summaryrefslogtreecommitdiff
path: root/src/palrt/decarith.cpp
diff options
context:
space:
mode:
authorPent Ploompuu <kaalikas@gmail.com>2018-07-17 18:41:39 +0300
committerJan Kotas <jkotas@microsoft.com>2018-07-17 08:41:39 -0700
commit2b50bba8131acca2ab535e144796941ad93487b7 (patch)
tree5c3f9901749fceb1aa1e14c67665a76b5a9ee408 /src/palrt/decarith.cpp
parent624f72d55a92e49aef3c3cd6e69150fa3b085fac (diff)
downloadcoreclr-2b50bba8131acca2ab535e144796941ad93487b7.tar.gz
coreclr-2b50bba8131acca2ab535e144796941ad93487b7.tar.bz2
coreclr-2b50bba8131acca2ab535e144796941ad93487b7.zip
Move Decimal to shared (#18948)
* Move Decimal to shared * Remove DecimalCanonicalize{Internal}
Diffstat (limited to 'src/palrt/decarith.cpp')
-rw-r--r--src/palrt/decarith.cpp1267
1 files changed, 0 insertions, 1267 deletions
diff --git a/src/palrt/decarith.cpp b/src/palrt/decarith.cpp
deleted file mode 100644
index f190707ab6..0000000000
--- a/src/palrt/decarith.cpp
+++ /dev/null
@@ -1,1267 +0,0 @@
-// Licensed to the .NET Foundation under one or more agreements.
-// The .NET Foundation licenses this file to you under the MIT license.
-// See the LICENSE file in the project root for more information.
-//
-
-//
-// ===========================================================================
-// File: decarith.cpp
-//
-// ===========================================================================
-/***
-*
-*Purpose:
-* Implement arithmetic for Decimal data type.
-*
-*Implementation Notes:
-*
-*****************************************************************************/
-
-#include "common.h"
-
-#include <oleauto.h>
-#include "convert.h"
-
-//***********************************************************************
-//
-// Additional Decimal and Int64 definitions
-//
-#define COPYDEC(dest, src) {DECIMAL_SIGNSCALE(dest) = DECIMAL_SIGNSCALE(src); DECIMAL_HI32(dest) = DECIMAL_HI32(src); \
- DECIMAL_MID32(dest) = DECIMAL_MID32(src); DECIMAL_LO32(dest) = DECIMAL_LO32(src); }
-
-#define DEC_SCALE_MAX 28
-#define POWER10_MAX 9
-
-// The following functions are defined in the classlibnative\bcltype\decimal.cpp
-ULONG Div96By32(ULONG *rgulNum, ULONG ulDen);
-ULONG Div96By64(ULONG *rgulNum, SPLIT64 sdlDen);
-ULONG Div128By96(ULONG *rgulNum, ULONG *rgulDen);
-int ScaleResult(ULONG *rgulRes, int iHiRes, int iScale);
-ULONG IncreaseScale(ULONG *rgulNum, ULONG ulPwr);
-
-//***********************************************************************
-//
-// Data tables
-//
-
-static ULONG rgulPower10[POWER10_MAX+1] = {1, 10, 100, 1000, 10000, 100000, 1000000,
- 10000000, 100000000, 1000000000};
-
-struct DECOVFL
-{
- ULONG Hi;
- ULONG Mid;
-};
-
-static DECOVFL PowerOvfl[] = {
-// This is a table of the largest values that can be in the upper two
-// ULONGs of a 96-bit number that will not overflow when multiplied
-// by a given power. For the upper word, this is a table of
-// 2^32 / 10^n for 1 <= n <= 9. For the lower word, this is the
-// remaining fraction part * 2^32. 2^32 = 4294967296.
-//
- { 429496729UL, 2576980377UL }, // 10^1 remainder 0.6
- { 42949672UL, 4123168604UL }, // 10^2 remainder 0.16
- { 4294967UL, 1271310319UL }, // 10^3 remainder 0.616
- { 429496UL, 3133608139UL }, // 10^4 remainder 0.1616
- { 42949UL, 2890341191UL }, // 10^5 remainder 0.51616
- { 4294UL, 4154504685UL }, // 10^6 remainder 0.551616
- { 429UL, 2133437386UL }, // 10^7 remainder 0.9551616
- { 42UL, 4078814305UL }, // 10^8 remainder 0.09991616
-// { 4UL, 1266874889UL }, // 10^9 remainder 0.709551616
-};
-
-#define OVFL_MAX_9_HI 4
-#define OVFL_MAX_9_MID 1266874889
-
-#define OVFL_MAX_5_HI 42949
-#define OVFL_MAX_5_MID 2890341191
-
-#define OVFL_MAX_1_HI 429496729
-
-
-
-//***********************************************************************
-//
-// static helper functions
-//
-
-/***
-* FullDiv64By32
-*
-* Entry:
-* pdlNum - Pointer to 64-bit dividend
-* ulDen - 32-bit divisor
-*
-* Purpose:
-* Do full divide, yielding 64-bit result and 32-bit remainder.
-*
-* Exit:
-* Quotient overwrites dividend.
-* Returns remainder.
-*
-* Exceptions:
-* None.
-*
-***********************************************************************/
-
-ULONG FullDiv64By32(DWORDLONG *pdlNum, ULONG ulDen)
-{
- SPLIT64 sdlTmp;
- SPLIT64 sdlRes;
-
- sdlTmp.int64 = *pdlNum;
- sdlRes.u.Hi = 0;
-
- if (sdlTmp.u.Hi >= ulDen) {
- // DivMod64by32 returns quotient in Lo, remainder in Hi.
- //
- sdlRes.u.Lo = sdlTmp.u.Hi;
- sdlRes.int64 = DivMod64by32(sdlRes.int64, ulDen);
- sdlTmp.u.Hi = sdlRes.u.Hi;
- sdlRes.u.Hi = sdlRes.u.Lo;
- }
-
- sdlTmp.int64 = DivMod64by32(sdlTmp.int64, ulDen);
- sdlRes.u.Lo = sdlTmp.u.Lo;
- *pdlNum = sdlRes.int64;
- return sdlTmp.u.Hi;
-}
-
-
-
-
-/***
-* SearchScale
-*
-* Entry:
-* ulResHi - Top ULONG of quotient
-* ulResLo - Middle ULONG of quotient
-* iScale - Scale factor of quotient, range -DEC_SCALE_MAX to DEC_SCALE_MAX
-*
-* Purpose:
-* Determine the max power of 10, <= 9, that the quotient can be scaled
-* up by and still fit in 96 bits.
-*
-* Exit:
-* Returns power of 10 to scale by, -1 if overflow error.
-*
-***********************************************************************/
-
-int SearchScale(ULONG ulResHi, ULONG ulResLo, int iScale)
-{
- int iCurScale;
-
- // Quick check to stop us from trying to scale any more.
- //
- if (ulResHi > OVFL_MAX_1_HI || iScale >= DEC_SCALE_MAX) {
- iCurScale = 0;
- goto HaveScale;
- }
-
- if (iScale > DEC_SCALE_MAX - 9) {
- // We can't scale by 10^9 without exceeding the max scale factor.
- // See if we can scale to the max. If not, we'll fall into
- // standard search for scale factor.
- //
- iCurScale = DEC_SCALE_MAX - iScale;
- if (ulResHi < PowerOvfl[iCurScale - 1].Hi)
- goto HaveScale;
-
- if (ulResHi == PowerOvfl[iCurScale - 1].Hi) {
- UpperEq:
- if (ulResLo >= PowerOvfl[iCurScale - 1].Mid)
- iCurScale--;
- goto HaveScale;
- }
- }
- else if (ulResHi < OVFL_MAX_9_HI || (ulResHi == OVFL_MAX_9_HI &&
- ulResLo < OVFL_MAX_9_MID))
- return 9;
-
- // Search for a power to scale by < 9. Do a binary search
- // on PowerOvfl[].
- //
- iCurScale = 5;
- if (ulResHi < OVFL_MAX_5_HI)
- iCurScale = 7;
- else if (ulResHi > OVFL_MAX_5_HI)
- iCurScale = 3;
- else
- goto UpperEq;
-
- // iCurScale is 3 or 7.
- //
- if (ulResHi < PowerOvfl[iCurScale - 1].Hi)
- iCurScale++;
- else if (ulResHi > PowerOvfl[iCurScale - 1].Hi)
- iCurScale--;
- else
- goto UpperEq;
-
- // iCurScale is 2, 4, 6, or 8.
- //
- // In all cases, we already found we could not use the power one larger.
- // So if we can use this power, it is the biggest, and we're done. If
- // we can't use this power, the one below it is correct for all cases
- // unless it's 10^1 -- we might have to go to 10^0 (no scaling).
- //
- if (ulResHi > PowerOvfl[iCurScale - 1].Hi)
- iCurScale--;
-
- if (ulResHi == PowerOvfl[iCurScale - 1].Hi)
- goto UpperEq;
-
-HaveScale:
- // iCurScale = largest power of 10 we can scale by without overflow,
- // iCurScale < 9. See if this is enough to make scale factor
- // positive if it isn't already.
- //
- if (iCurScale + iScale < 0)
- iCurScale = -1;
-
- return iCurScale;
-}
-
-/***
-* DecFixInt
-*
-* Entry:
-* pdecRes - Pointer to Decimal result location
-* pdecIn - Pointer to Decimal operand
-*
-* Purpose:
-* Chop the value to integer. Return remainder so Int() function
-* can round down if non-zero.
-*
-* Exit:
-* Returns remainder.
-*
-* Exceptions:
-* None.
-*
-***********************************************************************/
-
-ULONG DecFixInt(LPDECIMAL pdecRes, LPDECIMAL pdecIn)
-{
- ULONG rgulNum[3];
- ULONG ulRem;
- ULONG ulPwr;
- int iScale;
-
- if (pdecIn->u.u.scale > 0) {
- rgulNum[0] = pdecIn->v.v.Lo32;
- rgulNum[1] = pdecIn->v.v.Mid32;
- rgulNum[2] = pdecIn->Hi32;
- iScale = pdecIn->u.u.scale;
- pdecRes->u.u.sign = pdecIn->u.u.sign;
- ulRem = 0;
-
- do {
- if (iScale > POWER10_MAX)
- ulPwr = ulTenToNine;
- else
- ulPwr = rgulPower10[iScale];
-
- ulRem |= Div96By32(rgulNum, ulPwr);
- iScale -= 9;
- }while (iScale > 0);
-
- pdecRes->v.v.Lo32 = rgulNum[0];
- pdecRes->v.v.Mid32 = rgulNum[1];
- pdecRes->Hi32 = rgulNum[2];
- pdecRes->u.u.scale = 0;
-
- return ulRem;
- }
-
- COPYDEC(*pdecRes, *pdecIn)
- return 0;
-}
-
-
-//***********************************************************************
-//
-//
-//
-
-//**********************************************************************
-//
-// VarDecMul - Decimal Multiply
-//
-//**********************************************************************
-
-STDAPI VarDecMul(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes)
-{
- SPLIT64 sdlTmp;
- SPLIT64 sdlTmp2;
- SPLIT64 sdlTmp3;
- int iScale;
- int iHiProd;
- ULONG ulPwr;
- ULONG ulRemLo;
- ULONG ulRemHi;
- ULONG rgulProd[6];
-
- iScale = pdecL->u.u.scale + pdecR->u.u.scale;
-
- if ((pdecL->Hi32 | pdecL->v.v.Mid32 | pdecR->Hi32 | pdecR->v.v.Mid32) == 0)
- {
- // Upper 64 bits are zero.
- //
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Lo32, pdecR->v.v.Lo32);
- if (iScale > DEC_SCALE_MAX)
- {
- // Result iScale is too big. Divide result by power of 10 to reduce it.
- // If the amount to divide by is > 19 the result is guaranteed
- // less than 1/2. [max value in 64 bits = 1.84E19]
- //
- iScale -= DEC_SCALE_MAX;
- if (iScale > 19)
- {
-ReturnZero:
- DECIMAL_SETZERO(*pdecRes);
- return NOERROR;
- }
- if (iScale > POWER10_MAX)
- {
- // Divide by 1E10 first, to get the power down to a 32-bit quantity.
- // 1E10 itself doesn't fit in 32 bits, so we'll divide by 2.5E9 now
- // then multiply the next divisor by 4 (which will be a max of 4E9).
- //
- ulRemLo = FullDiv64By32(&sdlTmp.int64, ulTenToTenDiv4);
- ulPwr = rgulPower10[iScale - 10] << 2;
- }
- else
- {
- ulPwr = rgulPower10[iScale];
- ulRemLo = 0;
- }
-
- // Power to divide by fits in 32 bits.
- //
- ulRemHi = FullDiv64By32(&sdlTmp.int64, ulPwr);
-
- // Round result. See if remainder >= 1/2 of divisor.
- // Divisor is a power of 10, so it is always even.
- //
- ulPwr >>= 1;
- if (ulRemHi >= ulPwr && (ulRemHi > ulPwr || (ulRemLo | (sdlTmp.u.Lo & 1))))
- sdlTmp.int64++;
-
- iScale = DEC_SCALE_MAX;
- }
- DECIMAL_LO32(*pdecRes) = sdlTmp.u.Lo;
- DECIMAL_MID32(*pdecRes) = sdlTmp.u.Hi;
- DECIMAL_HI32(*pdecRes) = 0;
- }
- else
- {
-
- // At least one operand has bits set in the upper 64 bits.
- //
- // Compute and accumulate the 9 partial products into a
- // 192-bit (24-byte) result.
- //
- // [l-h][l-m][l-l] left high, middle, low
- // x [r-h][r-m][r-l] right high, middle, low
- // ------------------------------
- //
- // [0-h][0-l] l-l * r-l
- // [1ah][1al] l-l * r-m
- // [1bh][1bl] l-m * r-l
- // [2ah][2al] l-m * r-m
- // [2bh][2bl] l-l * r-h
- // [2ch][2cl] l-h * r-l
- // [3ah][3al] l-m * r-h
- // [3bh][3bl] l-h * r-m
- // [4-h][4-l] l-h * r-h
- // ------------------------------
- // [p-5][p-4][p-3][p-2][p-1][p-0] prod[] array
- //
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Lo32, pdecR->v.v.Lo32);
- rgulProd[0] = sdlTmp.u.Lo;
-
- sdlTmp2.int64 = UInt32x32To64(pdecL->v.v.Lo32, pdecR->v.v.Mid32) + sdlTmp.u.Hi;
-
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Mid32, pdecR->v.v.Lo32);
- sdlTmp.int64 += sdlTmp2.int64; // this could generate carry
- rgulProd[1] = sdlTmp.u.Lo;
- if (sdlTmp.int64 < sdlTmp2.int64) // detect carry
- sdlTmp2.u.Hi = 1;
- else
- sdlTmp2.u.Hi = 0;
- sdlTmp2.u.Lo = sdlTmp.u.Hi;
-
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Mid32, pdecR->v.v.Mid32) + sdlTmp2.int64;
-
- if (pdecL->Hi32 | pdecR->Hi32) {
- // Highest 32 bits is non-zero. Calculate 5 more partial products.
- //
- sdlTmp2.int64 = UInt32x32To64(pdecL->v.v.Lo32, pdecR->Hi32);
- sdlTmp.int64 += sdlTmp2.int64; // this could generate carry
- if (sdlTmp.int64 < sdlTmp2.int64) // detect carry
- sdlTmp3.u.Hi = 1;
- else
- sdlTmp3.u.Hi = 0;
-
- sdlTmp2.int64 = UInt32x32To64(pdecL->Hi32, pdecR->v.v.Lo32);
- sdlTmp.int64 += sdlTmp2.int64; // this could generate carry
- rgulProd[2] = sdlTmp.u.Lo;
- if (sdlTmp.int64 < sdlTmp2.int64) // detect carry
- sdlTmp3.u.Hi++;
- sdlTmp3.u.Lo = sdlTmp.u.Hi;
-
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Mid32, pdecR->Hi32);
- sdlTmp.int64 += sdlTmp3.int64; // this could generate carry
- if (sdlTmp.int64 < sdlTmp3.int64) // detect carry
- sdlTmp3.u.Hi = 1;
- else
- sdlTmp3.u.Hi = 0;
-
- sdlTmp2.int64 = UInt32x32To64(pdecL->Hi32, pdecR->v.v.Mid32);
- sdlTmp.int64 += sdlTmp2.int64; // this could generate carry
- rgulProd[3] = sdlTmp.u.Lo;
- if (sdlTmp.int64 < sdlTmp2.int64) // detect carry
- sdlTmp3.u.Hi++;
- sdlTmp3.u.Lo = sdlTmp.u.Hi;
-
- sdlTmp.int64 = UInt32x32To64(pdecL->Hi32, pdecR->Hi32) + sdlTmp3.int64;
- rgulProd[4] = sdlTmp.u.Lo;
- rgulProd[5] = sdlTmp.u.Hi;
-
- iHiProd = 5;
- }
- else {
- rgulProd[2] = sdlTmp.u.Lo;
- rgulProd[3] = sdlTmp.u.Hi;
- iHiProd = 3;
- }
-
- // Check for leading zero ULONGs on the product
- //
- while (rgulProd[iHiProd] == 0) {
- iHiProd--;
- if (iHiProd < 0)
- goto ReturnZero;
- }
-
- iScale = ScaleResult(rgulProd, iHiProd, iScale);
- if (iScale == -1)
- return DISP_E_OVERFLOW;
-
- pdecRes->v.v.Lo32 = rgulProd[0];
- pdecRes->v.v.Mid32 = rgulProd[1];
- pdecRes->Hi32 = rgulProd[2];
- }
-
- pdecRes->u.u.sign = pdecR->u.u.sign ^ pdecL->u.u.sign;
- pdecRes->u.u.scale = (char)iScale;
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecAdd - Decimal Addition
-// VarDecSub - Decimal Subtraction
-//
-//**********************************************************************
-
-static HRESULT DecAddSub(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes, char bSign);
-
-STDAPI VarDecAdd(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes)
-{
- return DecAddSub(pdecL, pdecR, pdecRes, 0);
-}
-
-
-STDAPI VarDecSub(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes)
-{
- return DecAddSub(pdecL, pdecR, pdecRes, DECIMAL_NEG);
-}
-
-
-static HRESULT DecAddSub(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes, char bSign)
-{
- ULONG rgulNum[6];
- ULONG ulPwr;
- int iScale;
- int iHiProd;
- int iCur;
- SPLIT64 sdlTmp;
- DECIMAL decRes;
- DECIMAL decTmp;
- LPDECIMAL pdecTmp;
-
- bSign ^= (pdecR->u.u.sign ^ pdecL->u.u.sign) & DECIMAL_NEG;
-
- if (pdecR->u.u.scale == pdecL->u.u.scale) {
- // Scale factors are equal, no alignment necessary.
- //
- decRes.u.signscale = pdecL->u.signscale;
-
-AlignedAdd:
- if (bSign) {
- // Signs differ - subtract
- //
- DECIMAL_LO64_SET(decRes, DECIMAL_LO64_GET(*pdecL) - DECIMAL_LO64_GET(*pdecR));
- DECIMAL_HI32(decRes) = DECIMAL_HI32(*pdecL) - DECIMAL_HI32(*pdecR);
-
- // Propagate carry
- //
- if (DECIMAL_LO64_GET(decRes) > DECIMAL_LO64_GET(*pdecL)) {
- decRes.Hi32--;
- if (decRes.Hi32 >= pdecL->Hi32)
- goto SignFlip;
- }
- else if (decRes.Hi32 > pdecL->Hi32) {
- // Got negative result. Flip its sign.
- //
-SignFlip:
- DECIMAL_LO64_SET(decRes, -(LONGLONG)DECIMAL_LO64_GET(decRes));
- decRes.Hi32 = ~decRes.Hi32;
- if (DECIMAL_LO64_GET(decRes) == 0)
- decRes.Hi32++;
- decRes.u.u.sign ^= DECIMAL_NEG;
- }
-
- }
- else {
- // Signs are the same - add
- //
- DECIMAL_LO64_SET(decRes, DECIMAL_LO64_GET(*pdecL) + DECIMAL_LO64_GET(*pdecR));
- decRes.Hi32 = pdecL->Hi32 + pdecR->Hi32;
-
- // Propagate carry
- //
- if (DECIMAL_LO64_GET(decRes) < DECIMAL_LO64_GET(*pdecL)) {
- decRes.Hi32++;
- if (decRes.Hi32 <= pdecL->Hi32)
- goto AlignedScale;
- }
- else if (decRes.Hi32 < pdecL->Hi32) {
-AlignedScale:
- // The addition carried above 96 bits. Divide the result by 10,
- // dropping the scale factor.
- //
- if (decRes.u.u.scale == 0)
- return DISP_E_OVERFLOW;
- decRes.u.u.scale--;
-
- sdlTmp.u.Lo = decRes.Hi32;
- sdlTmp.u.Hi = 1;
- sdlTmp.int64 = DivMod64by32(sdlTmp.int64, 10);
- decRes.Hi32 = sdlTmp.u.Lo;
-
- sdlTmp.u.Lo = decRes.v.v.Mid32;
- sdlTmp.int64 = DivMod64by32(sdlTmp.int64, 10);
- decRes.v.v.Mid32 = sdlTmp.u.Lo;
-
- sdlTmp.u.Lo = decRes.v.v.Lo32;
- sdlTmp.int64 = DivMod64by32(sdlTmp.int64, 10);
- decRes.v.v.Lo32 = sdlTmp.u.Lo;
-
- // See if we need to round up.
- //
- if (sdlTmp.u.Hi >= 5 && (sdlTmp.u.Hi > 5 || (decRes.v.v.Lo32 & 1))) {
- DECIMAL_LO64_SET(decRes, DECIMAL_LO64_GET(decRes)+1)
- if (DECIMAL_LO64_GET(decRes) == 0)
- decRes.Hi32++;
- }
- }
- }
- }
- else {
- // Scale factors are not equal. Assume that a larger scale
- // factor (more decimal places) is likely to mean that number
- // is smaller. Start by guessing that the right operand has
- // the larger scale factor. The result will have the larger
- // scale factor.
- //
- decRes.u.u.scale = pdecR->u.u.scale; // scale factor of "smaller"
- decRes.u.u.sign = pdecL->u.u.sign; // but sign of "larger"
- iScale = decRes.u.u.scale - pdecL->u.u.scale;
-
- if (iScale < 0) {
- // Guessed scale factor wrong. Swap operands.
- //
- iScale = -iScale;
- decRes.u.u.scale = pdecL->u.u.scale;
- decRes.u.u.sign ^= bSign;
- pdecTmp = pdecR;
- pdecR = pdecL;
- pdecL = pdecTmp;
- }
-
- // *pdecL will need to be multiplied by 10^iScale so
- // it will have the same scale as *pdecR. We could be
- // extending it to up to 192 bits of precision.
- //
- if (iScale <= POWER10_MAX) {
- // Scaling won't make it larger than 4 ULONGs
- //
- ulPwr = rgulPower10[iScale];
- DECIMAL_LO64_SET(decTmp, UInt32x32To64(pdecL->v.v.Lo32, ulPwr));
- sdlTmp.int64 = UInt32x32To64(pdecL->v.v.Mid32, ulPwr);
- sdlTmp.int64 += decTmp.v.v.Mid32;
- decTmp.v.v.Mid32 = sdlTmp.u.Lo;
- decTmp.Hi32 = sdlTmp.u.Hi;
- sdlTmp.int64 = UInt32x32To64(pdecL->Hi32, ulPwr);
- sdlTmp.int64 += decTmp.Hi32;
- if (sdlTmp.u.Hi == 0) {
- // Result fits in 96 bits. Use standard aligned add.
- //
- decTmp.Hi32 = sdlTmp.u.Lo;
- pdecL = &decTmp;
- goto AlignedAdd;
- }
- rgulNum[0] = decTmp.v.v.Lo32;
- rgulNum[1] = decTmp.v.v.Mid32;
- rgulNum[2] = sdlTmp.u.Lo;
- rgulNum[3] = sdlTmp.u.Hi;
- iHiProd = 3;
- }
- else {
- // Have to scale by a bunch. Move the number to a buffer
- // where it has room to grow as it's scaled.
- //
- rgulNum[0] = pdecL->v.v.Lo32;
- rgulNum[1] = pdecL->v.v.Mid32;
- rgulNum[2] = pdecL->Hi32;
- iHiProd = 2;
-
- // Scan for zeros in the upper words.
- //
- if (rgulNum[2] == 0) {
- iHiProd = 1;
- if (rgulNum[1] == 0) {
- iHiProd = 0;
- if (rgulNum[0] == 0) {
- // Left arg is zero, return right.
- //
- DECIMAL_LO64_SET(decRes, DECIMAL_LO64_GET(*pdecR));
- decRes.Hi32 = pdecR->Hi32;
- decRes.u.u.sign ^= bSign;
- goto RetDec;
- }
- }
- }
-
- // Scaling loop, up to 10^9 at a time. iHiProd stays updated
- // with index of highest non-zero ULONG.
- //
- for (; iScale > 0; iScale -= POWER10_MAX) {
- if (iScale > POWER10_MAX)
- ulPwr = ulTenToNine;
- else
- ulPwr = rgulPower10[iScale];
-
- sdlTmp.u.Hi = 0;
- for (iCur = 0; iCur <= iHiProd; iCur++) {
- sdlTmp.int64 = UInt32x32To64(rgulNum[iCur], ulPwr) + sdlTmp.u.Hi;
- rgulNum[iCur] = sdlTmp.u.Lo;
- }
-
- if (sdlTmp.u.Hi != 0)
- // We're extending the result by another ULONG.
- rgulNum[++iHiProd] = sdlTmp.u.Hi;
- }
- }
-
- // Scaling complete, do the add. Could be subtract if signs differ.
- //
- sdlTmp.u.Lo = rgulNum[0];
- sdlTmp.u.Hi = rgulNum[1];
-
- if (bSign) {
- // Signs differ, subtract.
- //
- DECIMAL_LO64_SET(decRes, sdlTmp.int64 - DECIMAL_LO64_GET(*pdecR));
- decRes.Hi32 = rgulNum[2] - pdecR->Hi32;
-
- // Propagate carry
- //
- if (DECIMAL_LO64_GET(decRes) > sdlTmp.int64) {
- decRes.Hi32--;
- if (decRes.Hi32 >= rgulNum[2])
- goto LongSub;
- }
- else if (decRes.Hi32 > rgulNum[2]) {
-LongSub:
- // If rgulNum has more than 96 bits of precision, then we need to
- // carry the subtraction into the higher bits. If it doesn't,
- // then we subtracted in the wrong order and have to flip the
- // sign of the result.
- //
- if (iHiProd <= 2)
- goto SignFlip;
-
- iCur = 3;
- while(rgulNum[iCur++]-- == 0);
- if (rgulNum[iHiProd] == 0)
- iHiProd--;
- }
- }
- else {
- // Signs the same, add.
- //
- DECIMAL_LO64_SET(decRes, sdlTmp.int64 + DECIMAL_LO64_GET(*pdecR));
- decRes.Hi32 = rgulNum[2] + pdecR->Hi32;
-
- // Propagate carry
- //
- if (DECIMAL_LO64_GET(decRes) < sdlTmp.int64) {
- decRes.Hi32++;
- if (decRes.Hi32 <= rgulNum[2])
- goto LongAdd;
- }
- else if (decRes.Hi32 < rgulNum[2]) {
-LongAdd:
- // Had a carry above 96 bits.
- //
- iCur = 3;
- do {
- if (iHiProd < iCur) {
- rgulNum[iCur] = 1;
- iHiProd = iCur;
- break;
- }
- }while (++rgulNum[iCur++] == 0);
- }
- }
-
- if (iHiProd > 2) {
- rgulNum[0] = decRes.v.v.Lo32;
- rgulNum[1] = decRes.v.v.Mid32;
- rgulNum[2] = decRes.Hi32;
- decRes.u.u.scale = ScaleResult(rgulNum, iHiProd, decRes.u.u.scale);
- if (decRes.u.u.scale == (BYTE) -1)
- return DISP_E_OVERFLOW;
-
- decRes.v.v.Lo32 = rgulNum[0];
- decRes.v.v.Mid32 = rgulNum[1];
- decRes.Hi32 = rgulNum[2];
- }
- }
-
-RetDec:
- COPYDEC(*pdecRes, decRes)
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecDiv - Decimal Divide
-//
-//**********************************************************************
-
-STDAPI VarDecDiv(LPDECIMAL pdecL, LPDECIMAL pdecR, LPDECIMAL pdecRes)
-{
- ULONG rgulQuo[3];
- ULONG rgulQuoSave[3];
- ULONG rgulRem[4];
- ULONG rgulDivisor[3];
- ULONG ulPwr;
- ULONG ulTmp;
- ULONG ulTmp1;
- SPLIT64 sdlTmp;
- SPLIT64 sdlDivisor;
- int iScale;
- int iCurScale;
-
- iScale = pdecL->u.u.scale - pdecR->u.u.scale;
- rgulDivisor[0] = pdecR->v.v.Lo32;
- rgulDivisor[1] = pdecR->v.v.Mid32;
- rgulDivisor[2] = pdecR->Hi32;
-
- if (rgulDivisor[1] == 0 && rgulDivisor[2] == 0) {
- // Divisor is only 32 bits. Easy divide.
- //
- if (rgulDivisor[0] == 0)
- return DISP_E_DIVBYZERO;
-
- rgulQuo[0] = pdecL->v.v.Lo32;
- rgulQuo[1] = pdecL->v.v.Mid32;
- rgulQuo[2] = pdecL->Hi32;
- rgulRem[0] = Div96By32(rgulQuo, rgulDivisor[0]);
-
- for (;;) {
- if (rgulRem[0] == 0) {
- if (iScale < 0) {
- iCurScale = min(9, -iScale);
- goto HaveScale;
- }
- break;
- }
-
- // We have computed a quotient based on the natural scale
- // ( <dividend scale> - <divisor scale> ). We have a non-zero
- // remainder, so now we should increase the scale if possible to
- // include more quotient bits.
- //
- // If it doesn't cause overflow, we'll loop scaling by 10^9 and
- // computing more quotient bits as long as the remainder stays
- // non-zero. If scaling by that much would cause overflow, we'll
- // drop out of the loop and scale by as much as we can.
- //
- // Scaling by 10^9 will overflow if rgulQuo[2].rgulQuo[1] >= 2^32 / 10^9
- // = 4.294 967 296. So the upper limit is rgulQuo[2] == 4 and
- // rgulQuo[1] == 0.294 967 296 * 2^32 = 1,266,874,889.7+. Since
- // quotient bits in rgulQuo[0] could be all 1's, then 1,266,874,888
- // is the largest value in rgulQuo[1] (when rgulQuo[2] == 4) that is
- // assured not to overflow.
- //
- iCurScale = SearchScale(rgulQuo[2], rgulQuo[1], iScale);
- if (iCurScale == 0) {
- // No more scaling to be done, but remainder is non-zero.
- // Round quotient.
- //
- ulTmp = rgulRem[0] << 1;
- if (ulTmp < rgulRem[0] || (ulTmp >= rgulDivisor[0] &&
- (ulTmp > rgulDivisor[0] || (rgulQuo[0] & 1)))) {
-RoundUp:
- if (++rgulQuo[0] == 0)
- if (++rgulQuo[1] == 0)
- rgulQuo[2]++;
- }
- break;
- }
-
- if (iCurScale == -1)
- return DISP_E_OVERFLOW;
-
-HaveScale:
- ulPwr = rgulPower10[iCurScale];
- iScale += iCurScale;
-
- if (IncreaseScale(rgulQuo, ulPwr) != 0)
- return DISP_E_OVERFLOW;
-
- sdlTmp.int64 = DivMod64by32(UInt32x32To64(rgulRem[0], ulPwr), rgulDivisor[0]);
- rgulRem[0] = sdlTmp.u.Hi;
-
- rgulQuo[0] += sdlTmp.u.Lo;
- if (rgulQuo[0] < sdlTmp.u.Lo) {
- if (++rgulQuo[1] == 0)
- rgulQuo[2]++;
- }
- } // for (;;)
- }
- else {
- // Divisor has bits set in the upper 64 bits.
- //
- // Divisor must be fully normalized (shifted so bit 31 of the most
- // significant ULONG is 1). Locate the MSB so we know how much to
- // normalize by. The dividend will be shifted by the same amount so
- // the quotient is not changed.
- //
- if (rgulDivisor[2] == 0)
- ulTmp = rgulDivisor[1];
- else
- ulTmp = rgulDivisor[2];
-
- iCurScale = 0;
- if (!(ulTmp & 0xFFFF0000)) {
- iCurScale += 16;
- ulTmp <<= 16;
- }
- if (!(ulTmp & 0xFF000000)) {
- iCurScale += 8;
- ulTmp <<= 8;
- }
- if (!(ulTmp & 0xF0000000)) {
- iCurScale += 4;
- ulTmp <<= 4;
- }
- if (!(ulTmp & 0xC0000000)) {
- iCurScale += 2;
- ulTmp <<= 2;
- }
- if (!(ulTmp & 0x80000000)) {
- iCurScale++;
- ulTmp <<= 1;
- }
-
- // Shift both dividend and divisor left by iCurScale.
- //
- sdlTmp.int64 = DECIMAL_LO64_GET(*pdecL) << iCurScale;
- rgulRem[0] = sdlTmp.u.Lo;
- rgulRem[1] = sdlTmp.u.Hi;
- sdlTmp.u.Lo = pdecL->v.v.Mid32;
- sdlTmp.u.Hi = pdecL->Hi32;
- sdlTmp.int64 <<= iCurScale;
- rgulRem[2] = sdlTmp.u.Hi;
- rgulRem[3] = (pdecL->Hi32 >> (31 - iCurScale)) >> 1;
-
- sdlDivisor.u.Lo = rgulDivisor[0];
- sdlDivisor.u.Hi = rgulDivisor[1];
- sdlDivisor.int64 <<= iCurScale;
-
- if (rgulDivisor[2] == 0) {
- // Have a 64-bit divisor in sdlDivisor. The remainder
- // (currently 96 bits spread over 4 ULONGs) will be < divisor.
- //
- sdlTmp.u.Lo = rgulRem[2];
- sdlTmp.u.Hi = rgulRem[3];
-
- rgulQuo[2] = 0;
- rgulQuo[1] = Div96By64(&rgulRem[1], sdlDivisor);
- rgulQuo[0] = Div96By64(rgulRem, sdlDivisor);
-
- for (;;) {
- if ((rgulRem[0] | rgulRem[1]) == 0) {
- if (iScale < 0) {
- iCurScale = min(9, -iScale);
- goto HaveScale64;
- }
- break;
- }
-
- // Remainder is non-zero. Scale up quotient and remainder by
- // powers of 10 so we can compute more significant bits.
- //
- iCurScale = SearchScale(rgulQuo[2], rgulQuo[1], iScale);
- if (iCurScale == 0) {
- // No more scaling to be done, but remainder is non-zero.
- // Round quotient.
- //
- sdlTmp.u.Lo = rgulRem[0];
- sdlTmp.u.Hi = rgulRem[1];
- if (sdlTmp.u.Hi >= 0x80000000 || (sdlTmp.int64 <<= 1) > sdlDivisor.int64 ||
- (sdlTmp.int64 == sdlDivisor.int64 && (rgulQuo[0] & 1)))
- goto RoundUp;
- break;
- }
-
- if (iCurScale == -1)
- return DISP_E_OVERFLOW;
-
-HaveScale64:
- ulPwr = rgulPower10[iCurScale];
- iScale += iCurScale;
-
- if (IncreaseScale(rgulQuo, ulPwr) != 0)
- return DISP_E_OVERFLOW;
-
- rgulRem[2] = 0; // rem is 64 bits, IncreaseScale uses 96
- IncreaseScale(rgulRem, ulPwr);
- ulTmp = Div96By64(rgulRem, sdlDivisor);
- rgulQuo[0] += ulTmp;
- if (rgulQuo[0] < ulTmp)
- if (++rgulQuo[1] == 0)
- rgulQuo[2]++;
-
- } // for (;;)
- }
- else {
- // Have a 96-bit divisor in rgulDivisor[].
- //
- // Start by finishing the shift left by iCurScale.
- //
- sdlTmp.u.Lo = rgulDivisor[1];
- sdlTmp.u.Hi = rgulDivisor[2];
- sdlTmp.int64 <<= iCurScale;
- rgulDivisor[0] = sdlDivisor.u.Lo;
- rgulDivisor[1] = sdlDivisor.u.Hi;
- rgulDivisor[2] = sdlTmp.u.Hi;
-
- // The remainder (currently 96 bits spread over 4 ULONGs)
- // will be < divisor.
- //
- rgulQuo[2] = 0;
- rgulQuo[1] = 0;
- rgulQuo[0] = Div128By96(rgulRem, rgulDivisor);
-
- for (;;) {
- if ((rgulRem[0] | rgulRem[1] | rgulRem[2]) == 0) {
- if (iScale < 0) {
- iCurScale = min(9, -iScale);
- goto HaveScale96;
- }
- break;
- }
-
- // Remainder is non-zero. Scale up quotient and remainder by
- // powers of 10 so we can compute more significant bits.
- //
- iCurScale = SearchScale(rgulQuo[2], rgulQuo[1], iScale);
- if (iCurScale == 0) {
- // No more scaling to be done, but remainder is non-zero.
- // Round quotient.
- //
- if (rgulRem[2] >= 0x80000000)
- goto RoundUp;
-
- ulTmp = rgulRem[0] > 0x80000000;
- ulTmp1 = rgulRem[1] > 0x80000000;
- rgulRem[0] <<= 1;
- rgulRem[1] = (rgulRem[1] << 1) + ulTmp;
- rgulRem[2] = (rgulRem[2] << 1) + ulTmp1;
-
- if (rgulRem[2] > rgulDivisor[2] || (rgulRem[2] == rgulDivisor[2] &&
- (rgulRem[1] > rgulDivisor[1] || (rgulRem[1] == rgulDivisor[1] &&
- (rgulRem[0] > rgulDivisor[0] || (rgulRem[0] == rgulDivisor[0] &&
- (rgulQuo[0] & 1)))))))
- goto RoundUp;
- break;
- }
-
- if (iCurScale == -1)
- return DISP_E_OVERFLOW;
-
-HaveScale96:
- ulPwr = rgulPower10[iCurScale];
- iScale += iCurScale;
-
- if (IncreaseScale(rgulQuo, ulPwr) != 0)
- return DISP_E_OVERFLOW;
-
- rgulRem[3] = IncreaseScale(rgulRem, ulPwr);
- ulTmp = Div128By96(rgulRem, rgulDivisor);
- rgulQuo[0] += ulTmp;
- if (rgulQuo[0] < ulTmp)
- if (++rgulQuo[1] == 0)
- rgulQuo[2]++;
-
- } // for (;;)
- }
- }
-
- // No more remainder. Try extracting any extra powers of 10 we may have
- // added. We do this by trying to divide out 10^8, 10^4, 10^2, and 10^1.
- // If a division by one of these powers returns a zero remainder, then
- // we keep the quotient. If the remainder is not zero, then we restore
- // the previous value.
- //
- // Since 10 = 2 * 5, there must be a factor of 2 for every power of 10
- // we can extract. We use this as a quick test on whether to try a
- // given power.
- //
- while ((rgulQuo[0] & 0xFF) == 0 && iScale >= 8) {
- rgulQuoSave[0] = rgulQuo[0];
- rgulQuoSave[1] = rgulQuo[1];
- rgulQuoSave[2] = rgulQuo[2];
-
- if (Div96By32(rgulQuoSave, 100000000) == 0) {
- rgulQuo[0] = rgulQuoSave[0];
- rgulQuo[1] = rgulQuoSave[1];
- rgulQuo[2] = rgulQuoSave[2];
- iScale -= 8;
- }
- else
- break;
- }
-
- if ((rgulQuo[0] & 0xF) == 0 && iScale >= 4) {
- rgulQuoSave[0] = rgulQuo[0];
- rgulQuoSave[1] = rgulQuo[1];
- rgulQuoSave[2] = rgulQuo[2];
-
- if (Div96By32(rgulQuoSave, 10000) == 0) {
- rgulQuo[0] = rgulQuoSave[0];
- rgulQuo[1] = rgulQuoSave[1];
- rgulQuo[2] = rgulQuoSave[2];
- iScale -= 4;
- }
- }
-
- if ((rgulQuo[0] & 3) == 0 && iScale >= 2) {
- rgulQuoSave[0] = rgulQuo[0];
- rgulQuoSave[1] = rgulQuo[1];
- rgulQuoSave[2] = rgulQuo[2];
-
- if (Div96By32(rgulQuoSave, 100) == 0) {
- rgulQuo[0] = rgulQuoSave[0];
- rgulQuo[1] = rgulQuoSave[1];
- rgulQuo[2] = rgulQuoSave[2];
- iScale -= 2;
- }
- }
-
- if ((rgulQuo[0] & 1) == 0 && iScale >= 1) {
- rgulQuoSave[0] = rgulQuo[0];
- rgulQuoSave[1] = rgulQuo[1];
- rgulQuoSave[2] = rgulQuo[2];
-
- if (Div96By32(rgulQuoSave, 10) == 0) {
- rgulQuo[0] = rgulQuoSave[0];
- rgulQuo[1] = rgulQuoSave[1];
- rgulQuo[2] = rgulQuoSave[2];
- iScale -= 1;
- }
- }
-
- pdecRes->Hi32 = rgulQuo[2];
- pdecRes->v.v.Mid32 = rgulQuo[1];
- pdecRes->v.v.Lo32 = rgulQuo[0];
- pdecRes->u.u.scale = iScale;
- pdecRes->u.u.sign = pdecL->u.u.sign ^ pdecR->u.u.sign;
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecAbs - Decimal Absolute Value
-//
-//**********************************************************************
-
-STDAPI VarDecAbs(LPDECIMAL pdecOprd, LPDECIMAL pdecRes)
-{
- COPYDEC(*pdecRes, *pdecOprd)
- pdecRes->u.u.sign &= ~DECIMAL_NEG;
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecFix - Decimal Fix (chop to integer)
-//
-//**********************************************************************
-
-STDAPI VarDecFix(LPDECIMAL pdecOprd, LPDECIMAL pdecRes)
-{
- DecFixInt(pdecRes, pdecOprd);
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecInt - Decimal Int (round down to integer)
-//
-//**********************************************************************
-
-STDAPI VarDecInt(LPDECIMAL pdecOprd, LPDECIMAL pdecRes)
-{
- if (DecFixInt(pdecRes, pdecOprd) != 0 && (pdecRes->u.u.sign & DECIMAL_NEG)) {
- // We have chopped off a non-zero amount from a negative value. Since
- // we round toward -infinity, we must increase the integer result by
- // 1 to make it more negative. This will never overflow because
- // in order to have a remainder, we must have had a non-zero scale factor.
- // Our scale factor is back to zero now.
- //
- DECIMAL_LO64_SET(*pdecRes, DECIMAL_LO64_GET(*pdecRes) + 1);
- if (DECIMAL_LO64_GET(*pdecRes) == 0)
- pdecRes->Hi32++;
- }
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecNeg - Decimal Negate
-//
-//**********************************************************************
-
-STDAPI VarDecNeg(LPDECIMAL pdecOprd, LPDECIMAL pdecRes)
-{
- COPYDEC(*pdecRes, *pdecOprd)
- pdecRes->u.u.sign ^= DECIMAL_NEG;
- return NOERROR;
-}
-
-
-//**********************************************************************
-//
-// VarDecCmp - Decimal Compare
-//
-//**********************************************************************
-
-STDAPI VarDecCmp(LPDECIMAL pdecL, LPDECIMAL pdecR)
-{
- ULONG ulSgnL;
- ULONG ulSgnR;
-
- // First check signs and whether either are zero. If both are
- // non-zero and of the same sign, just use subtraction to compare.
- //
- ulSgnL = pdecL->v.v.Lo32 | pdecL->v.v.Mid32 | pdecL->Hi32;
- ulSgnR = pdecR->v.v.Lo32 | pdecR->v.v.Mid32 | pdecR->Hi32;
- if (ulSgnL != 0)
- ulSgnL = (pdecL->u.u.sign & DECIMAL_NEG) | 1;
-
- if (ulSgnR != 0)
- ulSgnR = (pdecR->u.u.sign & DECIMAL_NEG) | 1;
-
- // ulSgnL & ulSgnR have values 1, 0, or 0x81 depending on if the left/right
- // operand is +, 0, or -.
- //
- if (ulSgnL == ulSgnR) {
- if (ulSgnL == 0) // both are zero
- return VARCMP_EQ; // return equal
-
- DECIMAL decRes;
-
- DecAddSub(pdecL, pdecR, &decRes, DECIMAL_NEG);
- if (DECIMAL_LO64_GET(decRes) == 0 && decRes.Hi32 == 0)
- return VARCMP_EQ;
- if (decRes.u.u.sign & DECIMAL_NEG)
- return VARCMP_LT;
- return VARCMP_GT;
- }
-
- // Signs are different. Used signed byte compares
- //
- if ((char)ulSgnL > (char)ulSgnR)
- return VARCMP_GT;
- return VARCMP_LT;
-}
-
-STDAPI VarDecRound(LPDECIMAL pdecIn, int cDecimals, LPDECIMAL pdecRes)
-{
- ULONG rgulNum[3];
- ULONG ulRem;
- ULONG ulSticky;
- ULONG ulPwr;
- int iScale;
-
- if (cDecimals < 0)
- return E_INVALIDARG;
-
- iScale = pdecIn->u.u.scale - cDecimals;
- if (iScale > 0)
- {
- rgulNum[0] = pdecIn->v.v.Lo32;
- rgulNum[1] = pdecIn->v.v.Mid32;
- rgulNum[2] = pdecIn->Hi32;
- pdecRes->u.u.sign = pdecIn->u.u.sign;
- ulRem = ulSticky = 0;
-
- do {
- ulSticky |= ulRem;
- if (iScale > POWER10_MAX)
- ulPwr = ulTenToNine;
- else
- ulPwr = rgulPower10[iScale];
-
- ulRem = Div96By32(rgulNum, ulPwr);
- iScale -= 9;
- }while (iScale > 0);
-
- // Now round. ulRem has last remainder, ulSticky has sticky bits.
- // To do IEEE rounding, we add LSB of result to sticky bits so
- // either causes round up if remainder * 2 == last divisor.
- //
- ulSticky |= rgulNum[0] & 1;
- ulRem = (ulRem << 1) + (ulSticky != 0);
- if (ulPwr < ulRem &&
- ++rgulNum[0] == 0 &&
- ++rgulNum[1] == 0
- )
- ++rgulNum[2];
-
- pdecRes->v.v.Lo32 = rgulNum[0];
- pdecRes->v.v.Mid32 = rgulNum[1];
- pdecRes->Hi32 = rgulNum[2];
- pdecRes->u.u.scale = cDecimals;
- return NOERROR;
- }
-
- COPYDEC(*pdecRes, *pdecIn)
- return NOERROR;
-}