summaryrefslogtreecommitdiff
path: root/src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs
diff options
context:
space:
mode:
Diffstat (limited to 'src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs')
-rw-r--r--src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs668
1 files changed, 668 insertions, 0 deletions
diff --git a/src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs b/src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs
new file mode 100644
index 0000000000..f595e72d0d
--- /dev/null
+++ b/src/mscorlib/corefx/System/Globalization/GregorianCalendarHelper.cs
@@ -0,0 +1,668 @@
+// Licensed to the .NET Foundation under one or more agreements.
+// The .NET Foundation licenses this file to you under the MIT license.
+// See the LICENSE file in the project root for more information.
+
+using System;
+using System.Diagnostics.Contracts;
+using System.Runtime.Serialization;
+using System.Threading;
+
+namespace System.Globalization
+{
+ // Gregorian Calendars use Era Info
+ [Serializable]
+ internal class EraInfo
+ {
+ internal int era; // The value of the era.
+ internal long ticks; // The time in ticks when the era starts
+ internal int yearOffset; // The offset to Gregorian year when the era starts.
+ // Gregorian Year = Era Year + yearOffset
+ // Era Year = Gregorian Year - yearOffset
+ internal int minEraYear; // Min year value in this era. Generally, this value is 1, but this may
+ // be affected by the DateTime.MinValue;
+ internal int maxEraYear; // Max year value in this era. (== the year length of the era + 1)
+
+ [OptionalField(VersionAdded = 4)]
+ internal String eraName; // The era name
+ [OptionalField(VersionAdded = 4)]
+ internal String abbrevEraName; // Abbreviated Era Name
+ [OptionalField(VersionAdded = 4)]
+ internal String englishEraName; // English era name
+
+ internal EraInfo(int era, int startYear, int startMonth, int startDay, int yearOffset, int minEraYear, int maxEraYear)
+ {
+ this.era = era;
+ this.yearOffset = yearOffset;
+ this.minEraYear = minEraYear;
+ this.maxEraYear = maxEraYear;
+ this.ticks = new DateTime(startYear, startMonth, startDay).Ticks;
+ }
+
+ internal EraInfo(int era, int startYear, int startMonth, int startDay, int yearOffset, int minEraYear, int maxEraYear,
+ String eraName, String abbrevEraName, String englishEraName)
+ {
+ this.era = era;
+ this.yearOffset = yearOffset;
+ this.minEraYear = minEraYear;
+ this.maxEraYear = maxEraYear;
+ this.ticks = new DateTime(startYear, startMonth, startDay).Ticks;
+ this.eraName = eraName;
+ this.abbrevEraName = abbrevEraName;
+ this.englishEraName = englishEraName;
+ }
+ }
+
+ // This calendar recognizes two era values:
+ // 0 CurrentEra (AD)
+ // 1 BeforeCurrentEra (BC)
+ [Serializable]
+ internal class GregorianCalendarHelper
+ {
+ // 1 tick = 100ns = 10E-7 second
+ // Number of ticks per time unit
+ internal const long TicksPerMillisecond = 10000;
+ internal const long TicksPerSecond = TicksPerMillisecond * 1000;
+ internal const long TicksPerMinute = TicksPerSecond * 60;
+ internal const long TicksPerHour = TicksPerMinute * 60;
+ internal const long TicksPerDay = TicksPerHour * 24;
+
+ // Number of milliseconds per time unit
+ internal const int MillisPerSecond = 1000;
+ internal const int MillisPerMinute = MillisPerSecond * 60;
+ internal const int MillisPerHour = MillisPerMinute * 60;
+ internal const int MillisPerDay = MillisPerHour * 24;
+
+ // Number of days in a non-leap year
+ internal const int DaysPerYear = 365;
+ // Number of days in 4 years
+ internal const int DaysPer4Years = DaysPerYear * 4 + 1;
+ // Number of days in 100 years
+ internal const int DaysPer100Years = DaysPer4Years * 25 - 1;
+ // Number of days in 400 years
+ internal const int DaysPer400Years = DaysPer100Years * 4 + 1;
+
+ // Number of days from 1/1/0001 to 1/1/10000
+ internal const int DaysTo10000 = DaysPer400Years * 25 - 366;
+
+ internal const long MaxMillis = (long)DaysTo10000 * MillisPerDay;
+
+ internal const int DatePartYear = 0;
+ internal const int DatePartDayOfYear = 1;
+ internal const int DatePartMonth = 2;
+ internal const int DatePartDay = 3;
+
+ //
+ // This is the max Gregorian year can be represented by DateTime class. The limitation
+ // is derived from DateTime class.
+ //
+ internal int MaxYear
+ {
+ get
+ {
+ return (m_maxYear);
+ }
+ }
+
+ internal static readonly int[] DaysToMonth365 =
+ {
+ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365
+ };
+
+ internal static readonly int[] DaysToMonth366 =
+ {
+ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366
+ };
+
+ [OptionalField(VersionAdded = 1)]
+ internal int m_maxYear = 9999;
+ [OptionalField(VersionAdded = 1)]
+ internal int m_minYear;
+ internal Calendar m_Cal;
+
+ [OptionalField(VersionAdded = 1)]
+ internal EraInfo[] m_EraInfo;
+ [OptionalField(VersionAdded = 1)]
+ internal int[] m_eras = null;
+
+
+ // Construct an instance of gregorian calendar.
+ internal GregorianCalendarHelper(Calendar cal, EraInfo[] eraInfo)
+ {
+ m_Cal = cal;
+ m_EraInfo = eraInfo;
+ m_maxYear = m_EraInfo[0].maxEraYear;
+ m_minYear = m_EraInfo[0].minEraYear; ;
+ }
+
+ /*=================================GetGregorianYear==========================
+ **Action: Get the Gregorian year value for the specified year in an era.
+ **Returns: The Gregorian year value.
+ **Arguments:
+ ** year the year value in Japanese calendar
+ ** era the Japanese emperor era value.
+ **Exceptions:
+ ** ArgumentOutOfRangeException if year value is invalid or era value is invalid.
+ ============================================================================*/
+
+ internal int GetGregorianYear(int year, int era)
+ {
+ if (year < 0)
+ {
+ throw new ArgumentOutOfRangeException("year",
+ SR.ArgumentOutOfRange_NeedNonNegNum);
+ }
+ Contract.EndContractBlock();
+
+ if (era == Calendar.CurrentEra)
+ {
+ era = m_Cal.CurrentEraValue;
+ }
+
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ if (era == m_EraInfo[i].era)
+ {
+ if (year < m_EraInfo[i].minEraYear || year > m_EraInfo[i].maxEraYear)
+ {
+ throw new ArgumentOutOfRangeException(
+ "year",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range,
+ m_EraInfo[i].minEraYear,
+ m_EraInfo[i].maxEraYear));
+ }
+ return (m_EraInfo[i].yearOffset + year);
+ }
+ }
+ throw new ArgumentOutOfRangeException("era", SR.ArgumentOutOfRange_InvalidEraValue);
+ }
+
+ internal bool IsValidYear(int year, int era)
+ {
+ if (year < 0)
+ {
+ return false;
+ }
+
+ if (era == Calendar.CurrentEra)
+ {
+ era = m_Cal.CurrentEraValue;
+ }
+
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ if (era == m_EraInfo[i].era)
+ {
+ if (year < m_EraInfo[i].minEraYear || year > m_EraInfo[i].maxEraYear)
+ {
+ return false;
+ }
+ return true;
+ }
+ }
+ return false;
+ }
+
+
+ // Returns a given date part of this DateTime. This method is used
+ // to compute the year, day-of-year, month, or day part.
+ internal virtual int GetDatePart(long ticks, int part)
+ {
+ CheckTicksRange(ticks);
+ // n = number of days since 1/1/0001
+ int n = (int)(ticks / TicksPerDay);
+ // y400 = number of whole 400-year periods since 1/1/0001
+ int y400 = n / DaysPer400Years;
+ // n = day number within 400-year period
+ n -= y400 * DaysPer400Years;
+ // y100 = number of whole 100-year periods within 400-year period
+ int y100 = n / DaysPer100Years;
+ // Last 100-year period has an extra day, so decrement result if 4
+ if (y100 == 4) y100 = 3;
+ // n = day number within 100-year period
+ n -= y100 * DaysPer100Years;
+ // y4 = number of whole 4-year periods within 100-year period
+ int y4 = n / DaysPer4Years;
+ // n = day number within 4-year period
+ n -= y4 * DaysPer4Years;
+ // y1 = number of whole years within 4-year period
+ int y1 = n / DaysPerYear;
+ // Last year has an extra day, so decrement result if 4
+ if (y1 == 4) y1 = 3;
+ // If year was requested, compute and return it
+ if (part == DatePartYear)
+ {
+ return (y400 * 400 + y100 * 100 + y4 * 4 + y1 + 1);
+ }
+ // n = day number within year
+ n -= y1 * DaysPerYear;
+ // If day-of-year was requested, return it
+ if (part == DatePartDayOfYear)
+ {
+ return (n + 1);
+ }
+ // Leap year calculation looks different from IsLeapYear since y1, y4,
+ // and y100 are relative to year 1, not year 0
+ bool leapYear = (y1 == 3 && (y4 != 24 || y100 == 3));
+ int[] days = leapYear ? DaysToMonth366 : DaysToMonth365;
+ // All months have less than 32 days, so n >> 5 is a good conservative
+ // estimate for the month
+ int m = n >> 5 + 1;
+ // m = 1-based month number
+ while (n >= days[m]) m++;
+ // If month was requested, return it
+ if (part == DatePartMonth) return (m);
+ // Return 1-based day-of-month
+ return (n - days[m - 1] + 1);
+ }
+
+ /*=================================GetAbsoluteDate==========================
+ **Action: Gets the absolute date for the given Gregorian date. The absolute date means
+ ** the number of days from January 1st, 1 A.D.
+ **Returns: the absolute date
+ **Arguments:
+ ** year the Gregorian year
+ ** month the Gregorian month
+ ** day the day
+ **Exceptions:
+ ** ArgumentOutOfRangException if year, month, day value is valid.
+ **Note:
+ ** This is an internal method used by DateToTicks() and the calculations of Hijri and Hebrew calendars.
+ ** Number of Days in Prior Years (both common and leap years) +
+ ** Number of Days in Prior Months of Current Year +
+ ** Number of Days in Current Month
+ **
+ ============================================================================*/
+
+ internal static long GetAbsoluteDate(int year, int month, int day)
+ {
+ if (year >= 1 && year <= 9999 && month >= 1 && month <= 12)
+ {
+ int[] days = ((year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))) ? DaysToMonth366 : DaysToMonth365;
+ if (day >= 1 && (day <= days[month] - days[month - 1]))
+ {
+ int y = year - 1;
+ int absoluteDate = y * 365 + y / 4 - y / 100 + y / 400 + days[month - 1] + day - 1;
+ return (absoluteDate);
+ }
+ }
+ throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadYearMonthDay);
+ }
+
+ // Returns the tick count corresponding to the given year, month, and day.
+ // Will check the if the parameters are valid.
+ internal static long DateToTicks(int year, int month, int day)
+ {
+ return (GetAbsoluteDate(year, month, day) * TicksPerDay);
+ }
+
+ // Return the tick count corresponding to the given hour, minute, second.
+ // Will check the if the parameters are valid.
+ internal static long TimeToTicks(int hour, int minute, int second, int millisecond)
+ {
+ //TimeSpan.TimeToTicks is a family access function which does no error checking, so
+ //we need to put some error checking out here.
+ if (hour >= 0 && hour < 24 && minute >= 0 && minute < 60 && second >= 0 && second < 60)
+ {
+ if (millisecond < 0 || millisecond >= MillisPerSecond)
+ {
+ throw new ArgumentOutOfRangeException(
+ "millisecond",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range,
+ 0,
+ MillisPerSecond - 1));
+ }
+ return (InternalGloablizationHelper.TimeToTicks(hour, minute, second) + millisecond * TicksPerMillisecond); ;
+ }
+ throw new ArgumentOutOfRangeException(null, SR.ArgumentOutOfRange_BadHourMinuteSecond);
+ }
+
+
+ internal void CheckTicksRange(long ticks)
+ {
+ if (ticks < m_Cal.MinSupportedDateTime.Ticks || ticks > m_Cal.MaxSupportedDateTime.Ticks)
+ {
+ throw new ArgumentOutOfRangeException(
+ "time",
+ String.Format(
+ CultureInfo.InvariantCulture,
+ SR.ArgumentOutOfRange_CalendarRange,
+ m_Cal.MinSupportedDateTime,
+ m_Cal.MaxSupportedDateTime));
+ }
+ Contract.EndContractBlock();
+ }
+
+ // Returns the DateTime resulting from adding the given number of
+ // months to the specified DateTime. The result is computed by incrementing
+ // (or decrementing) the year and month parts of the specified DateTime by
+ // value months, and, if required, adjusting the day part of the
+ // resulting date downwards to the last day of the resulting month in the
+ // resulting year. The time-of-day part of the result is the same as the
+ // time-of-day part of the specified DateTime.
+ //
+ // In more precise terms, considering the specified DateTime to be of the
+ // form y / m / d + t, where y is the
+ // year, m is the month, d is the day, and t is the
+ // time-of-day, the result is y1 / m1 / d1 + t,
+ // where y1 and m1 are computed by adding value months
+ // to y and m, and d1 is the largest value less than
+ // or equal to d that denotes a valid day in month m1 of year
+ // y1.
+ //
+ public DateTime AddMonths(DateTime time, int months)
+ {
+ if (months < -120000 || months > 120000)
+ {
+ throw new ArgumentOutOfRangeException(
+ "months",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range,
+ -120000,
+ 120000));
+ }
+ Contract.EndContractBlock();
+ CheckTicksRange(time.Ticks);
+
+ int y = GetDatePart(time.Ticks, DatePartYear);
+ int m = GetDatePart(time.Ticks, DatePartMonth);
+ int d = GetDatePart(time.Ticks, DatePartDay);
+ int i = m - 1 + months;
+ if (i >= 0)
+ {
+ m = i % 12 + 1;
+ y = y + i / 12;
+ }
+ else
+ {
+ m = 12 + (i + 1) % 12;
+ y = y + (i - 11) / 12;
+ }
+ int[] daysArray = (y % 4 == 0 && (y % 100 != 0 || y % 400 == 0)) ? DaysToMonth366 : DaysToMonth365;
+ int days = (daysArray[m] - daysArray[m - 1]);
+
+ if (d > days)
+ {
+ d = days;
+ }
+ long ticks = DateToTicks(y, m, d) + (time.Ticks % TicksPerDay);
+ Calendar.CheckAddResult(ticks, m_Cal.MinSupportedDateTime, m_Cal.MaxSupportedDateTime);
+ return (new DateTime(ticks));
+ }
+
+ // Returns the DateTime resulting from adding the given number of
+ // years to the specified DateTime. The result is computed by incrementing
+ // (or decrementing) the year part of the specified DateTime by value
+ // years. If the month and day of the specified DateTime is 2/29, and if the
+ // resulting year is not a leap year, the month and day of the resulting
+ // DateTime becomes 2/28. Otherwise, the month, day, and time-of-day
+ // parts of the result are the same as those of the specified DateTime.
+ //
+ public DateTime AddYears(DateTime time, int years)
+ {
+ return (AddMonths(time, years * 12));
+ }
+
+ // Returns the day-of-month part of the specified DateTime. The returned
+ // value is an integer between 1 and 31.
+ //
+ public int GetDayOfMonth(DateTime time)
+ {
+ return (GetDatePart(time.Ticks, DatePartDay));
+ }
+
+ // Returns the day-of-week part of the specified DateTime. The returned value
+ // is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates
+ // Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates
+ // Thursday, 5 indicates Friday, and 6 indicates Saturday.
+ //
+ public DayOfWeek GetDayOfWeek(DateTime time)
+ {
+ CheckTicksRange(time.Ticks);
+ return ((DayOfWeek)((time.Ticks / TicksPerDay + 1) % 7));
+ }
+
+ // Returns the day-of-year part of the specified DateTime. The returned value
+ // is an integer between 1 and 366.
+ //
+ public int GetDayOfYear(DateTime time)
+ {
+ return (GetDatePart(time.Ticks, DatePartDayOfYear));
+ }
+
+ // Returns the number of days in the month given by the year and
+ // month arguments.
+ //
+ [Pure]
+ public int GetDaysInMonth(int year, int month, int era)
+ {
+ //
+ // Convert year/era value to Gregorain year value.
+ //
+ year = GetGregorianYear(year, era);
+ if (month < 1 || month > 12)
+ {
+ throw new ArgumentOutOfRangeException("month", SR.ArgumentOutOfRange_Month);
+ }
+ int[] days = ((year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)) ? DaysToMonth366 : DaysToMonth365);
+ return (days[month] - days[month - 1]);
+ }
+
+ // Returns the number of days in the year given by the year argument for the current era.
+ //
+
+ public int GetDaysInYear(int year, int era)
+ {
+ //
+ // Convert year/era value to Gregorain year value.
+ //
+ year = GetGregorianYear(year, era);
+ return ((year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)) ? 366 : 365);
+ }
+
+ // Returns the era for the specified DateTime value.
+ public int GetEra(DateTime time)
+ {
+ long ticks = time.Ticks;
+ // The assumption here is that m_EraInfo is listed in reverse order.
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ if (ticks >= m_EraInfo[i].ticks)
+ {
+ return (m_EraInfo[i].era);
+ }
+ }
+ throw new ArgumentOutOfRangeException("time", SR.ArgumentOutOfRange_Era);
+ }
+
+
+ public int[] Eras
+ {
+ get
+ {
+ if (m_eras == null)
+ {
+ m_eras = new int[m_EraInfo.Length];
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ m_eras[i] = m_EraInfo[i].era;
+ }
+ }
+ return ((int[])m_eras.Clone());
+ }
+ }
+
+ // Returns the month part of the specified DateTime. The returned value is an
+ // integer between 1 and 12.
+ //
+ public int GetMonth(DateTime time)
+ {
+ return (GetDatePart(time.Ticks, DatePartMonth));
+ }
+
+ // Returns the number of months in the specified year and era.
+ public int GetMonthsInYear(int year, int era)
+ {
+ year = GetGregorianYear(year, era);
+ return (12);
+ }
+
+ // Returns the year part of the specified DateTime. The returned value is an
+ // integer between 1 and 9999.
+ //
+ public int GetYear(DateTime time)
+ {
+ long ticks = time.Ticks;
+ int year = GetDatePart(ticks, DatePartYear);
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ if (ticks >= m_EraInfo[i].ticks)
+ {
+ return (year - m_EraInfo[i].yearOffset);
+ }
+ }
+ throw new ArgumentException(SR.Argument_NoEra);
+ }
+
+ // Returns the year that match the specified Gregorian year. The returned value is an
+ // integer between 1 and 9999.
+ //
+ public int GetYear(int year, DateTime time)
+ {
+ long ticks = time.Ticks;
+ for (int i = 0; i < m_EraInfo.Length; i++)
+ {
+ // while calculating dates with JapaneseLuniSolarCalendar, we can run into cases right after the start of the era
+ // and still belong to the month which is started in previous era. Calculating equivalent calendar date will cause
+ // using the new era info which will have the year offset equal to the year we are calculating year = m_EraInfo[i].yearOffset
+ // which will end up with zero as calendar year.
+ // We should use the previous era info instead to get the right year number. Example of such date is Feb 2nd 1989
+ if (ticks >= m_EraInfo[i].ticks && year > m_EraInfo[i].yearOffset)
+ {
+ return (year - m_EraInfo[i].yearOffset);
+ }
+ }
+ throw new ArgumentException(SR.Argument_NoEra);
+ }
+
+ // Checks whether a given day in the specified era is a leap day. This method returns true if
+ // the date is a leap day, or false if not.
+ //
+ public bool IsLeapDay(int year, int month, int day, int era)
+ {
+ // year/month/era checking is done in GetDaysInMonth()
+ if (day < 1 || day > GetDaysInMonth(year, month, era))
+ {
+ throw new ArgumentOutOfRangeException(
+ "day",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range,
+ 1,
+ GetDaysInMonth(year, month, era)));
+ }
+ Contract.EndContractBlock();
+
+ if (!IsLeapYear(year, era))
+ {
+ return (false);
+ }
+
+ if (month == 2 && day == 29)
+ {
+ return (true);
+ }
+
+ return (false);
+ }
+
+ // Returns the leap month in a calendar year of the specified era. This method returns 0
+ // if this calendar does not have leap month, or this year is not a leap year.
+ //
+ public int GetLeapMonth(int year, int era)
+ {
+ year = GetGregorianYear(year, era);
+ return (0);
+ }
+
+ // Checks whether a given month in the specified era is a leap month. This method returns true if
+ // month is a leap month, or false if not.
+ //
+ public bool IsLeapMonth(int year, int month, int era)
+ {
+ year = GetGregorianYear(year, era);
+ if (month < 1 || month > 12)
+ {
+ throw new ArgumentOutOfRangeException(
+ "month",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range,
+ 1,
+ 12));
+ }
+ return (false);
+ }
+
+ // Checks whether a given year in the specified era is a leap year. This method returns true if
+ // year is a leap year, or false if not.
+ //
+ public bool IsLeapYear(int year, int era)
+ {
+ year = GetGregorianYear(year, era);
+ return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
+ }
+
+ // Returns the date and time converted to a DateTime value. Throws an exception if the n-tuple is invalid.
+ //
+ public DateTime ToDateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, int era)
+ {
+ year = GetGregorianYear(year, era);
+ long ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second, millisecond);
+ CheckTicksRange(ticks);
+ return (new DateTime(ticks));
+ }
+
+ public virtual int GetWeekOfYear(DateTime time, CalendarWeekRule rule, DayOfWeek firstDayOfWeek)
+ {
+ CheckTicksRange(time.Ticks);
+ // Use GregorianCalendar to get around the problem that the implmentation in Calendar.GetWeekOfYear()
+ // can call GetYear() that exceeds the supported range of the Gregorian-based calendars.
+ return (GregorianCalendar.GetDefaultInstance().GetWeekOfYear(time, rule, firstDayOfWeek));
+ }
+
+
+ public int ToFourDigitYear(int year, int twoDigitYearMax)
+ {
+ if (year < 0)
+ {
+ throw new ArgumentOutOfRangeException("year",
+ SR.ArgumentOutOfRange_NeedPosNum);
+ }
+ Contract.EndContractBlock();
+
+ if (year < 100)
+ {
+ int y = year % 100;
+ return ((twoDigitYearMax / 100 - (y > twoDigitYearMax % 100 ? 1 : 0)) * 100 + y);
+ }
+
+ if (year < m_minYear || year > m_maxYear)
+ {
+ throw new ArgumentOutOfRangeException(
+ "year",
+ String.Format(
+ CultureInfo.CurrentCulture,
+ SR.ArgumentOutOfRange_Range, m_minYear, m_maxYear));
+ }
+ // If the year value is above 100, just return the year value. Don't have to do
+ // the TwoDigitYearMax comparison.
+ return (year);
+ }
+ }
+}
+