summaryrefslogtreecommitdiff
path: root/src/jit/simd.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/jit/simd.cpp')
-rw-r--r--src/jit/simd.cpp2556
1 files changed, 2556 insertions, 0 deletions
diff --git a/src/jit/simd.cpp b/src/jit/simd.cpp
new file mode 100644
index 0000000000..1f0c867b55
--- /dev/null
+++ b/src/jit/simd.cpp
@@ -0,0 +1,2556 @@
+// Licensed to the .NET Foundation under one or more agreements.
+// The .NET Foundation licenses this file to you under the MIT license.
+// See the LICENSE file in the project root for more information.
+
+//
+// SIMD Support
+//
+// IMPORTANT NOTES AND CAVEATS:
+//
+// This implementation is preliminary, and may change dramatically.
+//
+// New JIT types, TYP_SIMDxx, are introduced, and the SIMD intrinsics are created as GT_SIMD nodes.
+// Nodes of SIMD types will be typed as TYP_SIMD* (e.g. TYP_SIMD8, TYP_SIMD16, etc.).
+//
+// Note that currently the "reference implementation" is the same as the runtime dll. As such, it is currently
+// providing implementations for those methods not currently supported by the JIT as intrinsics.
+//
+// These are currently recognized using string compares, in order to provide an implementation in the JIT
+// without taking a dependency on the VM.
+// Furthermore, in the CTP, in order to limit the impact of doing these string compares
+// against assembly names, we only look for the SIMDVector assembly if we are compiling a class constructor. This
+// makes it somewhat more "pay for play" but is a significant usability compromise.
+// This has been addressed for RTM by doing the assembly recognition in the VM.
+// --------------------------------------------------------------------------------------
+
+#include "jitpch.h"
+#include "simd.h"
+
+#ifdef _MSC_VER
+#pragma hdrstop
+#endif
+
+#ifndef LEGACY_BACKEND // This file is ONLY used for the RyuJIT backend that uses the linear scan register allocator.
+
+#ifdef FEATURE_SIMD
+
+// Intrinsic Id to intrinsic info map
+const SIMDIntrinsicInfo simdIntrinsicInfoArray[] = {
+#define SIMD_INTRINSIC(mname, inst, id, name, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, \
+ t10) \
+ {SIMDIntrinsic##id, mname, inst, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10},
+#include "simdintrinsiclist.h"
+};
+
+//------------------------------------------------------------------------
+// getSIMDVectorLength: Get the length (number of elements of base type) of
+// SIMD Vector given its size and base (element) type.
+//
+// Arguments:
+// simdSize - size of the SIMD vector
+// baseType - type of the elements of the SIMD vector
+//
+// static
+int Compiler::getSIMDVectorLength(unsigned simdSize, var_types baseType)
+{
+ return simdSize / genTypeSize(baseType);
+}
+
+//------------------------------------------------------------------------
+// Get the length (number of elements of base type) of SIMD Vector given by typeHnd.
+//
+// Arguments:
+// typeHnd - type handle of the SIMD vector
+//
+int Compiler::getSIMDVectorLength(CORINFO_CLASS_HANDLE typeHnd)
+{
+ unsigned sizeBytes = 0;
+ var_types baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, &sizeBytes);
+ return getSIMDVectorLength(sizeBytes, baseType);
+}
+
+//------------------------------------------------------------------------
+// Get the preferred alignment of SIMD vector type for better performance.
+//
+// Arguments:
+// typeHnd - type handle of the SIMD vector
+//
+int Compiler::getSIMDTypeAlignment(var_types simdType)
+{
+#ifdef _TARGET_AMD64_
+ // Fixed length vectors have the following alignment preference
+ // Vector2/3 = 8 byte alignment
+ // Vector4 = 16-byte alignment
+ unsigned size = genTypeSize(simdType);
+
+ // preferred alignment for SSE2 128-bit vectors is 16-bytes
+ if (size == 8)
+ {
+ return 8;
+ }
+
+ // As per Intel manual, AVX vectors preferred alignment is 32-bytes but on Amd64
+ // RSP/EBP is aligned at 16-bytes, therefore to align SIMD types at 32-bytes we need even
+ // RSP/EBP to be 32-byte aligned. It is not clear whether additional stack space used in
+ // aligning stack is worth the benefit and for now will use 16-byte alignment for AVX
+ // 256-bit vectors with unaligned load/stores to/from memory.
+ return 16;
+#else
+ assert(!"getSIMDTypeAlignment() unimplemented on target arch");
+ unreached();
+#endif
+}
+
+//----------------------------------------------------------------------------------
+// Return the base type and size of SIMD vector type given its type handle.
+//
+// Arguments:
+// typeHnd - The handle of the type we're interested in.
+// sizeBytes - out param
+//
+// Return Value:
+// base type of SIMD vector.
+// sizeBytes if non-null is set to size in bytes.
+//
+// TODO-Throughput: current implementation parses class name to find base type. Change
+// this when we implement SIMD intrinsic identification for the final
+// product.
+//
+var_types Compiler::getBaseTypeAndSizeOfSIMDType(CORINFO_CLASS_HANDLE typeHnd, unsigned* sizeBytes /*= nullptr */)
+{
+ assert(featureSIMD);
+ if (typeHnd == nullptr)
+ {
+ return TYP_UNKNOWN;
+ }
+
+ // fast path search using cached type handles of important types
+ var_types simdBaseType = TYP_UNKNOWN;
+ unsigned size = 0;
+
+ // Early return if it is not a SIMD module.
+ if (!isSIMDClass(typeHnd))
+ {
+ return TYP_UNKNOWN;
+ }
+
+ // The most likely to be used type handles are looked up first followed by
+ // less likely to be used type handles
+ if (typeHnd == SIMDFloatHandle)
+ {
+ simdBaseType = TYP_FLOAT;
+ JITDUMP(" Known type SIMD Vector<Float>\n");
+ }
+ else if (typeHnd == SIMDIntHandle)
+ {
+ simdBaseType = TYP_INT;
+ JITDUMP(" Known type SIMD Vector<Int>\n");
+ }
+ else if (typeHnd == SIMDVector2Handle)
+ {
+ simdBaseType = TYP_FLOAT;
+ size = 2 * genTypeSize(TYP_FLOAT);
+ assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
+ JITDUMP(" Known type Vector2\n");
+ }
+ else if (typeHnd == SIMDVector3Handle)
+ {
+ simdBaseType = TYP_FLOAT;
+ size = 3 * genTypeSize(TYP_FLOAT);
+ assert(size == info.compCompHnd->getClassSize(typeHnd));
+ JITDUMP(" Known type Vector3\n");
+ }
+ else if (typeHnd == SIMDVector4Handle)
+ {
+ simdBaseType = TYP_FLOAT;
+ size = 4 * genTypeSize(TYP_FLOAT);
+ assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
+ JITDUMP(" Known type Vector4\n");
+ }
+ else if (typeHnd == SIMDVectorHandle)
+ {
+ JITDUMP(" Known type Vector\n");
+ }
+ else if (typeHnd == SIMDUShortHandle)
+ {
+ simdBaseType = TYP_CHAR;
+ JITDUMP(" Known type SIMD Vector<ushort>\n");
+ }
+ else if (typeHnd == SIMDUByteHandle)
+ {
+ simdBaseType = TYP_UBYTE;
+ JITDUMP(" Known type SIMD Vector<ubyte>\n");
+ }
+ else if (typeHnd == SIMDDoubleHandle)
+ {
+ simdBaseType = TYP_DOUBLE;
+ JITDUMP(" Known type SIMD Vector<Double>\n");
+ }
+ else if (typeHnd == SIMDLongHandle)
+ {
+ simdBaseType = TYP_LONG;
+ JITDUMP(" Known type SIMD Vector<Long>\n");
+ }
+ else if (typeHnd == SIMDShortHandle)
+ {
+ simdBaseType = TYP_SHORT;
+ JITDUMP(" Known type SIMD Vector<short>\n");
+ }
+ else if (typeHnd == SIMDByteHandle)
+ {
+ simdBaseType = TYP_BYTE;
+ JITDUMP(" Known type SIMD Vector<byte>\n");
+ }
+ else if (typeHnd == SIMDUIntHandle)
+ {
+ simdBaseType = TYP_UINT;
+ JITDUMP(" Known type SIMD Vector<uint>\n");
+ }
+ else if (typeHnd == SIMDULongHandle)
+ {
+ simdBaseType = TYP_ULONG;
+ JITDUMP(" Known type SIMD Vector<ulong>\n");
+ }
+
+ // slow path search
+ if (simdBaseType == TYP_UNKNOWN)
+ {
+ // Doesn't match with any of the cached type handles.
+ // Obtain base type by parsing fully qualified class name.
+ //
+ // TODO-Throughput: implement product shipping solution to query base type.
+ WCHAR className[256] = {0};
+ WCHAR* pbuf = &className[0];
+ int len = sizeof(className) / sizeof(className[0]);
+ info.compCompHnd->appendClassName(&pbuf, &len, typeHnd, TRUE, FALSE, FALSE);
+ noway_assert(pbuf < &className[256]);
+ JITDUMP("SIMD Candidate Type %S\n", className);
+
+ if (wcsncmp(className, W("System.Numerics."), 16) == 0)
+ {
+ if (wcsncmp(&(className[16]), W("Vector`1["), 9) == 0)
+ {
+ if (wcsncmp(&(className[25]), W("System.Single"), 13) == 0)
+ {
+ SIMDFloatHandle = typeHnd;
+ simdBaseType = TYP_FLOAT;
+ JITDUMP(" Found type SIMD Vector<Float>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.Int32"), 12) == 0)
+ {
+ SIMDIntHandle = typeHnd;
+ simdBaseType = TYP_INT;
+ JITDUMP(" Found type SIMD Vector<Int>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.UInt16"), 13) == 0)
+ {
+ SIMDUShortHandle = typeHnd;
+ simdBaseType = TYP_CHAR;
+ JITDUMP(" Found type SIMD Vector<ushort>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.Byte"), 11) == 0)
+ {
+ SIMDUByteHandle = typeHnd;
+ simdBaseType = TYP_UBYTE;
+ JITDUMP(" Found type SIMD Vector<ubyte>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.Double"), 13) == 0)
+ {
+ SIMDDoubleHandle = typeHnd;
+ simdBaseType = TYP_DOUBLE;
+ JITDUMP(" Found type SIMD Vector<Double>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.Int64"), 12) == 0)
+ {
+ SIMDLongHandle = typeHnd;
+ simdBaseType = TYP_LONG;
+ JITDUMP(" Found type SIMD Vector<Long>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.Int16"), 12) == 0)
+ {
+ SIMDShortHandle = typeHnd;
+ simdBaseType = TYP_SHORT;
+ JITDUMP(" Found type SIMD Vector<short>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.SByte"), 12) == 0)
+ {
+ SIMDByteHandle = typeHnd;
+ simdBaseType = TYP_BYTE;
+ JITDUMP(" Found type SIMD Vector<byte>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.UInt32"), 13) == 0)
+ {
+ SIMDUIntHandle = typeHnd;
+ simdBaseType = TYP_UINT;
+ JITDUMP(" Found type SIMD Vector<uint>\n");
+ }
+ else if (wcsncmp(&(className[25]), W("System.UInt64"), 13) == 0)
+ {
+ SIMDULongHandle = typeHnd;
+ simdBaseType = TYP_ULONG;
+ JITDUMP(" Found type SIMD Vector<ulong>\n");
+ }
+ else
+ {
+ JITDUMP(" Unknown SIMD Vector<T>\n");
+ }
+ }
+ else if (wcsncmp(&(className[16]), W("Vector2"), 8) == 0)
+ {
+ SIMDVector2Handle = typeHnd;
+
+ simdBaseType = TYP_FLOAT;
+ size = 2 * genTypeSize(TYP_FLOAT);
+ assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
+ JITDUMP(" Found Vector2\n");
+ }
+ else if (wcsncmp(&(className[16]), W("Vector3"), 8) == 0)
+ {
+ SIMDVector3Handle = typeHnd;
+
+ simdBaseType = TYP_FLOAT;
+ size = 3 * genTypeSize(TYP_FLOAT);
+ assert(size == info.compCompHnd->getClassSize(typeHnd));
+ JITDUMP(" Found Vector3\n");
+ }
+ else if (wcsncmp(&(className[16]), W("Vector4"), 8) == 0)
+ {
+ SIMDVector4Handle = typeHnd;
+
+ simdBaseType = TYP_FLOAT;
+ size = 4 * genTypeSize(TYP_FLOAT);
+ assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
+ JITDUMP(" Found Vector4\n");
+ }
+ else if (wcsncmp(&(className[16]), W("Vector"), 6) == 0)
+ {
+ SIMDVectorHandle = typeHnd;
+ JITDUMP(" Found type Vector\n");
+ }
+ else
+ {
+ JITDUMP(" Unknown SIMD Type\n");
+ }
+ }
+ }
+
+ if (simdBaseType != TYP_UNKNOWN && sizeBytes != nullptr)
+ {
+ // If not a fixed size vector then its size is same as SIMD vector
+ // register length in bytes
+ if (size == 0)
+ {
+ size = getSIMDVectorRegisterByteLength();
+ }
+
+ *sizeBytes = size;
+ }
+
+ return simdBaseType;
+}
+
+//--------------------------------------------------------------------------------------
+// getSIMDIntrinsicInfo: get SIMD intrinsic info given the method handle.
+//
+// Arguments:
+// inOutTypeHnd - The handle of the type on which the method is invoked. This is an in-out param.
+// methodHnd - The handle of the method we're interested in.
+// sig - method signature info
+// isNewObj - whether this call represents a newboj constructor call
+// argCount - argument count - out pram
+// baseType - base type of the intrinsic - out param
+// sizeBytes - size of SIMD vector type on which the method is invoked - out param
+//
+// Return Value:
+// SIMDIntrinsicInfo struct initialized corresponding to methodHnd.
+// Sets SIMDIntrinsicInfo.id to SIMDIntrinsicInvalid if methodHnd doesn't correspond
+// to any SIMD intrinsic. Also, sets the out params inOutTypeHnd, argCount, baseType and
+// sizeBytes.
+//
+// Note that VectorMath class doesn't have a base type and first argument of the method
+// determines the SIMD vector type on which intrinsic is invoked. In such a case inOutTypeHnd
+// is modified by this routine.
+//
+// TODO-Throughput: The current implementation is based on method name string parsing.
+// Although we now have type identification from the VM, the parsing of intrinsic names
+// could be made more efficient.
+//
+const SIMDIntrinsicInfo* Compiler::getSIMDIntrinsicInfo(CORINFO_CLASS_HANDLE* inOutTypeHnd,
+ CORINFO_METHOD_HANDLE methodHnd,
+ CORINFO_SIG_INFO* sig,
+ bool isNewObj,
+ unsigned* argCount,
+ var_types* baseType,
+ unsigned* sizeBytes)
+{
+ assert(featureSIMD);
+ assert(baseType != nullptr);
+ assert(sizeBytes != nullptr);
+
+ // get baseType and size of the type
+ CORINFO_CLASS_HANDLE typeHnd = *inOutTypeHnd;
+ *baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes);
+
+ bool isHWAcceleratedIntrinsic = false;
+ if (typeHnd == SIMDVectorHandle)
+ {
+ // All of the supported intrinsics on this static class take a first argument that's a vector,
+ // which determines the baseType.
+ // The exception is the IsHardwareAccelerated property, which is handled as a special case.
+ assert(*baseType == TYP_UNKNOWN);
+ if (sig->numArgs == 0)
+ {
+ const SIMDIntrinsicInfo* hwAccelIntrinsicInfo = &(simdIntrinsicInfoArray[SIMDIntrinsicHWAccel]);
+ if ((strcmp(eeGetMethodName(methodHnd, nullptr), hwAccelIntrinsicInfo->methodName) == 0) &&
+ JITtype2varType(sig->retType) == hwAccelIntrinsicInfo->retType)
+ {
+ // Sanity check
+ assert(hwAccelIntrinsicInfo->argCount == 0 && hwAccelIntrinsicInfo->isInstMethod == false);
+ return hwAccelIntrinsicInfo;
+ }
+ return nullptr;
+ }
+ else
+ {
+ typeHnd = info.compCompHnd->getArgClass(sig, sig->args);
+ *inOutTypeHnd = typeHnd;
+ *baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes);
+ }
+ }
+
+ if (*baseType == TYP_UNKNOWN)
+ {
+ JITDUMP("NOT a SIMD Intrinsic: unsupported baseType\n");
+ return nullptr;
+ }
+
+ // account for implicit "this" arg
+ *argCount = sig->numArgs;
+ if (sig->hasThis())
+ {
+ *argCount += 1;
+ }
+
+ // Get the Intrinsic Id by parsing method name.
+ //
+ // TODO-Throughput: replace sequential search by binary search by arranging entries
+ // sorted by method name.
+ SIMDIntrinsicID intrinsicId = SIMDIntrinsicInvalid;
+ const char* methodName = eeGetMethodName(methodHnd, nullptr);
+ for (int i = SIMDIntrinsicNone + 1; i < SIMDIntrinsicInvalid; ++i)
+ {
+ if (strcmp(methodName, simdIntrinsicInfoArray[i].methodName) == 0)
+ {
+ // Found an entry for the method; further check whether it is one of
+ // the supported base types.
+ bool found = false;
+ for (int j = 0; j < SIMD_INTRINSIC_MAX_BASETYPE_COUNT; ++j)
+ {
+ // Convention: if there are fewer base types supported than MAX_BASETYPE_COUNT,
+ // the end of the list is marked by TYP_UNDEF.
+ if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == TYP_UNDEF)
+ {
+ break;
+ }
+
+ if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == *baseType)
+ {
+ found = true;
+ break;
+ }
+ }
+
+ if (!found)
+ {
+ continue;
+ }
+
+ // Now, check the arguments.
+ unsigned int fixedArgCnt = simdIntrinsicInfoArray[i].argCount;
+ unsigned int expectedArgCnt = fixedArgCnt;
+
+ // First handle SIMDIntrinsicInitN, where the arg count depends on the type.
+ // The listed arg types include the vector and the first two init values, which is the expected number
+ // for Vector2. For other cases, we'll check their types here.
+ if (*argCount > expectedArgCnt)
+ {
+ if (i == SIMDIntrinsicInitN)
+ {
+ if (*argCount == 3 && typeHnd == SIMDVector2Handle)
+ {
+ expectedArgCnt = 3;
+ }
+ else if (*argCount == 4 && typeHnd == SIMDVector3Handle)
+ {
+ expectedArgCnt = 4;
+ }
+ else if (*argCount == 5 && typeHnd == SIMDVector4Handle)
+ {
+ expectedArgCnt = 5;
+ }
+ }
+ else if (i == SIMDIntrinsicInitFixed)
+ {
+ if (*argCount == 4 && typeHnd == SIMDVector4Handle)
+ {
+ expectedArgCnt = 4;
+ }
+ }
+ }
+ if (*argCount != expectedArgCnt)
+ {
+ continue;
+ }
+
+ // Validate the types of individual args passed are what is expected of.
+ // If any of the types don't match with what is expected, don't consider
+ // as an intrinsic. This will make an older JIT with SIMD capabilities
+ // resilient to breaking changes to SIMD managed API.
+ //
+ // Note that from IL type stack, args get popped in right to left order
+ // whereas args get listed in method signatures in left to right order.
+
+ int stackIndex = (expectedArgCnt - 1);
+
+ // Track the arguments from the signature - we currently only use this to distinguish
+ // integral and pointer types, both of which will by TYP_I_IMPL on the importer stack.
+ CORINFO_ARG_LIST_HANDLE argLst = sig->args;
+
+ CORINFO_CLASS_HANDLE argClass;
+ for (unsigned int argIndex = 0; found == true && argIndex < expectedArgCnt; argIndex++)
+ {
+ bool isThisPtr = ((argIndex == 0) && sig->hasThis());
+
+ // In case of "newobj SIMDVector<T>(T val)", thisPtr won't be present on type stack.
+ // We don't check anything in that case.
+ if (!isThisPtr || !isNewObj)
+ {
+ GenTreePtr arg = impStackTop(stackIndex).val;
+
+ var_types expectedArgType;
+ if (argIndex < fixedArgCnt)
+ {
+ // Convention:
+ // - intrinsicInfo.argType[i] == TYP_UNDEF - intrinsic doesn't have a valid arg at position i
+ // - intrinsicInfo.argType[i] == TYP_UNKNOWN - arg type should be same as basetype
+ // Note that we pop the args off in reverse order.
+ expectedArgType = simdIntrinsicInfoArray[i].argType[argIndex];
+ assert(expectedArgType != TYP_UNDEF);
+ if (expectedArgType == TYP_UNKNOWN)
+ {
+ // The type of the argument will be genActualType(*baseType).
+ expectedArgType = genActualType(*baseType);
+ }
+ }
+ else
+ {
+ expectedArgType = *baseType;
+ }
+
+ var_types argType = arg->TypeGet();
+ if (!isThisPtr && argType == TYP_I_IMPL)
+ {
+ // The reference implementation has a constructor that takes a pointer.
+ // We don't want to recognize that one. This requires us to look at the CorInfoType
+ // in order to distinguish a signature with a pointer argument from one with an
+ // integer argument of pointer size, both of which will be TYP_I_IMPL on the stack.
+ // TODO-Review: This seems quite fragile. We should consider beefing up the checking
+ // here.
+ CorInfoType corType = strip(info.compCompHnd->getArgType(sig, argLst, &argClass));
+ if (corType == CORINFO_TYPE_PTR)
+ {
+ found = false;
+ }
+ }
+
+ if (varTypeIsSIMD(argType))
+ {
+ argType = TYP_STRUCT;
+ }
+ if (argType != expectedArgType)
+ {
+ found = false;
+ }
+ }
+ if (argIndex != 0 || !sig->hasThis())
+ {
+ argLst = info.compCompHnd->getArgNext(argLst);
+ }
+ stackIndex--;
+ }
+
+ // Cross check return type and static vs. instance is what we are expecting.
+ // If not, don't consider it as an intrinsic.
+ // Note that ret type of TYP_UNKNOWN means that it is not known apriori and must be same as baseType
+ if (found)
+ {
+ var_types expectedRetType = simdIntrinsicInfoArray[i].retType;
+ if (expectedRetType == TYP_UNKNOWN)
+ {
+ // JIT maps uint/ulong type vars to TYP_INT/TYP_LONG.
+ expectedRetType =
+ (*baseType == TYP_UINT || *baseType == TYP_ULONG) ? genActualType(*baseType) : *baseType;
+ }
+
+ if (JITtype2varType(sig->retType) != expectedRetType ||
+ sig->hasThis() != simdIntrinsicInfoArray[i].isInstMethod)
+ {
+ found = false;
+ }
+ }
+
+ if (found)
+ {
+ intrinsicId = (SIMDIntrinsicID)i;
+ break;
+ }
+ }
+ }
+
+ if (intrinsicId != SIMDIntrinsicInvalid)
+ {
+ JITDUMP("Method %s maps to SIMD intrinsic %s\n", methodName, simdIntrinsicNames[intrinsicId]);
+ return &simdIntrinsicInfoArray[intrinsicId];
+ }
+ else
+ {
+ JITDUMP("Method %s is NOT a SIMD intrinsic\n", methodName);
+ }
+
+ return nullptr;
+}
+
+// Pops and returns GenTree node from importer's type stack.
+// Normalizes TYP_STRUCT value in case of GT_CALL, GT_RET_EXPR and arg nodes.
+//
+// Arguments:
+// type - the type of value that the caller expects to be popped off the stack.
+// expectAddr - if true indicates we are expecting type stack entry to be a TYP_BYREF.
+//
+// Notes:
+// If the popped value is a struct, and the expected type is a simd type, it will be set
+// to that type, otherwise it will assert if the type being popped is not the expected type.
+
+GenTreePtr Compiler::impSIMDPopStack(var_types type, bool expectAddr)
+{
+ StackEntry se = impPopStack();
+ typeInfo ti = se.seTypeInfo;
+ GenTreePtr tree = se.val;
+
+ // If expectAddr is true implies what we have on stack is address and we need
+ // SIMD type struct that it points to.
+ if (expectAddr)
+ {
+ assert(tree->TypeGet() == TYP_BYREF);
+ if (tree->OperGet() == GT_ADDR)
+ {
+ tree = tree->gtGetOp1();
+ }
+ else
+ {
+ tree = gtNewOperNode(GT_IND, type, tree);
+ }
+ }
+
+ bool isParam = false;
+
+ // If we have a ldobj of a SIMD local we need to transform it.
+ if (tree->OperGet() == GT_OBJ)
+ {
+ GenTree* addr = tree->gtOp.gtOp1;
+ if ((addr->OperGet() == GT_ADDR) && isSIMDTypeLocal(addr->gtOp.gtOp1))
+ {
+ tree = addr->gtOp.gtOp1;
+ }
+ }
+
+ if (tree->OperGet() == GT_LCL_VAR)
+ {
+ unsigned lclNum = tree->AsLclVarCommon()->GetLclNum();
+ LclVarDsc* lclVarDsc = &lvaTable[lclNum];
+ isParam = lclVarDsc->lvIsParam;
+ }
+
+ // normalize TYP_STRUCT value
+ if (varTypeIsStruct(tree) && ((tree->OperGet() == GT_RET_EXPR) || (tree->OperGet() == GT_CALL) || isParam))
+ {
+ assert(ti.IsType(TI_STRUCT));
+ CORINFO_CLASS_HANDLE structType = ti.GetClassHandleForValueClass();
+ tree = impNormStructVal(tree, structType, (unsigned)CHECK_SPILL_ALL);
+ }
+
+ // Now set the type of the tree to the specialized SIMD struct type, if applicable.
+ if (genActualType(tree->gtType) != genActualType(type))
+ {
+ assert(tree->gtType == TYP_STRUCT);
+ tree->gtType = type;
+ }
+ else if (tree->gtType == TYP_BYREF)
+ {
+ assert(tree->IsLocal() || (tree->gtOper == GT_ADDR) && varTypeIsSIMD(tree->gtGetOp1()));
+ }
+
+ return tree;
+}
+
+// impSIMDGetFixed: Create a GT_SIMD tree for a Get property of SIMD vector with a fixed index.
+//
+// Arguments:
+// baseType - The base (element) type of the SIMD vector.
+// simdSize - The total size in bytes of the SIMD vector.
+// index - The index of the field to get.
+//
+// Return Value:
+// Returns a GT_SIMD node with the SIMDIntrinsicGetItem intrinsic id.
+//
+GenTreeSIMD* Compiler::impSIMDGetFixed(var_types simdType, var_types baseType, unsigned simdSize, int index)
+{
+ assert(simdSize >= ((index + 1) * genTypeSize(baseType)));
+
+ // op1 is a SIMD source.
+ GenTree* op1 = impSIMDPopStack(simdType, true);
+
+ GenTree* op2 = gtNewIconNode(index);
+ GenTreeSIMD* simdTree = gtNewSIMDNode(baseType, op1, op2, SIMDIntrinsicGetItem, baseType, simdSize);
+ return simdTree;
+}
+
+#ifdef _TARGET_AMD64_
+// impSIMDLongRelOpEqual: transforms operands and returns the SIMD intrinsic to be applied on
+// transformed operands to obtain == comparison result.
+//
+// Argumens:
+// typeHnd - type handle of SIMD vector
+// size - SIMD vector size
+// op1 - in-out parameter; first operand
+// op2 - in-out parameter; second operand
+//
+// Return Value:
+// Modifies in-out params op1, op2 and returns intrinsic ID to be applied to modified operands
+//
+SIMDIntrinsicID Compiler::impSIMDLongRelOpEqual(CORINFO_CLASS_HANDLE typeHnd,
+ unsigned size,
+ GenTree** pOp1,
+ GenTree** pOp2)
+{
+ var_types simdType = (*pOp1)->TypeGet();
+ assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));
+
+ // There is no direct SSE2 support for comparing TYP_LONG vectors.
+ // These have to be implemented in terms of TYP_INT vector comparison operations.
+ //
+ // Equality(v1, v2):
+ // tmp = (v1 == v2) i.e. compare for equality as if v1 and v2 are vector<int>
+ // result = BitwiseAnd(t, shuffle(t, (2, 3, 1 0)))
+ // Shuffle is meant to swap the comparison results of low-32-bits and high 32-bits of respective long elements.
+
+ // Compare vector<long> as if they were vector<int> and assign the result to a temp
+ GenTree* compResult = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, TYP_INT, size);
+ unsigned lclNum = lvaGrabTemp(true DEBUGARG("SIMD Long =="));
+ lvaSetStruct(lclNum, typeHnd, false);
+ GenTree* tmp = gtNewLclvNode(lclNum, simdType);
+ GenTree* asg = gtNewTempAssign(lclNum, compResult);
+
+ // op1 = GT_COMMA(tmp=compResult, tmp)
+ // op2 = Shuffle(tmp, 0xB1)
+ // IntrinsicId = BitwiseAnd
+ *pOp1 = gtNewOperNode(GT_COMMA, simdType, asg, tmp);
+ *pOp2 = gtNewSIMDNode(simdType, gtNewLclvNode(lclNum, simdType), gtNewIconNode(SHUFFLE_ZWYX, TYP_INT),
+ SIMDIntrinsicShuffleSSE2, TYP_INT, size);
+ return SIMDIntrinsicBitwiseAnd;
+}
+
+// impSIMDLongRelOpGreaterThan: transforms operands and returns the SIMD intrinsic to be applied on
+// transformed operands to obtain > comparison result.
+//
+// Argumens:
+// typeHnd - type handle of SIMD vector
+// size - SIMD vector size
+// pOp1 - in-out parameter; first operand
+// pOp2 - in-out parameter; second operand
+//
+// Return Value:
+// Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
+//
+SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThan(CORINFO_CLASS_HANDLE typeHnd,
+ unsigned size,
+ GenTree** pOp1,
+ GenTree** pOp2)
+{
+ var_types simdType = (*pOp1)->TypeGet();
+ assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));
+
+ // GreaterThan(v1, v2) where v1 and v2 are vector long.
+ // Let us consider the case of single long element comparison.
+ // say L1 = (x1, y1) and L2 = (x2, y2) where x1, y1, x2, and y2 are 32-bit integers that comprise the longs L1 and
+ // L2.
+ //
+ // GreaterThan(L1, L2) can be expressed in terms of > relationship between 32-bit integers that comprise L1 and L2
+ // as
+ // = (x1, y1) > (x2, y2)
+ // = (x1 > x2) || [(x1 == x2) && (y1 > y2)] - eq (1)
+ //
+ // t = (v1 > v2) 32-bit signed comparison
+ // u = (v1 == v2) 32-bit sized element equality
+ // v = (v1 > v2) 32-bit unsigned comparison
+ //
+ // z = shuffle(t, (3, 3, 1, 1)) - This corresponds to (x1 > x2) in eq(1) above
+ // t1 = Shuffle(v, (2, 2, 0, 0)) - This corresponds to (y1 > y2) in eq(1) above
+ // u1 = Shuffle(u, (3, 3, 1, 1)) - This corresponds to (x1 == x2) in eq(1) above
+ // w = And(t1, u1) - This corresponds to [(x1 == x2) && (y1 > y2)] in eq(1) above
+ // Result = BitwiseOr(z, w)
+
+ // Since op1 and op2 gets used multiple times, make sure side effects are computed.
+ GenTree* dupOp1 = nullptr;
+ GenTree* dupOp2 = nullptr;
+ GenTree* dupDupOp1 = nullptr;
+ GenTree* dupDupOp2 = nullptr;
+
+ if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd);
+ dupDupOp1 = gtNewLclvNode(dupOp1->AsLclVarCommon()->GetLclNum(), simdType);
+ }
+ else
+ {
+ dupOp1 = gtCloneExpr(*pOp1);
+ dupDupOp1 = gtCloneExpr(*pOp1);
+ }
+
+ if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd);
+ dupDupOp2 = gtNewLclvNode(dupOp2->AsLclVarCommon()->GetLclNum(), simdType);
+ }
+ else
+ {
+ dupOp2 = gtCloneExpr(*pOp2);
+ dupDupOp2 = gtCloneExpr(*pOp2);
+ }
+
+ assert(dupDupOp1 != nullptr && dupDupOp2 != nullptr);
+ assert(dupOp1 != nullptr && dupOp2 != nullptr);
+ assert(*pOp1 != nullptr && *pOp2 != nullptr);
+
+ // v1GreaterThanv2Signed - signed 32-bit comparison
+ GenTree* v1GreaterThanv2Signed = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicGreaterThan, TYP_INT, size);
+
+ // v1Equalsv2 - 32-bit equality
+ GenTree* v1Equalsv2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicEqual, TYP_INT, size);
+
+ // v1GreaterThanv2Unsigned - unsigned 32-bit comparison
+ var_types tempBaseType = TYP_UINT;
+ SIMDIntrinsicID sid = impSIMDRelOp(SIMDIntrinsicGreaterThan, typeHnd, size, &tempBaseType, &dupDupOp1, &dupDupOp2);
+ GenTree* v1GreaterThanv2Unsigned = gtNewSIMDNode(simdType, dupDupOp1, dupDupOp2, sid, tempBaseType, size);
+
+ GenTree* z = gtNewSIMDNode(simdType, v1GreaterThanv2Signed, gtNewIconNode(SHUFFLE_WWYY, TYP_INT),
+ SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size);
+ GenTree* t1 = gtNewSIMDNode(simdType, v1GreaterThanv2Unsigned, gtNewIconNode(SHUFFLE_ZZXX, TYP_INT),
+ SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size);
+ GenTree* u1 = gtNewSIMDNode(simdType, v1Equalsv2, gtNewIconNode(SHUFFLE_WWYY, TYP_INT), SIMDIntrinsicShuffleSSE2,
+ TYP_FLOAT, size);
+ GenTree* w = gtNewSIMDNode(simdType, u1, t1, SIMDIntrinsicBitwiseAnd, TYP_INT, size);
+
+ *pOp1 = z;
+ *pOp2 = w;
+ return SIMDIntrinsicBitwiseOr;
+}
+
+// impSIMDLongRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on
+// transformed operands to obtain >= comparison result.
+//
+// Argumens:
+// typeHnd - type handle of SIMD vector
+// size - SIMD vector size
+// pOp1 - in-out parameter; first operand
+// pOp2 - in-out parameter; second operand
+//
+// Return Value:
+// Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
+//
+SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThanOrEqual(CORINFO_CLASS_HANDLE typeHnd,
+ unsigned size,
+ GenTree** pOp1,
+ GenTree** pOp2)
+{
+ var_types simdType = (*pOp1)->TypeGet();
+ assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));
+
+ // expand this to (a == b) | (a > b)
+ GenTree* dupOp1 = nullptr;
+ GenTree* dupOp2 = nullptr;
+
+ if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd);
+ }
+ else
+ {
+ dupOp1 = gtCloneExpr(*pOp1);
+ }
+
+ if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd);
+ }
+ else
+ {
+ dupOp2 = gtCloneExpr(*pOp2);
+ }
+
+ assert(dupOp1 != nullptr && dupOp2 != nullptr);
+ assert(*pOp1 != nullptr && *pOp2 != nullptr);
+
+ // (a==b)
+ SIMDIntrinsicID id = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2);
+ *pOp1 = gtNewSIMDNode(simdType, *pOp1, *pOp2, id, TYP_LONG, size);
+
+ // (a > b)
+ id = impSIMDLongRelOpGreaterThan(typeHnd, size, &dupOp1, &dupOp2);
+ *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, id, TYP_LONG, size);
+
+ return SIMDIntrinsicBitwiseOr;
+}
+
+// impSIMDInt32OrSmallIntRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on
+// transformed operands to obtain >= comparison result in case of integer base type vectors
+//
+// Argumens:
+// typeHnd - type handle of SIMD vector
+// size - SIMD vector size
+// baseType - base type of SIMD vector
+// pOp1 - in-out parameter; first operand
+// pOp2 - in-out parameter; second operand
+//
+// Return Value:
+// Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
+//
+SIMDIntrinsicID Compiler::impSIMDIntegralRelOpGreaterThanOrEqual(
+ CORINFO_CLASS_HANDLE typeHnd, unsigned size, var_types baseType, GenTree** pOp1, GenTree** pOp2)
+{
+ var_types simdType = (*pOp1)->TypeGet();
+ assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));
+
+ // This routine should be used only for integer base type vectors
+ assert(varTypeIsIntegral(baseType));
+ if ((getSIMDInstructionSet() == InstructionSet_SSE2) && ((baseType == TYP_LONG) || baseType == TYP_UBYTE))
+ {
+ return impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2);
+ }
+
+ // expand this to (a == b) | (a > b)
+ GenTree* dupOp1 = nullptr;
+ GenTree* dupOp2 = nullptr;
+
+ if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd);
+ }
+ else
+ {
+ dupOp1 = gtCloneExpr(*pOp1);
+ }
+
+ if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd);
+ }
+ else
+ {
+ dupOp2 = gtCloneExpr(*pOp2);
+ }
+
+ assert(dupOp1 != nullptr && dupOp2 != nullptr);
+ assert(*pOp1 != nullptr && *pOp2 != nullptr);
+
+ // (a==b)
+ *pOp1 = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, baseType, size);
+
+ // (a > b)
+ *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicGreaterThan, baseType, size);
+
+ return SIMDIntrinsicBitwiseOr;
+}
+#endif //_TARGET_AMD64_
+
+// Transforms operands and returns the SIMD intrinsic to be applied on
+// transformed operands to obtain given relop result.
+//
+// Argumens:
+// relOpIntrinsicId - Relational operator SIMD intrinsic
+// typeHnd - type handle of SIMD vector
+// size - SIMD vector size
+// inOutBaseType - base type of SIMD vector
+// pOp1 - in-out parameter; first operand
+// pOp2 - in-out parameter; second operand
+//
+// Return Value:
+// Modifies in-out params pOp1, pOp2, inOutBaseType and returns intrinsic ID to be applied to modified operands
+//
+SIMDIntrinsicID Compiler::impSIMDRelOp(SIMDIntrinsicID relOpIntrinsicId,
+ CORINFO_CLASS_HANDLE typeHnd,
+ unsigned size,
+ var_types* inOutBaseType,
+ GenTree** pOp1,
+ GenTree** pOp2)
+{
+ var_types simdType = (*pOp1)->TypeGet();
+ assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));
+
+ assert(isRelOpSIMDIntrinsic(relOpIntrinsicId));
+
+#ifdef _TARGET_AMD64_
+ SIMDIntrinsicID intrinsicID = relOpIntrinsicId;
+ var_types baseType = *inOutBaseType;
+
+ if (varTypeIsFloating(baseType))
+ {
+ // SSE2/AVX doesn't support > and >= on vector float/double.
+ // Therefore, we need to use < and <= with swapped operands
+ if (relOpIntrinsicId == SIMDIntrinsicGreaterThan || relOpIntrinsicId == SIMDIntrinsicGreaterThanOrEqual)
+ {
+ GenTree* tmp = *pOp1;
+ *pOp1 = *pOp2;
+ *pOp2 = tmp;
+
+ intrinsicID =
+ (relOpIntrinsicId == SIMDIntrinsicGreaterThan) ? SIMDIntrinsicLessThan : SIMDIntrinsicLessThanOrEqual;
+ }
+ }
+ else if (varTypeIsIntegral(baseType))
+ {
+ // SSE/AVX doesn't support < and <= on integer base type vectors.
+ // Therefore, we need to use > and >= with swapped operands.
+ if (intrinsicID == SIMDIntrinsicLessThan || intrinsicID == SIMDIntrinsicLessThanOrEqual)
+ {
+ GenTree* tmp = *pOp1;
+ *pOp1 = *pOp2;
+ *pOp2 = tmp;
+
+ intrinsicID = (relOpIntrinsicId == SIMDIntrinsicLessThan) ? SIMDIntrinsicGreaterThan
+ : SIMDIntrinsicGreaterThanOrEqual;
+ }
+
+ if ((getSIMDInstructionSet() == InstructionSet_SSE2) && baseType == TYP_LONG)
+ {
+ // There is no direct SSE2 support for comparing TYP_LONG vectors.
+ // These have to be implemented interms of TYP_INT vector comparison operations.
+ if (intrinsicID == SIMDIntrinsicEqual)
+ {
+ intrinsicID = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2);
+ }
+ else if (intrinsicID == SIMDIntrinsicGreaterThan)
+ {
+ intrinsicID = impSIMDLongRelOpGreaterThan(typeHnd, size, pOp1, pOp2);
+ }
+ else if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual)
+ {
+ intrinsicID = impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2);
+ }
+ else
+ {
+ unreached();
+ }
+ }
+ // SSE2 and AVX direct support for signed comparison of int32, int16 and int8 types
+ else if (!varTypeIsUnsigned(baseType))
+ {
+ if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual)
+ {
+ intrinsicID = impSIMDIntegralRelOpGreaterThanOrEqual(typeHnd, size, baseType, pOp1, pOp2);
+ }
+ }
+ else // unsigned
+ {
+ // Vector<byte>, Vector<ushort>, Vector<uint> and Vector<ulong>:
+ // SSE2 supports > for signed comparison. Therefore, to use it for
+ // comparing unsigned numbers, we subtract a constant from both the
+ // operands such that the result fits within the corresponding signed
+ // type. The resulting signed numbers are compared using SSE2 signed
+ // comparison.
+ //
+ // Vector<byte>: constant to be subtracted is 2^7
+ // Vector<ushort> constant to be subtracted is 2^15
+ // Vector<uint> constant to be subtracted is 2^31
+ // Vector<ulong> constant to be subtracted is 2^63
+ //
+ // We need to treat op1 and op2 as signed for comparison purpose after
+ // the transformation.
+ ssize_t constVal = 0;
+ switch (baseType)
+ {
+ case TYP_UBYTE:
+ constVal = 0x80808080;
+ *inOutBaseType = TYP_BYTE;
+ break;
+ case TYP_CHAR:
+ constVal = 0x80008000;
+ *inOutBaseType = TYP_SHORT;
+ break;
+ case TYP_UINT:
+ constVal = 0x80000000;
+ *inOutBaseType = TYP_INT;
+ break;
+ case TYP_ULONG:
+ constVal = 0x8000000000000000LL;
+ *inOutBaseType = TYP_LONG;
+ break;
+ default:
+ unreached();
+ break;
+ }
+ assert(constVal != 0);
+
+ // This transformation is not required for equality.
+ if (intrinsicID != SIMDIntrinsicEqual)
+ {
+ // For constructing const vector use either long or int base type.
+ var_types tempBaseType = (baseType == TYP_ULONG) ? TYP_LONG : TYP_INT;
+ GenTree* initVal = gtNewIconNode(constVal);
+ initVal->gtType = tempBaseType;
+ GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, tempBaseType, size);
+
+ // Assign constVector to a temp, since we intend to use it more than once
+ // TODO-CQ: We have quite a few such constant vectors constructed during
+ // the importation of SIMD intrinsics. Make sure that we have a single
+ // temp per distinct constant per method.
+ GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd);
+
+ // op1 = op1 - constVector
+ // op2 = op2 - constVector
+ *pOp1 = gtNewSIMDNode(simdType, *pOp1, constVector, SIMDIntrinsicSub, baseType, size);
+ *pOp2 = gtNewSIMDNode(simdType, *pOp2, tmp, SIMDIntrinsicSub, baseType, size);
+ }
+
+ return impSIMDRelOp(intrinsicID, typeHnd, size, inOutBaseType, pOp1, pOp2);
+ }
+ }
+
+ return intrinsicID;
+#else
+ assert(!"impSIMDRelOp() unimplemented on target arch");
+ unreached();
+#endif //_TARGET_AMD64_
+}
+
+// Creates a GT_SIMD tree for Select operation
+//
+// Argumens:
+// typeHnd - type handle of SIMD vector
+// baseType - base type of SIMD vector
+// size - SIMD vector size
+// op1 - first operand = Condition vector vc
+// op2 - second operand = va
+// op3 - third operand = vb
+//
+// Return Value:
+// Returns GT_SIMD tree that computes Select(vc, va, vb)
+//
+GenTreePtr Compiler::impSIMDSelect(
+ CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned size, GenTree* op1, GenTree* op2, GenTree* op3)
+{
+ assert(varTypeIsSIMD(op1));
+ var_types simdType = op1->TypeGet();
+ assert(op2->TypeGet() == simdType);
+ assert(op3->TypeGet() == simdType);
+
+ // Select(BitVector vc, va, vb) = (va & vc) | (vb & !vc)
+ // Select(op1, op2, op3) = (op2 & op1) | (op3 & !op1)
+ // = SIMDIntrinsicBitwiseOr(SIMDIntrinsicBitwiseAnd(op2, op1),
+ // SIMDIntrinsicBitwiseAndNot(op3, op1))
+ //
+ // If Op1 has side effect, create an assignment to a temp
+ GenTree* tmp = op1;
+ GenTree* asg = nullptr;
+ if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ unsigned lclNum = lvaGrabTemp(true DEBUGARG("SIMD Select"));
+ lvaSetStruct(lclNum, typeHnd, false);
+ tmp = gtNewLclvNode(lclNum, op1->TypeGet());
+ asg = gtNewTempAssign(lclNum, op1);
+ }
+
+ GenTree* andExpr = gtNewSIMDNode(simdType, op2, tmp, SIMDIntrinsicBitwiseAnd, baseType, size);
+ GenTree* dupOp1 = gtCloneExpr(tmp);
+ assert(dupOp1 != nullptr);
+ GenTree* andNotExpr = gtNewSIMDNode(simdType, dupOp1, op3, SIMDIntrinsicBitwiseAndNot, baseType, size);
+ GenTree* simdTree = gtNewSIMDNode(simdType, andExpr, andNotExpr, SIMDIntrinsicBitwiseOr, baseType, size);
+
+ // If asg not null, create a GT_COMMA tree.
+ if (asg != nullptr)
+ {
+ simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), asg, simdTree);
+ }
+
+ return simdTree;
+}
+
+// Creates a GT_SIMD tree for Min/Max operation
+//
+// Argumens:
+// IntrinsicId - SIMD intrinsic Id, either Min or Max
+// typeHnd - type handle of SIMD vector
+// baseType - base type of SIMD vector
+// size - SIMD vector size
+// op1 - first operand = va
+// op2 - second operand = vb
+//
+// Return Value:
+// Returns GT_SIMD tree that computes Max(va, vb)
+//
+GenTreePtr Compiler::impSIMDMinMax(SIMDIntrinsicID intrinsicId,
+ CORINFO_CLASS_HANDLE typeHnd,
+ var_types baseType,
+ unsigned size,
+ GenTree* op1,
+ GenTree* op2)
+{
+ assert(intrinsicId == SIMDIntrinsicMin || intrinsicId == SIMDIntrinsicMax);
+ assert(varTypeIsSIMD(op1));
+ var_types simdType = op1->TypeGet();
+ assert(op2->TypeGet() == simdType);
+
+#ifdef _TARGET_AMD64_
+ // SSE2 has direct support for float/double/signed word/unsigned byte.
+ // For other integer types we compute min/max as follows
+ //
+ // int32/uint32/int64/uint64:
+ // compResult = (op1 < op2) in case of Min
+ // (op1 > op2) in case of Max
+ // Min/Max(op1, op2) = Select(compResult, op1, op2)
+ //
+ // unsigned word:
+ // op1 = op1 - 2^15 ; to make it fit within a signed word
+ // op2 = op2 - 2^15 ; to make it fit within a signed word
+ // result = SSE2 signed word Min/Max(op1, op2)
+ // result = result + 2^15 ; readjust it back
+ //
+ // signed byte:
+ // op1 = op1 + 2^7 ; to make it unsigned
+ // op1 = op1 + 2^7 ; to make it unsigned
+ // result = SSE2 unsigned byte Min/Max(op1, op2)
+ // result = result - 2^15 ; readjust it back
+
+ GenTree* simdTree = nullptr;
+
+ if (varTypeIsFloating(baseType) || baseType == TYP_SHORT || baseType == TYP_UBYTE)
+ {
+ // SSE2 has direct support
+ simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, baseType, size);
+ }
+ else if (baseType == TYP_CHAR || baseType == TYP_BYTE)
+ {
+ int constVal;
+ SIMDIntrinsicID operIntrinsic;
+ SIMDIntrinsicID adjustIntrinsic;
+ var_types minMaxOperBaseType;
+ if (baseType == TYP_CHAR)
+ {
+ constVal = 0x80008000;
+ operIntrinsic = SIMDIntrinsicSub;
+ adjustIntrinsic = SIMDIntrinsicAdd;
+ minMaxOperBaseType = TYP_SHORT;
+ }
+ else
+ {
+ assert(baseType == TYP_BYTE);
+ constVal = 0x80808080;
+ operIntrinsic = SIMDIntrinsicAdd;
+ adjustIntrinsic = SIMDIntrinsicSub;
+ minMaxOperBaseType = TYP_UBYTE;
+ }
+
+ GenTree* initVal = gtNewIconNode(constVal);
+ GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size);
+
+ // Assign constVector to a temp, since we intend to use it more than once
+ // TODO-CQ: We have quite a few such constant vectors constructed during
+ // the importation of SIMD intrinsics. Make sure that we have a single
+ // temp per distinct constant per method.
+ GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd);
+
+ // op1 = op1 - constVector
+ // op2 = op2 - constVector
+ op1 = gtNewSIMDNode(simdType, op1, constVector, operIntrinsic, baseType, size);
+ op2 = gtNewSIMDNode(simdType, op2, tmp, operIntrinsic, baseType, size);
+
+ // compute min/max of op1 and op2 considering them as if minMaxOperBaseType
+ simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, minMaxOperBaseType, size);
+
+ // re-adjust the value by adding or subtracting constVector
+ tmp = gtNewLclvNode(tmp->AsLclVarCommon()->GetLclNum(), tmp->TypeGet());
+ simdTree = gtNewSIMDNode(simdType, simdTree, tmp, adjustIntrinsic, baseType, size);
+ }
+ else
+ {
+ GenTree* dupOp1 = nullptr;
+ GenTree* dupOp2 = nullptr;
+ GenTree* op1Assign = nullptr;
+ GenTree* op2Assign = nullptr;
+ unsigned op1LclNum;
+ unsigned op2LclNum;
+
+ if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ op1LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
+ dupOp1 = gtNewLclvNode(op1LclNum, op1->TypeGet());
+ lvaSetStruct(op1LclNum, typeHnd, false);
+ op1Assign = gtNewTempAssign(op1LclNum, op1);
+ op1 = gtNewLclvNode(op1LclNum, op1->TypeGet());
+ }
+ else
+ {
+ dupOp1 = gtCloneExpr(op1);
+ }
+
+ if ((op2->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ op2LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
+ dupOp2 = gtNewLclvNode(op2LclNum, op2->TypeGet());
+ lvaSetStruct(op2LclNum, typeHnd, false);
+ op2Assign = gtNewTempAssign(op2LclNum, op2);
+ op2 = gtNewLclvNode(op2LclNum, op2->TypeGet());
+ }
+ else
+ {
+ dupOp2 = gtCloneExpr(op2);
+ }
+
+ SIMDIntrinsicID relOpIntrinsic =
+ (intrinsicId == SIMDIntrinsicMin) ? SIMDIntrinsicLessThan : SIMDIntrinsicGreaterThan;
+ var_types relOpBaseType = baseType;
+
+ // compResult = op1 relOp op2
+ // simdTree = Select(compResult, op1, op2);
+ assert(dupOp1 != nullptr);
+ assert(dupOp2 != nullptr);
+ relOpIntrinsic = impSIMDRelOp(relOpIntrinsic, typeHnd, size, &relOpBaseType, &dupOp1, &dupOp2);
+ GenTree* compResult = gtNewSIMDNode(simdType, dupOp1, dupOp2, relOpIntrinsic, relOpBaseType, size);
+ unsigned compResultLclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
+ lvaSetStruct(compResultLclNum, typeHnd, false);
+ GenTree* compResultAssign = gtNewTempAssign(compResultLclNum, compResult);
+ compResult = gtNewLclvNode(compResultLclNum, compResult->TypeGet());
+ simdTree = impSIMDSelect(typeHnd, baseType, size, compResult, op1, op2);
+ simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), compResultAssign, simdTree);
+
+ // Now create comma trees if we have created assignments of op1/op2 to temps
+ if (op2Assign != nullptr)
+ {
+ simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op2Assign, simdTree);
+ }
+
+ if (op1Assign != nullptr)
+ {
+ simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op1Assign, simdTree);
+ }
+ }
+
+ assert(simdTree != nullptr);
+ return simdTree;
+#else
+ assert(!"impSIMDMinMax() unimplemented on target arch");
+ unreached();
+#endif //_TARGET_AMD64_
+}
+
+//------------------------------------------------------------------------
+// getOp1ForConstructor: Get the op1 for a constructor call.
+//
+// Arguments:
+// opcode - the opcode being handled (needed to identify the CEE_NEWOBJ case)
+// newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object.
+// clsHnd - The handle of the class of the method.
+//
+// Return Value:
+// The tree node representing the object to be initialized with the constructor.
+//
+// Notes:
+// This method handles the differences between the CEE_NEWOBJ and constructor cases.
+//
+GenTreePtr Compiler::getOp1ForConstructor(OPCODE opcode, GenTreePtr newobjThis, CORINFO_CLASS_HANDLE clsHnd)
+{
+ GenTree* op1;
+ if (opcode == CEE_NEWOBJ)
+ {
+ op1 = newobjThis;
+ assert(newobjThis->gtOper == GT_ADDR && newobjThis->gtOp.gtOp1->gtOper == GT_LCL_VAR);
+
+ // push newobj result on type stack
+ unsigned tmp = op1->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
+ impPushOnStack(gtNewLclvNode(tmp, lvaGetRealType(tmp)), verMakeTypeInfo(clsHnd).NormaliseForStack());
+ }
+ else
+ {
+ op1 = impSIMDPopStack(TYP_BYREF);
+ }
+ assert(op1->TypeGet() == TYP_BYREF);
+ return op1;
+}
+
+//-------------------------------------------------------------------
+// Set the flag that indicates that the lclVar referenced by this tree
+// is used in a SIMD intrinsic.
+// Arguments:
+// tree - GenTreePtr
+
+void Compiler::setLclRelatedToSIMDIntrinsic(GenTreePtr tree)
+{
+ assert(tree->OperIsLocal());
+ unsigned lclNum = tree->AsLclVarCommon()->GetLclNum();
+ LclVarDsc* lclVarDsc = &lvaTable[lclNum];
+ lclVarDsc->lvUsedInSIMDIntrinsic = true;
+}
+
+//-------------------------------------------------------------
+// Check if two field nodes reference at the same memory location.
+// Notice that this check is just based on pattern matching.
+// Arguments:
+// op1 - GenTreePtr.
+// op2 - GenTreePtr.
+// Return Value:
+// If op1's parents node and op2's parents node are at the same location, return true. Otherwise, return false
+
+bool areFieldsParentsLocatedSame(GenTreePtr op1, GenTreePtr op2)
+{
+ assert(op1->OperGet() == GT_FIELD);
+ assert(op2->OperGet() == GT_FIELD);
+
+ GenTreePtr op1ObjRef = op1->gtField.gtFldObj;
+ GenTreePtr op2ObjRef = op2->gtField.gtFldObj;
+ while (op1ObjRef != nullptr && op2ObjRef != nullptr)
+ {
+
+ if (op1ObjRef->OperGet() != op2ObjRef->OperGet())
+ {
+ break;
+ }
+ else if (op1ObjRef->OperGet() == GT_ADDR)
+ {
+ op1ObjRef = op1ObjRef->gtOp.gtOp1;
+ op2ObjRef = op2ObjRef->gtOp.gtOp1;
+ }
+
+ if (op1ObjRef->OperIsLocal() && op2ObjRef->OperIsLocal() &&
+ op1ObjRef->AsLclVarCommon()->GetLclNum() == op2ObjRef->AsLclVarCommon()->GetLclNum())
+ {
+ return true;
+ }
+ else if (op1ObjRef->OperGet() == GT_FIELD && op2ObjRef->OperGet() == GT_FIELD &&
+ op1ObjRef->gtField.gtFldHnd == op2ObjRef->gtField.gtFldHnd)
+ {
+ op1ObjRef = op1ObjRef->gtField.gtFldObj;
+ op2ObjRef = op2ObjRef->gtField.gtFldObj;
+ continue;
+ }
+ else
+ {
+ break;
+ }
+ }
+
+ return false;
+}
+
+//----------------------------------------------------------------------
+// Check whether two field are contiguous
+// Arguments:
+// first - GenTreePtr. The Type of the node should be TYP_FLOAT
+// second - GenTreePtr. The Type of the node should be TYP_FLOAT
+// Return Value:
+// if the first field is located before second field, and they are located contiguously,
+// then return true. Otherwise, return false.
+
+bool Compiler::areFieldsContiguous(GenTreePtr first, GenTreePtr second)
+{
+ assert(first->OperGet() == GT_FIELD);
+ assert(second->OperGet() == GT_FIELD);
+ assert(first->gtType == TYP_FLOAT);
+ assert(second->gtType == TYP_FLOAT);
+
+ var_types firstFieldType = first->gtType;
+ var_types secondFieldType = second->gtType;
+
+ unsigned firstFieldEndOffset = first->gtField.gtFldOffset + genTypeSize(firstFieldType);
+ unsigned secondFieldOffset = second->gtField.gtFldOffset;
+ if (firstFieldEndOffset == secondFieldOffset && firstFieldType == secondFieldType &&
+ areFieldsParentsLocatedSame(first, second))
+ {
+ return true;
+ }
+
+ return false;
+}
+
+//-------------------------------------------------------------------------------
+// Check whether two array element nodes are located contiguously or not.
+// Arguments:
+// op1 - GenTreePtr.
+// op2 - GenTreePtr.
+// Return Value:
+// if the array element op1 is located before array element op2, and they are contiguous,
+// then return true. Otherwise, return false.
+// TODO-CQ:
+// Right this can only check array element with const number as index. In future,
+// we should consider to allow this function to check the index using expression.
+
+bool Compiler::areArrayElementsContiguous(GenTreePtr op1, GenTreePtr op2)
+{
+ noway_assert(op1->gtOper == GT_INDEX);
+ noway_assert(op2->gtOper == GT_INDEX);
+ GenTreeIndex* op1Index = op1->AsIndex();
+ GenTreeIndex* op2Index = op2->AsIndex();
+
+ GenTreePtr op1ArrayRef = op1Index->Arr();
+ GenTreePtr op2ArrayRef = op2Index->Arr();
+ assert(op1ArrayRef->TypeGet() == TYP_REF);
+ assert(op2ArrayRef->TypeGet() == TYP_REF);
+
+ GenTreePtr op1IndexNode = op1Index->Index();
+ GenTreePtr op2IndexNode = op2Index->Index();
+ if ((op1IndexNode->OperGet() == GT_CNS_INT && op2IndexNode->OperGet() == GT_CNS_INT) &&
+ op1IndexNode->gtIntCon.gtIconVal + 1 == op2IndexNode->gtIntCon.gtIconVal)
+ {
+ if (op1ArrayRef->OperGet() == GT_FIELD && op2ArrayRef->OperGet() == GT_FIELD &&
+ areFieldsParentsLocatedSame(op1ArrayRef, op2ArrayRef))
+ {
+ return true;
+ }
+ else if (op1ArrayRef->OperIsLocal() && op2ArrayRef->OperIsLocal() &&
+ op1ArrayRef->AsLclVarCommon()->GetLclNum() == op2ArrayRef->AsLclVarCommon()->GetLclNum())
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+//-------------------------------------------------------------------------------
+// Check whether two argument nodes are contiguous or not.
+// Arguments:
+// op1 - GenTreePtr.
+// op2 - GenTreePtr.
+// Return Value:
+// if the argument node op1 is located before argument node op2, and they are located contiguously,
+// then return true. Otherwise, return false.
+// TODO-CQ:
+// Right now this can only check field and array. In future we should add more cases.
+//
+
+bool Compiler::areArgumentsContiguous(GenTreePtr op1, GenTreePtr op2)
+{
+ if (op1->OperGet() == GT_INDEX && op2->OperGet() == GT_INDEX)
+ {
+ return areArrayElementsContiguous(op1, op2);
+ }
+ else if (op1->OperGet() == GT_FIELD && op2->OperGet() == GT_FIELD)
+ {
+ return areFieldsContiguous(op1, op2);
+ }
+ return false;
+}
+
+//--------------------------------------------------------------------------------------------------------
+// createAddressNodeForSIMDInit: Generate the address node(GT_LEA) if we want to intialize vector2, vector3 or vector4
+// from first argument's address.
+//
+// Arguments:
+// tree - GenTreePtr. This the tree node which is used to get the address for indir.
+// simdsize - unsigned. This the simd vector size.
+// arrayElementsCount - unsigned. This is used for generating the boundary check for array.
+//
+// Return value:
+// return the address node.
+//
+// TODO-CQ:
+// 1. Currently just support for GT_FIELD and GT_INDEX, because we can only verify the GT_INDEX node or GT_Field
+// are located contiguously or not. In future we should support more cases.
+// 2. Though it happens to just work fine front-end phases are not aware of GT_LEA node. Therefore, convert these
+// to use GT_ADDR.
+GenTreePtr Compiler::createAddressNodeForSIMDInit(GenTreePtr tree, unsigned simdSize)
+{
+ assert(tree->OperGet() == GT_FIELD || tree->OperGet() == GT_INDEX);
+ GenTreePtr byrefNode = nullptr;
+ GenTreePtr startIndex = nullptr;
+ unsigned offset = 0;
+ var_types baseType = tree->gtType;
+
+ if (tree->OperGet() == GT_FIELD)
+ {
+ GenTreePtr objRef = tree->gtField.gtFldObj;
+ if (objRef != nullptr && objRef->gtOper == GT_ADDR)
+ {
+ GenTreePtr obj = objRef->gtOp.gtOp1;
+
+ // If the field is directly from a struct, then in this case,
+ // we should set this struct's lvUsedInSIMDIntrinsic as true,
+ // so that this sturct won't be promoted.
+ // e.g. s.x x is a field, and s is a struct, then we should set the s's lvUsedInSIMDIntrinsic as true.
+ // so that s won't be promoted.
+ // Notice that if we have a case like s1.s2.x. s1 s2 are struct, and x is a field, then it is possible that
+ // s1 can be promoted, so that s2 can be promoted. The reason for that is if we don't allow s1 to be
+ // promoted, then this will affect the other optimizations which are depend on s1's struct promotion.
+ // TODO-CQ:
+ // In future, we should optimize this case so that if there is a nested field like s1.s2.x and s1.s2.x's
+ // address is used for initializing the vector, then s1 can be promoted but s2 can't.
+ if (varTypeIsSIMD(obj) && obj->OperIsLocal())
+ {
+ setLclRelatedToSIMDIntrinsic(obj);
+ }
+ }
+
+ byrefNode = gtCloneExpr(tree->gtField.gtFldObj);
+ assert(byrefNode != nullptr);
+ offset = tree->gtField.gtFldOffset;
+ }
+ else if (tree->OperGet() == GT_INDEX)
+ {
+
+ GenTreePtr index = tree->AsIndex()->Index();
+ assert(index->OperGet() == GT_CNS_INT);
+
+ GenTreePtr checkIndexExpr = nullptr;
+ unsigned indexVal = (unsigned)(index->gtIntCon.gtIconVal);
+ offset = indexVal * genTypeSize(tree->TypeGet());
+ GenTreePtr arrayRef = tree->AsIndex()->Arr();
+
+ // Generate the boundary check exception.
+ // The length for boundary check should be the maximum index number which should be
+ // (first argument's index number) + (how many array arguments we have) - 1
+ // = indexVal + arrayElementsCount - 1
+ unsigned arrayElementsCount = simdSize / genTypeSize(baseType);
+ checkIndexExpr = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, indexVal + arrayElementsCount - 1);
+ GenTreeArrLen* arrLen =
+ new (this, GT_ARR_LENGTH) GenTreeArrLen(TYP_INT, arrayRef, (int)offsetof(CORINFO_Array, length));
+ GenTreeBoundsChk* arrBndsChk = new (this, GT_ARR_BOUNDS_CHECK)
+ GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, arrLen, checkIndexExpr, SCK_RNGCHK_FAIL);
+
+ offset += offsetof(CORINFO_Array, u1Elems);
+ byrefNode = gtNewOperNode(GT_COMMA, arrayRef->TypeGet(), arrBndsChk, gtCloneExpr(arrayRef));
+ }
+ else
+ {
+ unreached();
+ }
+ GenTreePtr address =
+ new (this, GT_LEA) GenTreeAddrMode(TYP_BYREF, byrefNode, startIndex, genTypeSize(tree->TypeGet()), offset);
+ return address;
+}
+
+//-------------------------------------------------------------------------------
+// impMarkContiguousSIMDFieldAssignments: Try to identify if there are contiguous
+// assignments from SIMD field to memory. If there are, then mark the related
+// lclvar so that it won't be promoted.
+//
+// Arguments:
+// stmt - GenTreePtr. Input statement node.
+
+void Compiler::impMarkContiguousSIMDFieldAssignments(GenTreePtr stmt)
+{
+ if (!featureSIMD || opts.MinOpts())
+ {
+ return;
+ }
+ GenTreePtr expr = stmt->gtStmt.gtStmtExpr;
+ if (expr->OperGet() == GT_ASG && expr->TypeGet() == TYP_FLOAT)
+ {
+ GenTreePtr curDst = expr->gtOp.gtOp1;
+ GenTreePtr curSrc = expr->gtOp.gtOp2;
+ unsigned index = 0;
+ var_types baseType = TYP_UNKNOWN;
+ unsigned simdSize = 0;
+ GenTreePtr srcSimdStructNode = getSIMDStructFromField(curSrc, &baseType, &index, &simdSize, true);
+ if (srcSimdStructNode == nullptr || baseType != TYP_FLOAT)
+ {
+ fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
+ }
+ else if (index == 0 && isSIMDTypeLocal(srcSimdStructNode))
+ {
+ fgPreviousCandidateSIMDFieldAsgStmt = stmt;
+ }
+ else if (fgPreviousCandidateSIMDFieldAsgStmt != nullptr)
+ {
+ assert(index > 0);
+ GenTreePtr prevAsgExpr = fgPreviousCandidateSIMDFieldAsgStmt->gtStmt.gtStmtExpr;
+ GenTreePtr prevDst = prevAsgExpr->gtOp.gtOp1;
+ GenTreePtr prevSrc = prevAsgExpr->gtOp.gtOp2;
+ if (!areArgumentsContiguous(prevDst, curDst) || !areArgumentsContiguous(prevSrc, curSrc))
+ {
+ fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
+ }
+ else
+ {
+ if (index == (simdSize / genTypeSize(baseType) - 1))
+ {
+ // Successfully found the pattern, mark the lclvar as UsedInSIMDIntrinsic
+ if (srcSimdStructNode->OperIsLocal())
+ {
+ setLclRelatedToSIMDIntrinsic(srcSimdStructNode);
+ }
+
+ if (curDst->OperGet() == GT_FIELD)
+ {
+ GenTreePtr objRef = curDst->gtField.gtFldObj;
+ if (objRef != nullptr && objRef->gtOper == GT_ADDR)
+ {
+ GenTreePtr obj = objRef->gtOp.gtOp1;
+ if (varTypeIsStruct(obj) && obj->OperIsLocal())
+ {
+ setLclRelatedToSIMDIntrinsic(obj);
+ }
+ }
+ }
+ }
+ else
+ {
+ fgPreviousCandidateSIMDFieldAsgStmt = stmt;
+ }
+ }
+ }
+ }
+ else
+ {
+ fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
+ }
+}
+
+//------------------------------------------------------------------------
+// impSIMDIntrinsic: Check method to see if it is a SIMD method
+//
+// Arguments:
+// opcode - the opcode being handled (needed to identify the CEE_NEWOBJ case)
+// newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object.
+// clsHnd - The handle of the class of the method.
+// method - The handle of the method.
+// sig - The call signature for the method.
+// memberRef - The memberRef token for the method reference.
+//
+// Return Value:
+// If clsHnd is a known SIMD type, and 'method' is one of the methods that are
+// implemented as an intrinsic in the JIT, then return the tree that implements
+// it.
+//
+GenTreePtr Compiler::impSIMDIntrinsic(OPCODE opcode,
+ GenTreePtr newobjThis,
+ CORINFO_CLASS_HANDLE clsHnd,
+ CORINFO_METHOD_HANDLE methodHnd,
+ CORINFO_SIG_INFO* sig,
+ int memberRef)
+{
+ assert(featureSIMD);
+
+ if (!isSIMDClass(clsHnd))
+ {
+ return nullptr;
+ }
+
+ // Get base type and intrinsic Id
+ var_types baseType = TYP_UNKNOWN;
+ unsigned size = 0;
+ unsigned argCount = 0;
+ const SIMDIntrinsicInfo* intrinsicInfo =
+ getSIMDIntrinsicInfo(&clsHnd, methodHnd, sig, (opcode == CEE_NEWOBJ), &argCount, &baseType, &size);
+ if (intrinsicInfo == nullptr || intrinsicInfo->id == SIMDIntrinsicInvalid)
+ {
+ return nullptr;
+ }
+
+ SIMDIntrinsicID simdIntrinsicID = intrinsicInfo->id;
+ var_types simdType;
+ if (baseType != TYP_UNKNOWN)
+ {
+ simdType = getSIMDTypeForSize(size);
+ }
+ else
+ {
+ assert(simdIntrinsicID == SIMDIntrinsicHWAccel);
+ simdType = TYP_UNKNOWN;
+ }
+ bool instMethod = intrinsicInfo->isInstMethod;
+ var_types callType = JITtype2varType(sig->retType);
+ if (callType == TYP_STRUCT)
+ {
+ // Note that here we are assuming that, if the call returns a struct, that it is the same size as the
+ // struct on which the method is declared. This is currently true for all methods on Vector types,
+ // but if this ever changes, we will need to determine the callType from the signature.
+ assert(info.compCompHnd->getClassSize(sig->retTypeClass) == genTypeSize(simdType));
+ callType = simdType;
+ }
+
+ GenTree* simdTree = nullptr;
+ GenTree* op1 = nullptr;
+ GenTree* op2 = nullptr;
+ GenTree* op3 = nullptr;
+ GenTree* retVal = nullptr;
+ GenTree* copyBlkDst = nullptr;
+ bool doCopyBlk = false;
+
+ switch (simdIntrinsicID)
+ {
+ case SIMDIntrinsicGetCount:
+ {
+ int length = getSIMDVectorLength(clsHnd);
+ GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, length);
+ retVal = intConstTree;
+ }
+ break;
+
+ case SIMDIntrinsicGetZero:
+ {
+ baseType = genActualType(baseType);
+ GenTree* initVal = gtNewZeroConNode(baseType);
+ initVal->gtType = baseType;
+ simdTree = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicGetOne:
+ {
+ GenTree* initVal;
+ if (varTypeIsSmallInt(baseType))
+ {
+ unsigned baseSize = genTypeSize(baseType);
+ int val;
+ if (baseSize == 1)
+ {
+ val = 0x01010101;
+ }
+ else
+ {
+ val = 0x00010001;
+ }
+ initVal = gtNewIconNode(val);
+ }
+ else
+ {
+ initVal = gtNewOneConNode(baseType);
+ }
+
+ baseType = genActualType(baseType);
+ initVal->gtType = baseType;
+ simdTree = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicGetAllOnes:
+ {
+ // Equivalent to (Vector<T>) new Vector<int>(0xffffffff);
+ GenTree* initVal = gtNewIconNode(0xffffffff, TYP_INT);
+ simdTree = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size);
+ if (baseType != TYP_INT)
+ {
+ // cast it to required baseType if different from TYP_INT
+ simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size);
+ }
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicInit:
+ case SIMDIntrinsicInitN:
+ {
+ // SIMDIntrinsicInit:
+ // op2 - the initializer value
+ // op1 - byref of vector
+ //
+ // SIMDIntrinsicInitN
+ // op2 - list of initializer values stitched into a list
+ // op1 - byref of vector
+ bool initFromFirstArgIndir = false;
+ if (simdIntrinsicID == SIMDIntrinsicInit)
+ {
+ op2 = impSIMDPopStack(baseType);
+ }
+ else
+ {
+ assert(simdIntrinsicID == SIMDIntrinsicInitN);
+ assert(baseType == TYP_FLOAT);
+
+ unsigned initCount = argCount - 1;
+ unsigned elementCount = getSIMDVectorLength(size, baseType);
+ noway_assert(initCount == elementCount);
+ GenTree* nextArg = op2;
+
+ // Build a GT_LIST with the N values.
+ // We must maintain left-to-right order of the args, but we will pop
+ // them off in reverse order (the Nth arg was pushed onto the stack last).
+
+ GenTree* list = nullptr;
+ GenTreePtr firstArg = nullptr;
+ GenTreePtr prevArg = nullptr;
+ int offset = 0;
+ bool areArgsContiguous = true;
+ for (unsigned i = 0; i < initCount; i++)
+ {
+ GenTree* nextArg = impSIMDPopStack(baseType);
+ if (areArgsContiguous)
+ {
+ GenTreePtr curArg = nextArg;
+ firstArg = curArg;
+
+ if (prevArg != nullptr)
+ {
+ // Recall that we are popping the args off the stack in reverse order.
+ areArgsContiguous = areArgumentsContiguous(curArg, prevArg);
+ }
+ prevArg = curArg;
+ }
+
+ list = new (this, GT_LIST) GenTreeOp(GT_LIST, baseType, nextArg, list);
+ }
+
+ if (areArgsContiguous && baseType == TYP_FLOAT)
+ {
+ // Since Vector2, Vector3 and Vector4's arguments type are only float,
+ // we intialize the vector from first argument address, only when
+ // the baseType is TYP_FLOAT and the arguments are located contiguously in memory
+ initFromFirstArgIndir = true;
+ GenTreePtr op2Address = createAddressNodeForSIMDInit(firstArg, size);
+ var_types simdType = getSIMDTypeForSize(size);
+ op2 = gtNewOperNode(GT_IND, simdType, op2Address);
+ }
+ else
+ {
+ op2 = list;
+ }
+ }
+
+ op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd);
+
+ assert(op1->TypeGet() == TYP_BYREF);
+ assert(genActualType(op2->TypeGet()) == genActualType(baseType) || initFromFirstArgIndir);
+
+#if AVX_WITHOUT_AVX2
+ // NOTE: This #define, AVX_WITHOUT_AVX2, is never defined. This code is kept here
+ // in case we decide to implement AVX support (32 byte vectors) with AVX only.
+ // On AVX (as opposed to AVX2), broadcast is supported only for float and double,
+ // and requires taking a mem address of the value.
+ // If not a constant, take the addr of op2.
+ if (simdIntrinsicID == SIMDIntrinsicInit && canUseAVX())
+ {
+ if (!op2->OperIsConst())
+ {
+ // It is better to assign op2 to a temp and take the addr of temp
+ // rather than taking address of op2 since the latter would make op2
+ // address-taken and ineligible for register allocation.
+ //
+ // op2 = GT_COMMA(tmp=op2, GT_ADDR(tmp))
+ unsigned tmpNum = lvaGrabTemp(true DEBUGARG("Val addr for vector Init"));
+ GenTreePtr asg = gtNewTempAssign(tmpNum, op2);
+ GenTreePtr tmp = gtNewLclvNode(tmpNum, op2->TypeGet());
+ tmp = gtNewOperNode(GT_ADDR, TYP_BYREF, tmp);
+ op2 = gtNewOperNode(GT_COMMA, TYP_BYREF, asg, tmp);
+ }
+ }
+#endif
+ // For integral base types of size less than TYP_INT, expand the initializer
+ // to fill size of TYP_INT bytes.
+ if (varTypeIsSmallInt(baseType))
+ {
+ // This case should occur only for Init intrinsic.
+ assert(simdIntrinsicID == SIMDIntrinsicInit);
+
+ unsigned baseSize = genTypeSize(baseType);
+ int multiplier;
+ if (baseSize == 1)
+ {
+ multiplier = 0x01010101;
+ }
+ else
+ {
+ assert(baseSize == 2);
+ multiplier = 0x00010001;
+ }
+
+ GenTree* t1 = nullptr;
+ if (baseType == TYP_BYTE)
+ {
+ // What we have is a signed byte initializer,
+ // which when loaded to a reg will get sign extended to TYP_INT.
+ // But what we need is the initializer without sign extended or
+ // rather zero extended to 32-bits.
+ t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xff, TYP_INT));
+ }
+ else if (baseType == TYP_SHORT)
+ {
+ // What we have is a signed short initializer,
+ // which when loaded to a reg will get sign extended to TYP_INT.
+ // But what we need is the initializer without sign extended or
+ // rather zero extended to 32-bits.
+ t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xffff, TYP_INT));
+ }
+ else
+ {
+ assert(baseType == TYP_UBYTE || baseType == TYP_CHAR);
+ t1 = gtNewCastNode(TYP_INT, op2, TYP_INT);
+ }
+
+ assert(t1 != nullptr);
+ GenTree* t2 = gtNewIconNode(multiplier, TYP_INT);
+ op2 = gtNewOperNode(GT_MUL, TYP_INT, t1, t2);
+
+ // Construct a vector of TYP_INT with the new initializer and cast it back to vector of baseType
+ simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, TYP_INT, size);
+ simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size);
+ }
+ else
+ {
+
+ if (initFromFirstArgIndir)
+ {
+ simdTree = op2;
+ if (op1->gtOp.gtOp1->OperIsLocal())
+ {
+ // label the dst struct's lclvar is used for SIMD intrinsic,
+ // so that this dst struct won't be promoted.
+ setLclRelatedToSIMDIntrinsic(op1->gtOp.gtOp1);
+ }
+ }
+ else
+ {
+ simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, baseType, size);
+ }
+ }
+
+ copyBlkDst = op1;
+ doCopyBlk = true;
+ }
+ break;
+
+ case SIMDIntrinsicInitArray:
+ case SIMDIntrinsicInitArrayX:
+ case SIMDIntrinsicCopyToArray:
+ case SIMDIntrinsicCopyToArrayX:
+ {
+ // op3 - index into array in case of SIMDIntrinsicCopyToArrayX and SIMDIntrinsicInitArrayX
+ // op2 - array itself
+ // op1 - byref to vector struct
+
+ unsigned int vectorLength = getSIMDVectorLength(size, baseType);
+ // (This constructor takes only the zero-based arrays.)
+ // We will add one or two bounds checks:
+ // 1. If we have an index, we must do a check on that first.
+ // We can't combine it with the index + vectorLength check because
+ // a. It might be negative, and b. It may need to raise a different exception
+ // (captured as SCK_ARG_RNG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init).
+ // 2. We need to generate a check (SCK_ARG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init)
+ // for the last array element we will access.
+ // We'll either check against (vectorLength - 1) or (index + vectorLength - 1).
+
+ GenTree* checkIndexExpr = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength - 1);
+
+ // Get the index into the array. If it has been provided, it will be on the
+ // top of the stack. Otherwise, it is null.
+ if (argCount == 3)
+ {
+ op3 = impSIMDPopStack(TYP_INT);
+ if (op3->IsIntegralConst(0))
+ {
+ op3 = nullptr;
+ }
+ }
+ else
+ {
+ // TODO-CQ: Here, or elsewhere, check for the pattern where op2 is a newly constructed array, and
+ // change this to the InitN form.
+ // op3 = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 0);
+ op3 = nullptr;
+ }
+
+ // Clone the array for use in the bounds check.
+ op2 = impSIMDPopStack(TYP_REF);
+ assert(op2->TypeGet() == TYP_REF);
+ GenTree* arrayRefForArgChk = op2;
+ GenTree* argRngChk = nullptr;
+ GenTree* asg = nullptr;
+ if ((arrayRefForArgChk->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ op2 = fgInsertCommaFormTemp(&arrayRefForArgChk);
+ }
+ else
+ {
+ op2 = gtCloneExpr(arrayRefForArgChk);
+ }
+ assert(op2 != nullptr);
+
+ if (op3 != nullptr)
+ {
+ SpecialCodeKind op3CheckKind;
+ if (simdIntrinsicID == SIMDIntrinsicInitArrayX)
+ {
+ op3CheckKind = SCK_RNGCHK_FAIL;
+ }
+ else
+ {
+ assert(simdIntrinsicID == SIMDIntrinsicCopyToArrayX);
+ op3CheckKind = SCK_ARG_RNG_EXCPN;
+ }
+ // We need to use the original expression on this, which is the first check.
+ GenTree* arrayRefForArgRngChk = arrayRefForArgChk;
+ // Then we clone the clone we just made for the next check.
+ arrayRefForArgChk = gtCloneExpr(op2);
+ // We know we MUST have had a cloneable expression.
+ assert(arrayRefForArgChk != nullptr);
+ GenTree* index = op3;
+ if ((index->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ op3 = fgInsertCommaFormTemp(&index);
+ }
+ else
+ {
+ op3 = gtCloneExpr(index);
+ }
+
+ GenTreeArrLen* arrLen = new (this, GT_ARR_LENGTH)
+ GenTreeArrLen(TYP_INT, arrayRefForArgRngChk, (int)offsetof(CORINFO_Array, length));
+ argRngChk = new (this, GT_ARR_BOUNDS_CHECK)
+ GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, arrLen, index, op3CheckKind);
+ // Now, clone op3 to create another node for the argChk
+ GenTree* index2 = gtCloneExpr(op3);
+ assert(index != nullptr);
+ checkIndexExpr = gtNewOperNode(GT_ADD, TYP_INT, index2, checkIndexExpr);
+ }
+
+ // Insert a bounds check for index + offset - 1.
+ // This must be a "normal" array.
+ SpecialCodeKind op2CheckKind;
+ if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX)
+ {
+ op2CheckKind = SCK_RNGCHK_FAIL;
+ }
+ else
+ {
+ op2CheckKind = SCK_ARG_EXCPN;
+ }
+ GenTreeArrLen* arrLen = new (this, GT_ARR_LENGTH)
+ GenTreeArrLen(TYP_INT, arrayRefForArgChk, (int)offsetof(CORINFO_Array, length));
+ GenTreeBoundsChk* argChk = new (this, GT_ARR_BOUNDS_CHECK)
+ GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, arrLen, checkIndexExpr, op2CheckKind);
+
+ // Create a GT_COMMA tree for the bounds check(s).
+ op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argChk, op2);
+ if (argRngChk != nullptr)
+ {
+ op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argRngChk, op2);
+ }
+
+ if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX)
+ {
+ op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd);
+ simdTree = gtNewSIMDNode(simdType, op2, op3, SIMDIntrinsicInitArray, baseType, size);
+ copyBlkDst = op1;
+ doCopyBlk = true;
+ }
+ else
+ {
+ assert(simdIntrinsicID == SIMDIntrinsicCopyToArray || simdIntrinsicID == SIMDIntrinsicCopyToArrayX);
+ op1 = impSIMDPopStack(simdType, instMethod);
+ assert(op1->TypeGet() == simdType);
+
+ // copy vector (op1) to array (op2) starting at index (op3)
+ simdTree = op1;
+
+ // TODO-Cleanup: Though it happens to just work fine front-end phases are not aware of GT_LEA node.
+ // Therefore, convert these to use GT_ADDR .
+ copyBlkDst = new (this, GT_LEA)
+ GenTreeAddrMode(TYP_BYREF, op2, op3, genTypeSize(baseType), offsetof(CORINFO_Array, u1Elems));
+ doCopyBlk = true;
+ }
+ }
+ break;
+
+ case SIMDIntrinsicInitFixed:
+ {
+ // We are initializing a fixed-length vector VLarge with a smaller fixed-length vector VSmall, plus 1 or 2
+ // additional floats.
+ // op4 (optional) - float value for VLarge.W, if VLarge is Vector4, and VSmall is Vector2
+ // op3 - float value for VLarge.Z or VLarge.W
+ // op2 - VSmall
+ // op1 - byref of VLarge
+ assert(baseType == TYP_FLOAT);
+ unsigned elementByteCount = 4;
+
+ GenTree* op4 = nullptr;
+ if (argCount == 4)
+ {
+ op4 = impSIMDPopStack(TYP_FLOAT);
+ assert(op4->TypeGet() == TYP_FLOAT);
+ }
+ op3 = impSIMDPopStack(TYP_FLOAT);
+ assert(op3->TypeGet() == TYP_FLOAT);
+ // The input vector will either be TYP_SIMD8 or TYP_SIMD12.
+ var_types smallSIMDType = TYP_SIMD8;
+ if ((op4 == nullptr) && (simdType == TYP_SIMD16))
+ {
+ smallSIMDType = TYP_SIMD12;
+ }
+ op2 = impSIMDPopStack(smallSIMDType);
+ op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd);
+
+ // We are going to redefine the operands so that:
+ // - op3 is the value that's going into the Z position, or null if it's a Vector4 constructor with a single
+ // operand, and
+ // - op4 is the W position value, or null if this is a Vector3 constructor.
+ if (size == 16 && argCount == 3)
+ {
+ op4 = op3;
+ op3 = nullptr;
+ }
+
+ simdTree = op2;
+ if (op3 != nullptr)
+ {
+ simdTree = gtNewSIMDNode(simdType, simdTree, op3, SIMDIntrinsicSetZ, baseType, size);
+ }
+ if (op4 != nullptr)
+ {
+ simdTree = gtNewSIMDNode(simdType, simdTree, op4, SIMDIntrinsicSetW, baseType, size);
+ }
+
+ copyBlkDst = op1;
+ doCopyBlk = true;
+ }
+ break;
+
+ case SIMDIntrinsicOpEquality:
+ case SIMDIntrinsicInstEquals:
+ {
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ assert(op1->TypeGet() == simdType);
+ assert(op2->TypeGet() == simdType);
+
+ simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpEquality, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicOpInEquality:
+ {
+ // op1 is the first operand
+ // op2 is the second operand
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+ simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpInEquality, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicEqual:
+ case SIMDIntrinsicLessThan:
+ case SIMDIntrinsicLessThanOrEqual:
+ case SIMDIntrinsicGreaterThan:
+ case SIMDIntrinsicGreaterThanOrEqual:
+ {
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ SIMDIntrinsicID intrinsicID = impSIMDRelOp(simdIntrinsicID, clsHnd, size, &baseType, &op1, &op2);
+ simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, intrinsicID, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicAdd:
+ case SIMDIntrinsicSub:
+ case SIMDIntrinsicMul:
+ case SIMDIntrinsicDiv:
+ case SIMDIntrinsicBitwiseAnd:
+ case SIMDIntrinsicBitwiseAndNot:
+ case SIMDIntrinsicBitwiseOr:
+ case SIMDIntrinsicBitwiseXor:
+ {
+#if defined(_TARGET_AMD64_) && defined(DEBUG)
+ // check for the cases where we don't support intrinsics.
+ // This check should be done before we make modifications to type stack.
+ // Note that this is more of a double safety check for robustness since
+ // we expect getSIMDIntrinsicInfo() to have filtered out intrinsics on
+ // unsupported base types. If getSIMdIntrinsicInfo() doesn't filter due
+ // to some bug, assert in chk/dbg will fire.
+ if (!varTypeIsFloating(baseType))
+ {
+ if (simdIntrinsicID == SIMDIntrinsicMul)
+ {
+ if ((baseType != TYP_INT) && (baseType != TYP_SHORT))
+ {
+ // TODO-CQ: implement mul on these integer vectors.
+ // Note that SSE2 has no direct support for these vectors.
+ assert(!"Mul not supported on long/ulong/uint/small int vectors\n");
+ return nullptr;
+ }
+ }
+
+ // common to all integer type vectors
+ if (simdIntrinsicID == SIMDIntrinsicDiv)
+ {
+ // SSE2 doesn't support div on non-floating point vectors.
+ assert(!"Div not supported on integer type vectors\n");
+ return nullptr;
+ }
+ }
+#endif //_TARGET_AMD64_ && DEBUG
+
+ // op1 is the first operand; if instance method, op1 is "this" arg
+ // op2 is the second operand
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ simdTree = gtNewSIMDNode(simdType, op1, op2, simdIntrinsicID, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicSelect:
+ {
+ // op3 is a SIMD variable that is the second source
+ // op2 is a SIMD variable that is the first source
+ // op1 is a SIMD variable which is the bit mask.
+ op3 = impSIMDPopStack(simdType);
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType);
+
+ retVal = impSIMDSelect(clsHnd, baseType, size, op1, op2, op3);
+ }
+ break;
+
+ case SIMDIntrinsicMin:
+ case SIMDIntrinsicMax:
+ {
+ // op1 is the first operand; if instance method, op1 is "this" arg
+ // op2 is the second operand
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ retVal = impSIMDMinMax(simdIntrinsicID, clsHnd, baseType, size, op1, op2);
+ }
+ break;
+
+ case SIMDIntrinsicGetItem:
+ {
+ // op1 is a SIMD variable that is "this" arg
+ // op2 is an index of TYP_INT
+ op2 = impSIMDPopStack(TYP_INT);
+ op1 = impSIMDPopStack(simdType, instMethod);
+ unsigned int vectorLength = getSIMDVectorLength(size, baseType);
+ if (!op2->IsCnsIntOrI() || op2->AsIntCon()->gtIconVal >= vectorLength)
+ {
+ // We need to bounds-check the length of the vector.
+ // For that purpose, we need to clone the index expression.
+ GenTree* index = op2;
+ if ((index->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ op2 = fgInsertCommaFormTemp(&index);
+ }
+ else
+ {
+ op2 = gtCloneExpr(index);
+ }
+
+ GenTree* lengthNode = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength);
+ GenTreeBoundsChk* simdChk =
+ new (this, GT_SIMD_CHK) GenTreeBoundsChk(GT_SIMD_CHK, TYP_VOID, lengthNode, index, SCK_RNGCHK_FAIL);
+
+ // Create a GT_COMMA tree for the bounds check.
+ op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), simdChk, op2);
+ }
+
+ assert(op1->TypeGet() == simdType);
+ assert(op2->TypeGet() == TYP_INT);
+
+ simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, simdIntrinsicID, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicDotProduct:
+ {
+#if defined(_TARGET_AMD64_) && defined(DEBUG)
+ // Right now dot product is supported only for float vectors.
+ // See SIMDIntrinsicList.h for supported base types for this intrinsic.
+ if (!varTypeIsFloating(baseType))
+ {
+ assert(!"Dot product on integer type vectors not supported");
+ return nullptr;
+ }
+#endif //_TARGET_AMD64_ && DEBUG
+
+ // op1 is a SIMD variable that is the first source and also "this" arg.
+ // op2 is a SIMD variable which is the second source.
+ op2 = impSIMDPopStack(simdType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ simdTree = gtNewSIMDNode(baseType, op1, op2, simdIntrinsicID, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicSqrt:
+ {
+#if defined(_TARGET_AMD64_) && defined(DEBUG)
+ // SSE/AVX doesn't support sqrt on integer type vectors and hence
+ // should never be seen as an intrinsic here. See SIMDIntrinsicList.h
+ // for supported base types for this intrinsic.
+ if (!varTypeIsFloating(baseType))
+ {
+ assert(!"Sqrt not supported on integer vectors\n");
+ return nullptr;
+ }
+#endif // _TARGET_AMD64_ && DEBUG
+
+ op1 = impSIMDPopStack(simdType);
+
+ retVal = gtNewSIMDNode(genActualType(callType), op1, nullptr, simdIntrinsicID, baseType, size);
+ }
+ break;
+
+ case SIMDIntrinsicAbs:
+ {
+ op1 = impSIMDPopStack(simdType);
+
+#ifdef _TARGET_AMD64_
+ if (varTypeIsFloating(baseType))
+ {
+ // Abs(vf) = vf & new SIMDVector<float>(0x7fffffff);
+ // Abs(vd) = vf & new SIMDVector<double>(0x7fffffffffffffff);
+ GenTree* bitMask = nullptr;
+ if (baseType == TYP_FLOAT)
+ {
+ float f;
+ static_assert_no_msg(sizeof(float) == sizeof(int));
+ *((int*)&f) = 0x7fffffff;
+ bitMask = gtNewDconNode(f);
+ }
+ else if (baseType == TYP_DOUBLE)
+ {
+ double d;
+ static_assert_no_msg(sizeof(double) == sizeof(__int64));
+ *((__int64*)&d) = 0x7fffffffffffffffLL;
+ bitMask = gtNewDconNode(d);
+ }
+
+ assert(bitMask != nullptr);
+ bitMask->gtType = baseType;
+ GenTree* bitMaskVector = gtNewSIMDNode(simdType, bitMask, SIMDIntrinsicInit, baseType, size);
+ retVal = gtNewSIMDNode(simdType, op1, bitMaskVector, SIMDIntrinsicBitwiseAnd, baseType, size);
+ }
+ else if (baseType == TYP_CHAR || baseType == TYP_UBYTE || baseType == TYP_UINT || baseType == TYP_ULONG)
+ {
+ // Abs is a no-op on unsigned integer type vectors
+ retVal = op1;
+ }
+ else
+ {
+ // SSE/AVX doesn't support abs on signed integer vectors and hence
+ // should never be seen as an intrinsic here. See SIMDIntrinsicList.h
+ // for supported base types for this intrinsic.
+ unreached();
+ }
+
+#else //!_TARGET_AMD64_
+ assert(!"Abs intrinsic on non-Amd64 target not implemented");
+ unreached();
+#endif //!_TARGET_AMD64_
+ }
+ break;
+
+ case SIMDIntrinsicGetW:
+ retVal = impSIMDGetFixed(simdType, baseType, size, 3);
+ break;
+
+ case SIMDIntrinsicGetZ:
+ retVal = impSIMDGetFixed(simdType, baseType, size, 2);
+ break;
+
+ case SIMDIntrinsicGetY:
+ retVal = impSIMDGetFixed(simdType, baseType, size, 1);
+ break;
+
+ case SIMDIntrinsicGetX:
+ retVal = impSIMDGetFixed(simdType, baseType, size, 0);
+ break;
+
+ case SIMDIntrinsicSetW:
+ case SIMDIntrinsicSetZ:
+ case SIMDIntrinsicSetY:
+ case SIMDIntrinsicSetX:
+ {
+ // op2 is the value to be set at indexTemp position
+ // op1 is SIMD vector that is going to be modified, which is a byref
+
+ // If op1 has a side-effect, then don't make it an intrinsic.
+ // It would be in-efficient to read the entire vector into xmm reg,
+ // modify it and write back entire xmm reg.
+ //
+ // TODO-CQ: revisit this later.
+ op1 = impStackTop(1).val;
+ if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
+ {
+ return nullptr;
+ }
+
+ op2 = impSIMDPopStack(baseType);
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ GenTree* src = gtCloneExpr(op1);
+ assert(src != nullptr);
+ simdTree = gtNewSIMDNode(simdType, src, op2, simdIntrinsicID, baseType, size);
+
+ copyBlkDst = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
+ doCopyBlk = true;
+ }
+ break;
+
+ // Unary operators that take and return a Vector.
+ case SIMDIntrinsicCast:
+ {
+ op1 = impSIMDPopStack(simdType, instMethod);
+
+ simdTree = gtNewSIMDNode(simdType, op1, nullptr, simdIntrinsicID, baseType, size);
+ retVal = simdTree;
+ }
+ break;
+
+ case SIMDIntrinsicHWAccel:
+ {
+ GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 1);
+ retVal = intConstTree;
+ }
+ break;
+
+ default:
+ assert(!"Unimplemented SIMD Intrinsic");
+ return nullptr;
+ }
+
+#ifdef _TARGET_AMD64_
+ // Amd64: also indicate that we use floating point registers.
+ // The need for setting this here is that a method may not have SIMD
+ // type lclvars, but might be exercising SIMD intrinsics on fields of
+ // SIMD type.
+ //
+ // e.g. public Vector<float> ComplexVecFloat::sqabs() { return this.r * this.r + this.i * this.i; }
+ compFloatingPointUsed = true;
+#endif
+
+ // At this point, we have a tree that we are going to store into a destination.
+ // TODO-1stClassStructs: This should be a simple store or assignment, and should not require
+ // GTF_ALL_EFFECT for the dest. This is currently emulating the previous behavior of
+ // block ops.
+ if (doCopyBlk)
+ {
+ GenTree* dest = new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, copyBlkDst, getSIMDTypeSizeInBytes(clsHnd));
+ dest->gtFlags |= GTF_GLOB_REF;
+ retVal = gtNewBlkOpNode(dest, simdTree, getSIMDTypeSizeInBytes(clsHnd),
+ false, // not volatile
+ true); // copyBlock
+ retVal->gtFlags |= ((simdTree->gtFlags | copyBlkDst->gtFlags) & GTF_ALL_EFFECT);
+ }
+
+ return retVal;
+}
+
+#endif // FEATURE_SIMD
+
+#endif // !LEGACY_BACKEND