summaryrefslogtreecommitdiff
path: root/src/pal/tests/palsuite/c_runtime/powf/test1/test1.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/pal/tests/palsuite/c_runtime/powf/test1/test1.c')
-rw-r--r--src/pal/tests/palsuite/c_runtime/powf/test1/test1.c229
1 files changed, 229 insertions, 0 deletions
diff --git a/src/pal/tests/palsuite/c_runtime/powf/test1/test1.c b/src/pal/tests/palsuite/c_runtime/powf/test1/test1.c
new file mode 100644
index 0000000..ca738e8
--- /dev/null
+++ b/src/pal/tests/palsuite/c_runtime/powf/test1/test1.c
@@ -0,0 +1,229 @@
+// Licensed to the .NET Foundation under one or more agreements.
+// The .NET Foundation licenses this file to you under the MIT license.
+// See the LICENSE file in the project root for more information.
+
+/*=====================================================================
+**
+** Source: test1.c
+**
+** Purpose: Tests that atan2f returns correct values for a subset of values.
+** Tests with positive and negative values of x and y to ensure
+** atan2f is returning results from the correct quadrant.
+**
+**===================================================================*/
+
+#include <palsuite.h>
+
+// binary32 (float) has a machine epsilon of 2^-23 (approx. 1.19e-07). However, this
+// is slightly too accurate when writing tests meant to run against libm implementations
+// for various platforms. 2^-21 (approx. 4.76e-07) seems to be as accurate as we can get.
+//
+// The tests themselves will take PAL_EPSILON and adjust it according to the expected result
+// so that the delta used for comparison will compare the most significant digits and ignore
+// any digits that are outside the double precision range (6-9 digits).
+
+// For example, a test with an expect result in the format of 0.xxxxxxxxx will use PAL_EPSILON
+// for the variance, while an expected result in the format of 0.0xxxxxxxxx will use
+// PAL_EPSILON / 10 and and expected result in the format of x.xxxxxx will use PAL_EPSILON * 10.
+#define PAL_EPSILON 4.76837158e-07
+
+#define PAL_NAN sqrtf(-1.0f)
+#define PAL_POSINF -logf(0.0f)
+#define PAL_NEGINF logf(0.0f)
+
+/**
+ * Helper test structure
+ */
+struct test
+{
+ float x; /* first component of the value to test the function with */
+ float y; /* second component of the value to test the function with */
+ float expected; /* expected result */
+ float variance; /* maximum delta between the expected and actual result */
+};
+
+/**
+ * validate
+ *
+ * test validation function
+ */
+void __cdecl validate(float x, float y, float expected, float variance)
+{
+ float result = powf(x, y);
+
+ /*
+ * The test is valid when the difference between result
+ * and expected is less than or equal to variance
+ */
+ float delta = fabsf(result - expected);
+
+ if (delta > variance)
+ {
+ Fail("powf(%g, %g) returned %10.9g when it should have returned %10.9g",
+ x, y, result, expected);
+ }
+}
+
+/**
+ * validate
+ *
+ * test validation function for values returning NaN
+ */
+void __cdecl validate_isnan(float x, float y)
+{
+ float result = powf(x, y);
+
+ if (!_isnanf(result))
+ {
+ Fail("powf(%g, %g) returned %10.9g when it should have returned %10.9g",
+ x, y, result, PAL_NAN);
+ }
+}
+
+/**
+ * main
+ *
+ * executable entry point
+ */
+int __cdecl main(int argc, char **argv)
+{
+ struct test tests[] =
+ {
+ /* x y expected variance */
+ { PAL_NEGINF, PAL_NEGINF, 0, PAL_EPSILON },
+ { PAL_NEGINF, PAL_POSINF, PAL_POSINF, 0 },
+
+ { -10, PAL_NEGINF, 0, PAL_EPSILON },
+ { -10, -1, -0.1f, PAL_EPSILON },
+ { -10, 0, 1, PAL_EPSILON * 10 },
+ { -10, 1, -10, PAL_EPSILON * 100 },
+ { -10, PAL_POSINF, PAL_POSINF, 0 },
+
+ { -2.71828183f, PAL_NEGINF, 0, PAL_EPSILON }, // x: -(e)
+ { -2.71828183f, -1, -0.367879441f, PAL_EPSILON }, // x: -(e)
+ { -2.71828183f, 0, 1, PAL_EPSILON * 10 }, // x: -(e)
+ { -2.71828183f, 1, -2.71828183f, PAL_EPSILON * 10 }, // x: -(e) expected: e
+ { -2.71828183f, PAL_POSINF, PAL_POSINF, 0 }, // x: -(e)
+
+ { -0.0, PAL_NEGINF, PAL_POSINF, 0 },
+ { -0.0, -1, PAL_NEGINF, 0 },
+ { -0.0f, -0.0f, 1, PAL_EPSILON * 10 },
+ { -0.0f, 0, 1, PAL_EPSILON * 10 },
+ { -0.0, 1, -0.0, PAL_EPSILON },
+ { -0.0, PAL_POSINF, 0, PAL_EPSILON },
+
+ { 0.0, PAL_NEGINF, PAL_POSINF, 0 },
+ { 0.0, -1, PAL_POSINF, 0 },
+ { 0, -0.0f, 1, PAL_EPSILON * 10 },
+ { 0, 0, 1, PAL_EPSILON * 10 },
+ { 0.0, 1, 0, PAL_EPSILON },
+ { 0.0, PAL_POSINF, 0, PAL_EPSILON },
+
+ { 1, PAL_NEGINF, 1, PAL_EPSILON * 10 },
+ { 1, PAL_POSINF, 1, PAL_EPSILON * 10 },
+
+ { 2.71828183f, PAL_NEGINF, 0, PAL_EPSILON },
+ { 2.71828183f, -3.14159265f, 0.0432139183f, PAL_EPSILON / 10 }, // x: e y: -(pi)
+ { 2.71828183f, -2.71828183f, 0.0659880358f, PAL_EPSILON / 10 }, // x: e y: -(e)
+ { 2.71828183f, -2.30258509f, 0.1f, PAL_EPSILON }, // x: e y: -(ln(10))
+ { 2.71828183f, -1.57079633f, 0.207879576f, PAL_EPSILON }, // x: e y: -(pi / 2)
+ { 2.71828183f, -1.44269504f, 0.236290088f, PAL_EPSILON }, // x: e y: -(logf2(e))
+ { 2.71828183f, -1.41421356f, 0.243116734f, PAL_EPSILON }, // x: e y: -(sqrtf(2))
+ { 2.71828183f, -1.12837917f, 0.323557264f, PAL_EPSILON }, // x: e y: -(2 / sqrtf(pi))
+ { 2.71828183f, -1, 0.367879441f, PAL_EPSILON }, // x: e y: -(1)
+ { 2.71828183f, -0.785398163f, 0.455938128f, PAL_EPSILON }, // x: e y: -(pi / 4)
+ { 2.71828183f, -0.707106781f, 0.493068691f, PAL_EPSILON }, // x: e y: -(1 / sqrtf(2))
+ { 2.71828183f, -0.693147181f, 0.5f, PAL_EPSILON }, // x: e y: -(ln(2))
+ { 2.71828183f, -0.636619772f, 0.529077808f, PAL_EPSILON }, // x: e y: -(2 / pi)
+ { 2.71828183f, -0.434294482f, 0.647721485f, PAL_EPSILON }, // x: e y: -(log10f(e))
+ { 2.71828183f, -0.318309886f, 0.727377349f, PAL_EPSILON }, // x: e y: -(1 / pi)
+ { 2.71828183f, 0, 1, PAL_EPSILON * 10 }, // x: e
+ { 2.71828183f, 0.318309886f, 1.37480223f, PAL_EPSILON * 10 }, // x: e y: 1 / pi
+ { 2.71828183f, 0.434294482f, 1.54387344f, PAL_EPSILON * 10 }, // x: e y: log10f(e)
+ { 2.71828183f, 0.636619772f, 1.89008116f, PAL_EPSILON * 10 }, // x: e y: 2 / pi
+ { 2.71828183f, 0.693147181f, 2, PAL_EPSILON * 10 }, // x: e y: ln(2)
+ { 2.71828183f, 0.707106781f, 2.02811498f, PAL_EPSILON * 10 }, // x: e y: 1 / sqrtf(2)
+ { 2.71828183f, 0.785398163f, 2.19328005f, PAL_EPSILON * 10 }, // x: e y: pi / 4
+ { 2.71828183f, 1, 2.71828183f, PAL_EPSILON * 10 }, // x: e expected: e
+ { 2.71828183f, 1.12837917f, 3.09064302f, PAL_EPSILON * 10 }, // x: e y: 2 / sqrtf(pi)
+ { 2.71828183f, 1.41421356f, 4.11325038f, PAL_EPSILON * 10 }, // x: e y: sqrtf(2)
+ { 2.71828183f, 1.44269504f, 4.23208611f, PAL_EPSILON * 10 }, // x: e y: logf2(e)
+ { 2.71828183f, 1.57079633f, 4.81047738f, PAL_EPSILON * 10 }, // x: e y: pi / 2
+ { 2.71828183f, 2.30258509f, 10, PAL_EPSILON * 100 }, // x: e y: ln(10)
+ { 2.71828183f, 2.71828183f, 15.1542622f, PAL_EPSILON * 100 }, // x: e y: e
+ { 2.71828183f, 3.14159265f, 23.1406926f, PAL_EPSILON * 100 }, // x: e y: pi
+ { 2.71828183f, PAL_POSINF, PAL_POSINF, 0 }, // x: e
+
+ { 10, PAL_NEGINF, 0, 0 },
+ { 10, -3.14159265f, 0.000721784159f, PAL_EPSILON / 1000 }, // y: -(pi)
+ { 10, -2.71828183f, 0.00191301410f, PAL_EPSILON / 100 }, // y: -(e)
+ { 10, -2.30258509f, 0.00498212830f, PAL_EPSILON / 100 }, // y: -(ln(10))
+ { 10, -1.57079633f, 0.0268660410f, PAL_EPSILON / 10 }, // y: -(pi / 2)
+ { 10, -1.44269504f, 0.0360831928f, PAL_EPSILON / 10 }, // y: -(logf2(e))
+ { 10, -1.41421356f, 0.0385288847f, PAL_EPSILON / 10 }, // y: -(sqrtf(2))
+ { 10, -1.12837917f, 0.0744082059f, PAL_EPSILON / 10 }, // y: -(2 / sqrtf(pi))
+ { 10, -1, 0.1f, PAL_EPSILON }, // y: -(1)
+ { 10, -0.785398163f, 0.163908636f, PAL_EPSILON }, // y: -(pi / 4)
+ { 10, -0.707106781f, 0.196287760f, PAL_EPSILON }, // y: -(1 / sqrtf(2))
+ { 10, -0.693147181f, 0.202699566f, PAL_EPSILON }, // y: -(ln(2))
+ { 10, -0.636619772f, 0.230876765f, PAL_EPSILON }, // y: -(2 / pi)
+ { 10, -0.434294482f, 0.367879441f, PAL_EPSILON }, // y: -(log10f(e))
+ { 10, -0.318309886f, 0.480496373f, PAL_EPSILON }, // y: -(1 / pi)
+ { 10, 0, 1, PAL_EPSILON * 10 },
+ { 10, 0.318309886f, 2.08118116f, PAL_EPSILON * 10 }, // y: 1 / pi
+ { 10, 0.434294482f, 2.71828183f, PAL_EPSILON * 10 }, // y: log10f(e) expected: e
+ { 10, 0.636619772f, 4.33131503f, PAL_EPSILON * 10 }, // y: 2 / pi
+ { 10, 0.693147181f, 4.93340967f, PAL_EPSILON * 10 }, // y: ln(2)
+ { 10, 0.707106781f, 5.09456117f, PAL_EPSILON * 10 }, // y: 1 / sqrtf(2)
+ { 10, 0.785398163f, 6.10095980f, PAL_EPSILON * 10 }, // y: pi / 4
+ { 10, 1, 10, PAL_EPSILON * 100 },
+ { 10, 1.12837917f, 13.4393779f, PAL_EPSILON * 100 }, // y: 2 / sqrtf(pi)
+ { 10, 1.41421356f, 25.9545535f, PAL_EPSILON * 100 }, // y: sqrtf(2)
+ { 10, 1.44269504f, 27.7137338f, PAL_EPSILON * 100 }, // y: logf2(e)
+ { 10, 1.57079633f, 37.2217105f, PAL_EPSILON * 100 }, // y: pi / 2
+ { 10, 2.30258509f, 200.717432f, PAL_EPSILON * 1000 }, // y: ln(10)
+ { 10, 2.71828183f, 522.735300f, PAL_EPSILON * 1000 }, // y: e
+ { 10, 3.14159265f, 1385.45573f, PAL_EPSILON * 10000 }, // y: pi
+ { 10, PAL_POSINF, PAL_POSINF, 0 },
+
+ { PAL_POSINF, PAL_NEGINF, 0, PAL_EPSILON },
+ { PAL_POSINF, PAL_POSINF, PAL_POSINF, 0 },
+ };
+
+ if (PAL_Initialize(argc, argv) != 0)
+ {
+ return FAIL;
+ }
+
+ for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++)
+ {
+ validate(tests[i].x, tests[i].y, tests[i].expected, tests[i].variance);
+ }
+
+ validate_isnan(-10, -1.57079633f); // y: -(pi / 2)
+ validate_isnan(-10, -0.785398163f); // y: -(pi / 4)
+ validate_isnan(-10, 0.785398163f); // y: pi / 4
+ validate_isnan(-10, 1.57079633f); // y: pi / 2
+
+ validate_isnan(-2.71828183f, -1.57079633f); // x: -(e) y: -(pi / 2)
+ validate_isnan(-2.71828183f, -0.785398163f); // x: -(e) y: -(pi / 4)
+ validate_isnan(-2.71828183f, 0.785398163f); // x: -(e) y: pi / 4
+ validate_isnan(-2.71828183f, 1.57079633f); // x: -(e) y: pi / 2
+
+ validate_isnan(-1, PAL_NEGINF);
+ validate_isnan(-1, PAL_POSINF);
+
+ validate_isnan(PAL_NAN, -0.0);
+ validate_isnan(PAL_NAN, 0);
+
+ validate_isnan(PAL_NEGINF, PAL_NAN);
+ validate_isnan(PAL_NAN, PAL_NEGINF);
+
+ validate_isnan(PAL_POSINF, PAL_NAN);
+ validate_isnan(PAL_NAN, PAL_POSINF);
+
+ validate_isnan(PAL_NAN, PAL_NAN);
+
+ PAL_Terminate();
+ return PASS;
+}