTime(_dateData); if (!IsValidTimeWithLeapSeconds(dt.Year, dt.Month, dt.Day, dt.Hour, dt.Minute, 60, DateTimeKind.Unspecified)) { throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadHourMinuteSecond); } } } public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, Calendar calendar, DateTimeKind kind) { if (calendar == null) throw new ArgumentNullException(nameof(calendar)); if (millisecond < 0 || millisecond >= MillisPerSecond) { throw new ArgumentOutOfRangeException(nameof(millisecond), SR.Format(SR.ArgumentOutOfRange_Range, 0, MillisPerSecond - 1)); } if (kind < DateTimeKind.Unspecified || kind > DateTimeKind.Local) { throw new ArgumentException(SR.Argument_InvalidDateTimeKind, nameof(kind)); } int originalSecond = second; if (second == 60 && s_systemSupportsLeapSeconds) { // Reset the second value now and then we'll validate it later when we get the final Gregorian date. second = 59; } long ticks = calendar.ToDateTime(year, month, day, hour, minute, second, 0).Ticks; ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentException(SR.Arg_DateTimeRange); _dateData = ((ulong)ticks | ((ulong)kind << KindShift)); if (originalSecond == 60) { DateTime dt = new DateTime(_dateData); if (!IsValidTimeWithLeapSeconds(dt.Year, dt.Month, dt.Day, dt.Hour, dt.Minute, 60, kind)) { throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadHourMinuteSecond); } } } private DateTime(SerializationInfo info, StreamingContext context) { if (info == null) throw new ArgumentNullException(nameof(info)); bool foundTicks = false; bool foundDateData = false; long serializedTicks = 0; ulong serializedDateData = 0; // Get the data SerializationInfoEnumerator enumerator = info.GetEnumerator(); while (enumerator.MoveNext()) { switch (enumerator.Name) { case TicksField: serializedTicks = Convert.ToInt64(enumerator.Value, CultureInfo.InvariantCulture); foundTicks = true; break; case DateDataField: serializedDateData = Convert.ToUInt64(enumerator.Value, CultureInfo.InvariantCulture); foundDateData = true; break; default: // Ignore other fields for forward compatibility. break; } } if (foundDateData) { _dateData = serializedDateData; } else if (foundTicks) { _dateData = (ulong)serializedTicks; } else { throw new SerializationException(SR.Serialization_MissingDateTimeData); } long ticks = InternalTicks; if (ticks < MinTicks || ticks > MaxTicks) { throw new SerializationException(SR.Serialization_DateTimeTicksOutOfRange); } } internal long InternalTicks { get { return (long)(_dateData & TicksMask); } } private ulong InternalKind { get { return (_dateData & FlagsMask); } } // Returns the DateTime resulting from adding the given // TimeSpan to this DateTime. // public DateTime Add(TimeSpan value) { return AddTicks(value._ticks); } // Returns the DateTime resulting from adding a fractional number of // time units to this DateTime. private DateTime Add(double value, int scale) { double millis_double = value * (double)scale + (value >= 0 ? 0.5 : -0.5); if (millis_double <= (double)-MaxMillis || millis_double >= (double)MaxMillis) throw new ArgumentOutOfRangeException(nameof(value), SR.ArgumentOutOfRange_AddValue); return AddTicks((long)millis_double * TicksPerMillisecond); } // Returns the DateTime resulting from adding a fractional number of // days to this DateTime. The result is computed by rounding the // fractional number of days given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddDays(double value) { return Add(value, MillisPerDay); } // Returns the DateTime resulting from adding a fractional number of // hours to this DateTime. The result is computed by rounding the // fractional number of hours given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddHours(double value) { return Add(value, MillisPerHour); } // Returns the DateTime resulting from the given number of // milliseconds to this DateTime. The result is computed by rounding // the number of milliseconds given by value to the nearest integer, // and adding that interval to this DateTime. The value // argument is permitted to be negative. // public DateTime AddMilliseconds(double value) { return Add(value, 1); } // Returns the DateTime resulting from adding a fractional number of // minutes to this DateTime. The result is computed by rounding the // fractional number of minutes given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddMinutes(double value) { return Add(value, MillisPerMinute); } // Returns the DateTime resulting from adding the given number of // months to this DateTime. The result is computed by incrementing // (or decrementing) the year and month parts of this DateTime by // months months, and, if required, adjusting the day part of the // resulting date downwards to the last day of the resulting month in the // resulting year. The time-of-day part of the result is the same as the // time-of-day part of this DateTime. // // In more precise terms, considering this DateTime to be of the // form y / m / d + t, where y is the // year, m is the month, d is the day, and t is the // time-of-day, the result is y1 / m1 / d1 + t, // where y1 and m1 are computed by adding months months // to y and m, and d1 is the largest value less than // or equal to d that denotes a valid day in month m1 of year // y1. // public DateTime AddMonths(int months) { if (months < -120000 || months > 120000) throw new ArgumentOutOfRangeException(nameof(months), SR.ArgumentOutOfRange_DateTimeBadMonths); GetDatePart(out int y, out int m, out int d); int i = m - 1 + months; if (i >= 0) { m = i % 12 + 1; y = y + i / 12; } else { m = 12 + (i + 1) % 12; y = y + (i - 11) / 12; } if (y < 1 || y > 9999) { throw new ArgumentOutOfRangeException(nameof(months), SR.ArgumentOutOfRange_DateArithmetic); } int days = DaysInMonth(y, m); if (d > days) d = days; return new DateTime((ulong)(DateToTicks(y, m, d) + InternalTicks % TicksPerDay) | InternalKind); } // Returns the DateTime resulting from adding a fractional number of // seconds to this DateTime. The result is computed by rounding the // fractional number of seconds given by value to the nearest // millisecond, and adding that interval to this DateTime. The // value argument is permitted to be negative. // public DateTime AddSeconds(double value) { return Add(value, MillisPerSecond); } // Returns the DateTime resulting from adding the given number of // 100-nanosecond ticks to this DateTime. The value argument // is permitted to be negative. // public DateTime AddTicks(long value) { long ticks = InternalTicks; if (value > MaxTicks - ticks || value < MinTicks - ticks) { throw new ArgumentOutOfRangeException(nameof(value), SR.ArgumentOutOfRange_DateArithmetic); } return new DateTime((ulong)(ticks + value) | InternalKind); } // TryAddTicks is exact as AddTicks except it doesn't throw internal bool TryAddTicks(long value, out DateTime result) { long ticks = InternalTicks; if (value > MaxTicks - ticks || value < MinTicks - ticks) { result = default(DateTime); return false; } result = new DateTime((ulong)(ticks + value) | InternalKind); return true; } // Returns the DateTime resulting from adding the given number of // years to this DateTime. The result is computed by incrementing // (or decrementing) the year part of this DateTime by value // years. If the month and day of this DateTime is 2/29, and if the // resulting year is not a leap year, the month and day of the resulting // DateTime becomes 2/28. Otherwise, the month, day, and time-of-day // parts of the result are the same as those of this DateTime. // public DateTime AddYears(int value) { if (value < -10000 || value > 10000) { // DateTimeOffset.AddYears(int years) is implemented on top of DateTime.AddYears(int value). Use the more appropriate // parameter name out of the two for the exception. throw new ArgumentOutOfRangeException("years", SR.ArgumentOutOfRange_DateTimeBadYears); } return AddMonths(value * 12); } // Compares two DateTime values, returning an integer that indicates // their relationship. // public static int Compare(DateTime t1, DateTime t2) { long ticks1 = t1.InternalTicks; long ticks2 = t2.InternalTicks; if (ticks1 > ticks2) return 1; if (ticks1 < ticks2) return -1; return 0; } // Compares this DateTime to a given object. This method provides an // implementation of the IComparable interface. The object // argument must be another DateTime, or otherwise an exception // occurs. Null is considered less than any instance. // // Returns a value less than zero if this object public int CompareTo(object value) { if (value == null) return 1; if (!(value is DateTime)) { throw new ArgumentException(SR.Arg_MustBeDateTime); } return Compare(this, (DateTime)value); } public int CompareTo(DateTime value) { return Compare(this, value); } // Returns the tick count corresponding to the given year, month, and day. // Will check the if the parameters are valid. private static long DateToTicks(int year, int month, int day) { if (year >= 1 && year <= 9999 && month >= 1 && month <= 12) { int[] days = IsLeapYear(year) ? s_daysToMonth366 : s_daysToMonth365; if (day >= 1 && day <= days[month] - days[month - 1]) { int y = year - 1; int n = y * 365 + y / 4 - y / 100 + y / 400 + days[month - 1] + day - 1; return n * TicksPerDay; } } throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadYearMonthDay); } // Return the tick count corresponding to the given hour, minute, second. // Will check the if the parameters are valid. private static long TimeToTicks(int hour, int minute, int second) { //TimeSpan.TimeToTicks is a family access function which does no error checking, so //we need to put some error checking out here. if (hour >= 0 && hour < 24 && minute >= 0 && minute < 60 && second >= 0 && second < 60) { return (TimeSpan.TimeToTicks(hour, minute, second)); } throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadHourMinuteSecond); } // Returns the number of days in the month given by the year and // month arguments. // public static int DaysInMonth(int year, int month) { if (month < 1 || month > 12) throw new ArgumentOutOfRangeException(nameof(month), SR.ArgumentOutOfRange_Month); // IsLeapYear checks the year argument int[] days = IsLeapYear(year) ? s_daysToMonth366 : s_daysToMonth365; return days[month] - days[month - 1]; } // Converts an OLE Date to a tick count. // This function is duplicated in COMDateTime.cpp internal static long DoubleDateToTicks(double value) { // The check done this way will take care of NaN if (!(value < OADateMaxAsDouble) || !(value > OADateMinAsDouble)) throw new ArgumentException(SR.Arg_OleAutDateInvalid); // Conversion to long will not cause an overflow here, as at this point the "value" is in between OADateMinAsDouble and OADateMaxAsDouble long millis = (long)(value * MillisPerDay + (value >= 0 ? 0.5 : -0.5)); // The interesting thing here is when you have a value like 12.5 it all positive 12 days and 12 hours from 01/01/1899 // However if you a value of -12.25 it is minus 12 days but still positive 6 hours, almost as though you meant -11.75 all negative // This line below fixes up the millis in the negative case if (millis < 0) { millis -= (millis % MillisPerDay) * 2; } millis += DoubleDateOffset / TicksPerMillisecond; if (millis < 0 || millis >= MaxMillis) throw new ArgumentException(SR.Arg_OleAutDateScale); return millis * TicksPerMillisecond; } // Checks if this DateTime is equal to a given object. Returns // true if the given object is a boxed DateTime and its value // is equal to the value of this DateTime. Returns false // otherwise. // public override bool Equals(object value) { if (value is DateTime) { return InternalTicks == ((DateTime)value).InternalTicks; } return false; } public bool Equals(DateTime value) { return InternalTicks == value.InternalTicks; } // Compares two DateTime values for equality. Returns true if // the two DateTime values are equal, or false if they are // not equal. // public static bool Equals(DateTime t1, DateTime t2) { return t1.InternalTicks == t2.InternalTicks; } public static DateTime FromBinary(long dateData) { if ((dateData & (unchecked((long)LocalMask))) != 0) { // Local times need to be adjusted as you move from one time zone to another, // just as they are when serializing in text. As such the format for local times // changes to store the ticks of the UTC time, but with flags that look like a // local date. long ticks = dateData & (unchecked((long)TicksMask)); // Negative ticks are stored in the top part of the range and should be converted back into a negative number if (ticks > TicksCeiling - TicksPerDay) { ticks = ticks - TicksCeiling; } // Convert the ticks back to local. If the UTC ticks are out of range, we need to default to // the UTC offset from MinValue and MaxValue to be consistent with Parse. bool isAmbiguousLocalDst = false; long offsetTicks; if (ticks < MinTicks) { offsetTicks = TimeZoneInfo.GetLocalUtcOffset(DateTime.MinValue, TimeZoneInfoOptions.NoThrowOnInvalidTime).Ticks; } else if (ticks > MaxTicks) { offsetTicks = TimeZoneInfo.GetLocalUtcOffset(DateTime.MaxValue, TimeZoneInfoOptions.NoThrowOnInvalidTime).Ticks; } else { // Because the ticks conversion between UTC and local is lossy, we need to capture whether the // time is in a repeated hour so that it can be passed to the DateTime constructor. DateTime utcDt = new DateTime(ticks, DateTimeKind.Utc); bool isDaylightSavings = false; offsetTicks = TimeZoneInfo.GetUtcOffsetFromUtc(utcDt, TimeZoneInfo.Local, out isDaylightSavings, out isAmbiguousLocalDst).Ticks; } ticks += offsetTicks; // Another behaviour of parsing is to cause small times to wrap around, so that they can be used // to compare times of day if (ticks < 0) { ticks += TicksPerDay; } if (ticks < MinTicks || ticks > MaxTicks) { throw new ArgumentException(SR.Argument_DateTimeBadBinaryData, nameof(dateData)); } return new DateTime(ticks, DateTimeKind.Local, isAmbiguousLocalDst); } else { return DateTime.FromBinaryRaw(dateData); } } // A version of ToBinary that uses the real representation and does not adjust local times. This is needed for // scenarios where the serialized data must maintain compatibility internal static DateTime FromBinaryRaw(long dateData) { long ticks = dateData & (long)TicksMask; if (ticks < MinTicks || ticks > MaxTicks) throw new ArgumentException(SR.Argument_DateTimeBadBinaryData, nameof(dateData)); return new DateTime((ulong)dateData); } // Creates a DateTime from a Windows filetime. A Windows filetime is // a long representing the date and time as the number of // 100-nanosecond intervals that have elapsed since 1/1/1601 12:00am. // public static DateTime FromFileTime(long fileTime) { return FromFileTimeUtc(fileTime).ToLocalTime(); } public static DateTime FromFileTimeUtc(long fileTime) { if (fileTime < 0 || fileTime > MaxTicks - FileTimeOffset) { throw new ArgumentOutOfRangeException(nameof(fileTime), SR.ArgumentOutOfRange_FileTimeInvalid); } #pragma warning disable 162 // Unrechable code on Unix if (s_systemSupportsLeapSeconds) { return FromFileTimeLeapSecondsAware(fileTime); } #pragma warning restore 162 // This is the ticks in Universal time for this fileTime. long universalTicks = fileTime + FileTimeOffset; return new DateTime(universalTicks, DateTimeKind.Utc); } // Creates a DateTime from an OLE Automation Date. // public static DateTime FromOADate(double d) { return new DateTime(DoubleDateToTicks(d), DateTimeKind.Unspecified); } void ISerializable.GetObjectData(SerializationInfo info, StreamingContext context) { if (info == null) { throw new ArgumentNullException(nameof(info)); } // Serialize both the old and the new format info.AddValue(TicksField, InternalTicks); info.AddValue(DateDataField, _dateData); } public bool IsDaylightSavingTime() { if (Kind == DateTimeKind.Utc) { return false; } return TimeZoneInfo.Local.IsDaylightSavingTime(this, TimeZoneInfoOptions.NoThrowOnInvalidTime); } public static DateTime SpecifyKind(DateTime value, DateTimeKind kind) { return new DateTime(value.InternalTicks, kind); } public long ToBinary() { if (Kind == DateTimeKind.Local) { // Local times need to be adjusted as you move from one time zone to another, // just as they are when serializing in text. As such the format for local times // changes to store the ticks of the UTC time, but with flags that look like a // local date. // To match serialization in text we need to be able to handle cases where // the UTC value would be out of range. Unused parts of the ticks range are // used for this, so that values just past max value are stored just past the // end of the maximum range, and values just below minimum value are stored // at the end of the ticks area, just below 2^62. TimeSpan offset = TimeZoneInfo.GetLocalUtcOffset(this, TimeZoneInfoOptions.NoThrowOnInvalidTime); long ticks = Ticks; long storedTicks = ticks - offset.Ticks; if (storedTicks < 0) { storedTicks = TicksCeiling + storedTicks; } return storedTicks | (unchecked((long)LocalMask)); } else { return (long)_dateData; } } // Returns the date part of this DateTime. The resulting value // corresponds to this DateTime with the time-of-day part set to // zero (midnight). // public DateTime Date { get { long ticks = InternalTicks; return new DateTime((ulong)(ticks - ticks % TicksPerDay) | InternalKind); } } // Returns a given date part of this DateTime. This method is used // to compute the year, day-of-year, month, or day part. private int GetDatePart(int part) { long ticks = InternalTicks; // n = number of days since 1/1/0001 int n = (int)(ticks / TicksPerDay); // y400 = number of whole 400-year periods since 1/1/0001 int y400 = n / DaysPer400Years; // n = day number within 400-year period n -= y400 * DaysPer400Years; // y100 = number of whole 100-year periods within 400-year period int y100 = n / DaysPer100Years; // Last 100-year period has an extra day, so decrement result if 4 if (y100 == 4) y100 = 3; // n = day number within 100-year period n -= y100 * DaysPer100Years; // y4 = number of whole 4-year periods within 100-year period int y4 = n / DaysPer4Years; // n = day number within 4-year period n -= y4 * DaysPer4Years; // y1 = number of whole years within 4-year period int y1 = n / DaysPerYear; // Last year has an extra day, so decrement result if 4 if (y1 == 4) y1 = 3; // If year was requested, compute and return it if (part == DatePartYear) { return y400 * 400 + y100 * 100 + y4 * 4 + y1 + 1; } // n = day number within year n -= y1 * DaysPerYear; // If day-of-year was requested, return it if (part == DatePartDayOfYear) return n + 1; // Leap year calculation looks different from IsLeapYear since y1, y4, // and y100 are relative to year 1, not year 0 bool leapYear = y1 == 3 && (y4 != 24 || y100 == 3); int[] days = leapYear ? s_daysToMonth366 : s_daysToMonth365; // All months have less than 32 days, so n >> 5 is a good conservative // estimate for the month int m = (n >> 5) + 1; // m = 1-based month number while (n >= days[m]) m++; // If month was requested, return it if (part == DatePartMonth) return m; // Return 1-based day-of-month return n - days[m - 1] + 1; } // Exactly the same as GetDatePart(int part), except computing all of // year/month/day rather than just one of them. Used when all three // are needed rather than redoing the computations for each. internal void GetDatePart(out int year, out int month, out int day) { long ticks = InternalTicks; // n = number of days since 1/1/0001 int n = (int)(ticks / TicksPerDay); // y400 = number of whole 400-year periods since 1/1/0001 int y400 = n / DaysPer400Years; // n = day number within 400-year period n -= y400 * DaysPer400Years; // y100 = number of whole 100-year periods within 400-year period int y100 = n / DaysPer100Years; // Last 100-year period has an extra day, so decrement result if 4 if (y100 == 4) y100 = 3; // n = day number within 100-year period n -= y100 * DaysPer100Years; // y4 = number of whole 4-year periods within 100-year period int y4 = n / DaysPer4Years; // n = day number within 4-year period n -= y4 * DaysPer4Years; // y1 = number of whole years within 4-year period int y1 = n / DaysPerYear; // Last year has an extra day, so decrement result if 4 if (y1 == 4) y1 = 3; // compute year year = y400 * 400 + y100 * 100 + y4 * 4 + y1 + 1; // n = day number within year n -= y1 * DaysPerYear; // dayOfYear = n + 1; // Leap year calculation looks different from IsLeapYear since y1, y4, // and y100 are relative to year 1, not year 0 bool leapYear = y1 == 3 && (y4 != 24 || y100 == 3); int[] days = leapYear ? s_daysToMonth366 : s_daysToMonth365; // All months have less than 32 days, so n >> 5 is a good conservative // estimate for the month int m = (n >> 5) + 1; // m = 1-based month number while (n >= days[m]) m++; // compute month and day month = m; day = n - days[m - 1] + 1; } // Returns the day-of-month part of this DateTime. The returned // value is an integer between 1 and 31. // public int Day { get { return GetDatePart(DatePartDay); } } // Returns the day-of-week part of this DateTime. The returned value // is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates // Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates // Thursday, 5 indicates Friday, and 6 indicates Saturday. // public DayOfWeek DayOfWeek { get { return (DayOfWeek)((InternalTicks / TicksPerDay + 1) % 7); } } // Returns the day-of-year part of this DateTime. The returned value // is an integer between 1 and 366. // public int DayOfYear { get { return GetDatePart(DatePartDayOfYear); } } // Returns the hash code for this DateTime. // public override int GetHashCode() { long ticks = InternalTicks; return unchecked((int)ticks) ^ (int)(ticks >> 32); } // Returns the hour part of this DateTime. The returned value is an // integer between 0 and 23. // public int Hour { get { return (int)((InternalTicks / TicksPerHour) % 24); } } internal bool IsAmbiguousDaylightSavingTime() { return (InternalKind == KindLocalAmbiguousDst); } public DateTimeKind Kind { get { switch (InternalKind) { case KindUnspecified: return DateTimeKind.Unspecified; case KindUtc: return DateTimeKind.Utc; default: return DateTimeKind.Local; } } } // Returns the millisecond part of this DateTime. The returned value // is an integer between 0 and 999. // public int Millisecond { get { return (int)((InternalTicks / TicksPerMillisecond) % 1000); } } // Returns the minute part of this DateTime. The returned value is // an integer between 0 and 59. // public int Minute { get { return (int)((InternalTicks / TicksPerMinute) % 60); } } // Returns the month part of this DateTime. The returned value is an // integer between 1 and 12. // public int Month { get { return GetDatePart(DatePartMonth); } } // Returns a DateTime representing the current date and time. The // resolution of the returned value depends on the system timer. public static DateTime Now { get { DateTime utc = UtcNow; bool isAmbiguousLocalDst = false; long offset = TimeZoneInfo.GetDateTimeNowUtcOffsetFromUtc(utc, out isAmbiguousLocalDst).Ticks; long tick = utc.Ticks + offset; if (tick > DateTime.MaxTicks) { return new DateTime(DateTime.MaxTicks, DateTimeKind.Local); } if (tick < DateTime.MinTicks) { return new DateTime(DateTime.MinTicks, DateTimeKind.Local); } return new DateTime(tick, DateTimeKind.Local, isAmbiguousLocalDst); } } // Returns the second part of this DateTime. The returned value is // an integer between 0 and 59. // public int Second { get { return (int)((InternalTicks / TicksPerSecond) % 60); } } // Returns the tick count for this DateTime. The returned value is // the number of 100-nanosecond intervals that have elapsed since 1/1/0001 // 12:00am. // public long Ticks { get { return InternalTicks; } } // Returns the time-of-day part of this DateTime. The returned value // is a TimeSpan that indicates the time elapsed since midnight. // public TimeSpan TimeOfDay { get { return new TimeSpan(InternalTicks % TicksPerDay); } } // Returns a DateTime representing the current date. The date part // of the returned value is the current date, and the time-of-day part of // the returned value is zero (midnight). // public static DateTime Today { get { return DateTime.Now.Date; } } // Returns the year part of this DateTime. The returned value is an // integer between 1 and 9999. // public int Year { get { return GetDatePart(DatePartYear); } } // Checks whether a given year is a leap year. This method returns true if // year is a leap year, or false if not. // public static bool IsLeapYear(int year) { if (year < 1 || year > 9999) { throw new ArgumentOutOfRangeException(nameof(year), SR.ArgumentOutOfRange_Year); } return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // Constructs a DateTime from a string. The string must specify a // date and optionally a time in a culture-specific or universal format. // Leading and trailing whitespace characters are allowed. // public static DateTime Parse(string s) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return (DateTimeParse.Parse(s, DateTimeFormatInfo.CurrentInfo, DateTimeStyles.None)); } // Constructs a DateTime from a string. The string must specify a // date and optionally a time in a culture-specific or universal format. // Leading and trailing whitespace characters are allowed. // public static DateTime Parse(string s, IFormatProvider provider) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return (DateTimeParse.Parse(s, DateTimeFormatInfo.GetInstance(provider), DateTimeStyles.None)); } public static DateTime Parse(string s, IFormatProvider provider, DateTimeStyles styles) { DateTimeFormatInfo.ValidateStyles(styles, nameof(styles)); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return (DateTimeParse.Parse(s, DateTimeFormatInfo.GetInstance(provider), styles)); } public static DateTime Parse(ReadOnlySpan s, IFormatProvider provider = null, DateTimeStyles styles = DateTimeStyles.None) { DateTimeFormatInfo.ValidateStyles(styles, nameof(styles)); return DateTimeParse.Parse(s, DateTimeFormatInfo.GetInstance(provider), styles); } // Constructs a DateTime from a string. The string must specify a // date and optionally a time in a culture-specific or universal format. // Leading and trailing whitespace characters are allowed. // public static DateTime ParseExact(string s, string format, IFormatProvider provider) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); if (format == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.format); return (DateTimeParse.ParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), DateTimeStyles.None)); } // Constructs a DateTime from a string. The string must specify a // date and optionally a time in a culture-specific or universal format. // Leading and trailing whitespace characters are allowed. // public static DateTime ParseExact(string s, string format, IFormatProvider provider, DateTimeStyles style) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); if (format == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.format); return (DateTimeParse.ParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), style)); } public static DateTime ParseExact(ReadOnlySpan s, ReadOnlySpan format, IFormatProvider provider, DateTimeStyles style = DateTimeStyles.None) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); return DateTimeParse.ParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), style); } public static DateTime ParseExact(string s, string[] formats, IFormatProvider provider, DateTimeStyles style) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return DateTimeParse.ParseExactMultiple(s, formats, DateTimeFormatInfo.GetInstance(provider), style); } public static DateTime ParseExact(ReadOnlySpan s, string[] formats, IFormatProvider provider, DateTimeStyles style = DateTimeStyles.None) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); return DateTimeParse.ParseExactMultiple(s, formats, DateTimeFormatInfo.GetInstance(provider), style); } public TimeSpan Subtract(DateTime value) { return new TimeSpan(InternalTicks - value.InternalTicks); } public DateTime Subtract(TimeSpan value) { long ticks = InternalTicks; long valueTicks = value._ticks; if (ticks - MinTicks < valueTicks || ticks - MaxTicks > valueTicks) { throw new ArgumentOutOfRangeException(nameof(value), SR.ArgumentOutOfRange_DateArithmetic); } return new DateTime((ulong)(ticks - valueTicks) | InternalKind); } // This function is duplicated in COMDateTime.cpp private static double TicksToOADate(long value) { if (value == 0) return 0.0; // Returns OleAut's zero'ed date value. if (value < TicksPerDay) // This is a fix for VB. They want the default day to be 1/1/0001 rathar then 12/30/1899. value += DoubleDateOffset; // We could have moved this fix down but we would like to keep the bounds check. if (value < OADateMinAsTicks) throw new OverflowException(SR.Arg_OleAutDateInvalid); // Currently, our max date == OA's max date (12/31/9999), so we don't // need an overflow check in that direction. long millis = (value - DoubleDateOffset) / TicksPerMillisecond; if (millis < 0) { long frac = millis % MillisPerDay; if (frac != 0) millis -= (MillisPerDay + frac) * 2; } return (double)millis / MillisPerDay; } // Converts the DateTime instance into an OLE Automation compatible // double date. public double ToOADate() { return TicksToOADate(InternalTicks); } public long ToFileTime() { // Treats the input as local if it is not specified return ToUniversalTime().ToFileTimeUtc(); } public long ToFileTimeUtc() { // Treats the input as universal if it is not specified long ticks = ((InternalKind & LocalMask) != 0) ? ToUniversalTime().InternalTicks : this.InternalTicks; #pragma warning disable 162 // Unrechable code on Unix if (s_systemSupportsLeapSeconds) { return ToFileTimeLeapSecondsAware(ticks); } #pragma warning restore 162 ticks -= FileTimeOffset; if (ticks < 0) { throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_FileTimeInvalid); } return ticks; } public DateTime ToLocalTime() { return ToLocalTime(false); } internal DateTime ToLocalTime(bool throwOnOverflow) { if (Kind == DateTimeKind.Local) { return this; } bool isDaylightSavings = false; bool isAmbiguousLocalDst = false; long offset = TimeZoneInfo.GetUtcOffsetFromUtc(this, TimeZoneInfo.Local, out isDaylightSavings, out isAmbiguousLocalDst).Ticks; long tick = Ticks + offset; if (tick > DateTime.MaxTicks) { if (throwOnOverflow) throw new ArgumentException(SR.Arg_ArgumentOutOfRangeException); else return new DateTime(DateTime.MaxTicks, DateTimeKind.Local); } if (tick < DateTime.MinTicks) { if (throwOnOverflow) throw new ArgumentException(SR.Arg_ArgumentOutOfRangeException); else return new DateTime(DateTime.MinTicks, DateTimeKind.Local); } return new DateTime(tick, DateTimeKind.Local, isAmbiguousLocalDst); } public string ToLongDateString() { return DateTimeFormat.Format(this, "D", null); } public string ToLongTimeString() { return DateTimeFormat.Format(this, "T", null); } public string ToShortDateString() { return DateTimeFormat.Format(this, "d", null); } public string ToShortTimeString() { return DateTimeFormat.Format(this, "t", null); } public override string ToString() { return DateTimeFormat.Format(this, null, null); } public string ToString(string format) { return DateTimeFormat.Format(this, format, null); } public string ToString(IFormatProvider provider) { return DateTimeFormat.Format(this, null, provider); } public string ToString(string format, IFormatProvider provider) { return DateTimeFormat.Format(this, format, provider); } public bool TryFormat(Span destination, out int charsWritten, ReadOnlySpan format = default, IFormatProvider provider = null) => DateTimeFormat.TryFormat(this, destination, out charsWritten, format, provider); public DateTime ToUniversalTime() { return TimeZoneInfo.ConvertTimeToUtc(this, TimeZoneInfoOptions.NoThrowOnInvalidTime); } public static bool TryParse(string s, out DateTime result) { if (s == null) { result = default; return false; } return DateTimeParse.TryParse(s, DateTimeFormatInfo.CurrentInfo, DateTimeStyles.None, out result); } public static bool TryParse(ReadOnlySpan s, out DateTime result) { return DateTimeParse.TryParse(s, DateTimeFormatInfo.CurrentInfo, DateTimeStyles.None, out result); } public static bool TryParse(string s, IFormatProvider provider, DateTimeStyles styles, out DateTime result) { DateTimeFormatInfo.ValidateStyles(styles, nameof(styles)); if (s == null) { result = default; return false; } return DateTimeParse.TryParse(s, DateTimeFormatInfo.GetInstance(provider), styles, out result); } public static bool TryParse(ReadOnlySpan s, IFormatProvider provider, DateTimeStyles styles, out DateTime result) { DateTimeFormatInfo.ValidateStyles(styles, nameof(styles)); return DateTimeParse.TryParse(s, DateTimeFormatInfo.GetInstance(provider), styles, out result); } public static bool TryParseExact(string s, string format, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); if (s == null || format == null) { result = default; return false; } return DateTimeParse.TryParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), style, out result); } public static bool TryParseExact(ReadOnlySpan s, ReadOnlySpan format, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); return DateTimeParse.TryParseExact(s, format, DateTimeFormatInfo.GetInstance(provider), style, out result); } public static bool TryParseExact(string s, string[] formats, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); if (s == null) { result = default; return false; } return DateTimeParse.TryParseExactMultiple(s, formats, DateTimeFormatInfo.GetInstance(provider), style, out result); } public static bool TryParseExact(ReadOnlySpan s, string[] formats, IFormatProvider provider, DateTimeStyles style, out DateTime result) { DateTimeFormatInfo.ValidateStyles(style, nameof(style)); return DateTimeParse.TryParseExactMultiple(s, formats, DateTimeFormatInfo.GetInstance(provider), style, out result); } public static DateTime operator +(DateTime d, TimeSpan t) { long ticks = d.InternalTicks; long valueTicks = t._ticks; if (valueTicks > MaxTicks - ticks || valueTicks < MinTicks - ticks) { throw new ArgumentOutOfRangeException(nameof(t), SR.ArgumentOutOfRange_DateArithmetic); } return new DateTime((ulong)(ticks + valueTicks) | d.InternalKind); } public static DateTime operator -(DateTime d, TimeSpan t) { long ticks = d.InternalTicks; long valueTicks = t._ticks; if (ticks - MinTicks < valueTicks || ticks - MaxTicks > valueTicks) { throw new ArgumentOutOfRangeException(nameof(t), SR.ArgumentOutOfRange_DateArithmetic); } return new DateTime((ulong)(ticks - valueTicks) | d.InternalKind); } public static TimeSpan operator -(DateTime d1, DateTime d2) { return new TimeSpan(d1.InternalTicks - d2.InternalTicks); } public static bool operator ==(DateTime d1, DateTime d2) { return d1.InternalTicks == d2.InternalTicks; } public static bool operator !=(DateTime d1, DateTime d2) { return d1.InternalTicks != d2.InternalTicks; } public static bool operator <(DateTime t1, DateTime t2) { return t1.InternalTicks < t2.InternalTicks; } public static bool operator <=(DateTime t1, DateTime t2) { return t1.InternalTicks <= t2.InternalTicks; } public static bool operator >(DateTime t1, DateTime t2) { return t1.InternalTicks > t2.InternalTicks; } public static bool operator >=(DateTime t1, DateTime t2) { return t1.InternalTicks >= t2.InternalTicks; } // Returns a string array containing all of the known date and time options for the // current culture. The strings returned are properly formatted date and // time strings for the current instance of DateTime. public string[] GetDateTimeFormats() { return (GetDateTimeFormats(CultureInfo.CurrentCulture)); } // Returns a string array containing all of the known date and time options for the // using the information provided by IFormatProvider. The strings returned are properly formatted date and // time strings for the current instance of DateTime. public string[] GetDateTimeFormats(IFormatProvider provider) { return (DateTimeFormat.GetAllDateTimes(this, DateTimeFormatInfo.GetInstance(provider))); } // Returns a string array containing all of the date and time options for the // given format format and current culture. The strings returned are properly formatted date and // time strings for the current instance of DateTime. public string[] GetDateTimeFormats(char format) { return (GetDateTimeFormats(format, CultureInfo.CurrentCulture)); } // Returns a string array containing all of the date and time options for the // given format format and given culture. The strings returned are properly formatted date and // time strings for the current instance of DateTime. public string[] GetDateTimeFormats(char format, IFormatProvider provider) { return (DateTimeFormat.GetAllDateTimes(this, format, DateTimeFormatInfo.GetInstance(provider))); } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.DateTime; } bool IConvertible.ToBoolean(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Boolean")); } char IConvertible.ToChar(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Char")); } sbyte IConvertible.ToSByte(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "SByte")); } byte IConvertible.ToByte(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Byte")); } short IConvertible.ToInt16(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Int16")); } ushort IConvertible.ToUInt16(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "UInt16")); } int IConvertible.ToInt32(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Int32")); } uint IConvertible.ToUInt32(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "UInt32")); } long IConvertible.ToInt64(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Int64")); } ulong IConvertible.ToUInt64(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "UInt64")); } float IConvertible.ToSingle(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Single")); } double IConvertible.ToDouble(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Double")); } decimal IConvertible.ToDecimal(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "DateTime", "Decimal")); } DateTime IConvertible.ToDateTime(IFormatProvider provider) { return this; } object IConvertible.ToType(Type type, IFormatProvider provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } // Tries to construct a DateTime from a given year, month, day, hour, // minute, second and millisecond. // internal static bool TryCreate(int year, int month, int day, int hour, int minute, int second, int millisecond, out DateTime result) { result = DateTime.MinValue; if (year < 1 || year > 9999 || month < 1 || month > 12) { return false; } int[] days = IsLeapYear(year) ? s_daysToMonth366 : s_daysToMonth365; if (day < 1 || day > days[month] - days[month - 1]) { return false; } if (hour < 0 || hour >= 24 || minute < 0 || minute >= 60 || second < 0 || second > 60) { return false; } if (millisecond < 0 || millisecond >= MillisPerSecond) { return false; } if (second == 60) { if (s_systemSupportsLeapSeconds && IsValidTimeWithLeapSeconds(year, month, day, hour, minute, second, DateTimeKind.Unspecified)) { // if we have leap second (second = 60) then we'll need to check if it is valid time. // if it is valid, then we adjust the second to 59 so DateTime will consider this second is last second // of this minute. // if it is not valid time, we'll eventually throw. // although this is unspecified datetime kind, we'll assume the passed time is UTC to check the leap seconds. second = 59; } else { return false; } } long ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second); ticks += millisecond * TicksPerMillisecond; if (ticks < MinTicks || ticks > MaxTicks) { return false; } result = new DateTime(ticks, DateTimeKind.Unspecified); return true; } } }