summaryrefslogtreecommitdiff
path: root/src/mscorlib/src/System/Text/ISO2022Encoding.cs
diff options
context:
space:
mode:
authorJiyoung Yun <jy910.yun@samsung.com>2016-11-23 19:09:09 +0900
committerJiyoung Yun <jy910.yun@samsung.com>2016-11-23 19:09:09 +0900
commit4b4aad7217d3292650e77eec2cf4c198ea9c3b4b (patch)
tree98110734c91668dfdbb126fcc0e15ddbd93738ca /src/mscorlib/src/System/Text/ISO2022Encoding.cs
parentfa45f57ed55137c75ac870356a1b8f76c84b229c (diff)
downloadcoreclr-4b4aad7217d3292650e77eec2cf4c198ea9c3b4b.tar.gz
coreclr-4b4aad7217d3292650e77eec2cf4c198ea9c3b4b.tar.bz2
coreclr-4b4aad7217d3292650e77eec2cf4c198ea9c3b4b.zip
Imported Upstream version 1.1.0upstream/1.1.0
Diffstat (limited to 'src/mscorlib/src/System/Text/ISO2022Encoding.cs')
-rw-r--r--src/mscorlib/src/System/Text/ISO2022Encoding.cs1995
1 files changed, 1995 insertions, 0 deletions
diff --git a/src/mscorlib/src/System/Text/ISO2022Encoding.cs b/src/mscorlib/src/System/Text/ISO2022Encoding.cs
new file mode 100644
index 0000000000..fe57e7cc57
--- /dev/null
+++ b/src/mscorlib/src/System/Text/ISO2022Encoding.cs
@@ -0,0 +1,1995 @@
+// Licensed to the .NET Foundation under one or more agreements.
+// The .NET Foundation licenses this file to you under the MIT license.
+// See the LICENSE file in the project root for more information.
+
+
+//
+//
+// Notes:
+//
+// IsAlwaysNormalized ???
+// Regarding Normalization for ISO-2022-JP (50220, 50221, 50222), its the same rules as EUCJP
+// Forms KC & KD are precluded because of things like halfwidth Katakana that has compatibility mappings
+// Form D is precluded because of 0x00a8, which changes to space + dierises.
+//
+// Note: I think that IsAlwaysNormalized should probably return true for form C for Japanese 20932 based CPs.
+//
+// For ISO-2022-KR
+// Never normalized, C & D (& therefore KC & KD) are precluded because of Hangul syllables and combined characters.
+//
+// IsAlwaysNormalized ???
+// Regarding Normalization for ISO-2022-CN (50227, 50229) & HZ-GB2312 (52936) I think is similar to the Japanese case.
+// Forms KC & KD are precluded because of things like halfwidth Katakana that has compatibility mappings
+// Form D is precluded because of 0x00a8, which changes to space + dierises.
+//
+// Note: I think that IsAlwaysNormalized should probably return true for form C for Chinese 20936 based CPs.
+//
+#if FEATURE_CODEPAGES_FILE // requires BaseCodePageEncooding
+namespace System.Text
+{
+ using System.Globalization;
+ using System.Diagnostics.Contracts;
+ using System.Text;
+ using System.Runtime.InteropServices;
+ using System;
+ using System.Security;
+ using System.Runtime.CompilerServices;
+ using System.Runtime.Serialization;
+
+
+ /*=================================ISO2022Encoding============================
+ **
+ ** This is used to support ISO 2022 encodings that use shift/escape sequences.
+ **
+ ==============================================================================*/
+
+ [Serializable]
+ internal class ISO2022Encoding : DBCSCodePageEncoding
+ {
+ const byte SHIFT_OUT = (byte)0x0E;
+ const byte SHIFT_IN = (byte)0x0F;
+ const byte ESCAPE = 0x1B;
+ const byte LEADBYTE_HALFWIDTH = 0x10;
+
+ // We have to load the 936 code page tables, so impersonate 936 as our base
+ // This pretends to be other code pages as far as memory sections are concerned.
+ [System.Security.SecurityCritical] // auto-generated
+ internal ISO2022Encoding(int codePage) : base(codePage, tableBaseCodePages[codePage % 10])
+ {
+ this.m_bUseMlangTypeForSerialization = true;
+ }
+
+ // Constructor called by serialization.
+ // Note: We use the base GetObjectData however
+ [System.Security.SecurityCritical] // auto-generated
+ internal ISO2022Encoding(SerializationInfo info, StreamingContext context) : base(info, context)
+ {
+ // Actually this can't ever get called, CodePageEncoding is our proxy
+ Contract.Assert(false, "Didn't expect to make it to DBCSCodePageEncoding serialization constructor");
+ throw new ArgumentException(Environment.GetResourceString("Arg_ExecutionEngineException"));
+ }
+
+ static int[] tableBaseCodePages =
+ {
+ 932, // 50220 ISO-2022-JP, No halfwidth Katakana, convert to full width
+ 932, // 50221 ISO-2022-JP, Use escape sequence for half width Katakana
+ 932, // 50222 ISO-2022-JP, Use shift-in/shift-out for half width Katakana
+ 0,
+ 0,
+ 949, // 50225 ISO-2022-KR, Korean
+ 936, // 52936 HZ-GB2312, 936 might be better source
+ 0, //20936, // 50227 ISO-2022-CN, Note: This is just the same as CP 936 in Everett.
+ 0,
+ // 50229 is currently unsupported, CP 20000 is currently not built in .nlp file
+ 0, //20000, // 50229 ISO-2022-CN, ModeCNS11643_1
+ 0, //20000, // 50229 ISO-2022-CN, ModeCNS11643_2
+ 0 // ModeASCII
+ };
+
+ internal enum ISO2022Modes
+ {
+ ModeHalfwidthKatakana = 0,
+ ModeJIS0208 = 1,
+ ModeKR = 5,
+ ModeHZ = 6,
+ ModeGB2312 = 7,
+ ModeCNS11643_1 = 9,
+ ModeCNS11643_2 = 10,
+ ModeASCII = 11,
+
+ ModeIncompleteEscape = -1,
+ ModeInvalidEscape = -2,
+ ModeNOOP = -3
+ }
+
+ [System.Security.SecurityCritical] // auto-generated
+ protected unsafe override String GetMemorySectionName()
+ {
+ int iUseCodePage = this.bFlagDataTable ? dataTableCodePage : CodePage;
+
+ String strFormat;
+
+ switch (this.CodePage)
+ {
+ case 50220:
+ case 50221:
+ case 50222:
+ strFormat = "CodePage_{0}_{1}_{2}_{3}_{4}_ISO2022JP";
+ break;
+ case 50225:
+ strFormat = "CodePage_{0}_{1}_{2}_{3}_{4}_ISO2022KR";
+ break;
+ case 52936:
+ strFormat = "CodePage_{0}_{1}_{2}_{3}_{4}_HZ";
+ break;
+ default:
+ Contract.Assert(false, "[ISO2022Encoding.GetMemorySectionName] Don't expect to get here for code page " + this.CodePage);
+ strFormat = "CodePage_{0}_{1}_{2}_{3}_{4}";
+ break;
+ }
+
+ String strName = String.Format(CultureInfo.InvariantCulture, strFormat,
+ iUseCodePage, this.pCodePage->VersionMajor, this.pCodePage->VersionMinor,
+ this.pCodePage->VersionRevision, this.pCodePage->VersionBuild);
+
+ return strName;
+ }
+
+ // Clean up characters for ISO2022 code pages, etc.
+ // ISO2022 (50220, 50221, 50222)
+ // GB-HZ (52936)
+ protected override bool CleanUpBytes(ref int bytes)
+ {
+ switch (this.CodePage)
+ {
+ // 932 based code pages
+ case 50220:
+ case 50221:
+ case 50222:
+ {
+ if (bytes >= 0x100)
+ {
+ // map extended char (0xfa40-0xfc4b) to a special range
+ // (ported from mlang)
+ if (bytes >= 0xfa40 && bytes <= 0xfc4b)
+ {
+ if ( bytes >= 0xfa40 && bytes <= 0xfa5b )
+ {
+ if ( bytes <= 0xfa49 )
+ bytes = bytes - 0x0b51 ;
+ else if ( bytes >= 0xfa4a && bytes <= 0xfa53 )
+ bytes = bytes - 0x072f6 ;
+ else if ( bytes >= 0xfa54 && bytes <= 0xfa57 )
+ bytes = bytes - 0x0b5b ;
+ else if ( bytes == 0xfa58 )
+ bytes = 0x878a ;
+ else if ( bytes == 0xfa59 )
+ bytes = 0x8782 ;
+ else if ( bytes == 0xfa5a )
+ bytes = 0x8784 ;
+ else if ( bytes == 0xfa5b )
+ bytes = 0x879a ;
+ }
+ else if ( bytes >= 0xfa5c && bytes <= 0xfc4b )
+ {
+ byte tc = unchecked((byte)bytes);
+ if ( tc < 0x5c )
+ bytes = bytes - 0x0d5f;
+ else if ( tc >= 0x80 && tc <= 0x9B )
+ bytes = bytes - 0x0d1d;
+ else
+ bytes = bytes - 0x0d1c;
+ }
+ }
+
+ // Convert 932 code page to 20932 like code page range
+ // (also ported from mlang)
+ byte bLead = unchecked((byte)(bytes >> 8));
+ byte bTrail = unchecked((byte)bytes);
+
+ bLead -= ((bLead > (byte)0x9f) ? (byte)0xb1 : (byte)0x71);
+ bLead = (byte)((bLead << 1) + 1);
+ if (bTrail > (byte)0x9e)
+ {
+ bTrail -= (byte)0x7e;
+ bLead++;
+ }
+ else
+ {
+ if (bTrail > (byte)0x7e)
+ bTrail--;
+ bTrail -= (byte)0x1f;
+ }
+
+ bytes = ((int)bLead) << 8 | (int)bTrail;
+
+ // Don't step out of our allocated lead byte area.
+ // All DBCS lead and trail bytes should be >= 0x21 and <= 0x7e
+ // This is commented out because Everett/Mlang had illegal PUA
+ // mappings to ISO2022 code pages that we're maintaining.
+// if ((bytes & 0xFF00) < 0x2100 || (bytes & 0xFF00) > 0x7e00 ||
+ // (bytes & 0xFF) < 0x21 || (bytes & 0xFF) > 0x7e)
+ // return false;
+ }
+ else
+ {
+ // Adjust 1/2 Katakana
+ if (bytes >= 0xa1 && bytes <= 0xdf)
+ bytes += (LEADBYTE_HALFWIDTH << 8) - 0x80;
+
+ // 0x81-0x9f and 0xe0-0xfc CP 932
+ // 0x8e and 0xa1-0xfe CP 20932 (we don't use 8e though)
+ // b0-df is 1/2 Katakana
+ if (bytes >= 0x81 &&
+ (bytes <= 0x9f ||
+ (bytes >= 0xe0 && bytes <= 0xfc)))
+ {
+ // Don't do lead bytes, we use escape sequences instead.
+ return false;
+ }
+ }
+ break;
+ }
+ case 50225:
+ {
+ // For 50225 since we don't rely on lead byte marks, return false and don't add them,
+ // esp. since we're only a 7 bit code page.
+ if (bytes >= 0x80 && bytes <= 0xff)
+ return false;
+
+ // Ignore characters out of range (a1-7f)
+ if (bytes >= 0x100 &&
+ ((bytes & 0xff) < 0xa1 || (bytes & 0xff) == 0xff ||
+ (bytes & 0xff00) < 0xa100 || (bytes & 0xff00) == 0xff00))
+ return false;
+
+ // May as well get them into our 7 bit range
+ bytes &= 0x7f7f;
+
+ break;
+ }
+ case 52936:
+ {
+ // Since we don't rely on lead byte marks for 52936, get rid of them so we
+ // don't end up with extra wierd fffe mappings.
+ if (bytes >= 0x81 && bytes <= 0xfe)
+ return false;
+
+ break;
+ }
+ }
+
+ return true;
+ }
+
+ // GetByteCount
+ [System.Security.SecurityCritical] // auto-generated
+ internal override unsafe int GetByteCount(char* chars, int count, EncoderNLS baseEncoder)
+ {
+ // Just need to ASSERT, this is called by something else internal that checked parameters already
+ Contract.Assert(count >= 0, "[ISO2022Encoding.GetByteCount]count is negative");
+ Contract.Assert(chars != null, "[ISO2022Encoding.GetByteCount]chars is null");
+
+ // Just call GetBytes with null byte* to get count
+ return GetBytes(chars, count, null, 0, baseEncoder);
+ }
+
+ [System.Security.SecurityCritical] // auto-generated
+ internal override unsafe int GetBytes(char* chars, int charCount,
+ byte* bytes, int byteCount, EncoderNLS baseEncoder)
+ {
+ // Just need to ASSERT, this is called by something else internal that checked parameters already
+ Contract.Assert(chars != null, "[ISO2022Encoding.GetBytes]chars is null");
+ Contract.Assert(byteCount >= 0, "[ISO2022Encoding.GetBytes]byteCount is negative");
+ Contract.Assert(charCount >= 0, "[ISO2022Encoding.GetBytes]charCount is negative");
+
+ // Assert because we shouldn't be able to have a null encoder.
+ Contract.Assert(encoderFallback != null, "[ISO2022Encoding.GetBytes]Attempting to use null encoder fallback");
+
+ // Fix our encoder
+ ISO2022Encoder encoder = (ISO2022Encoder)baseEncoder;
+
+ // Our return value
+ int iCount = 0;
+
+ switch(CodePage)
+ {
+ case 50220:
+ case 50221:
+ case 50222:
+ iCount = GetBytesCP5022xJP( chars, charCount, bytes, byteCount, encoder );
+ break;
+ case 50225:
+ iCount = GetBytesCP50225KR( chars, charCount, bytes, byteCount, encoder );
+ break;
+// Everett had 50227 the same as 936
+/* case 50227:
+ iCount = GetBytesCP50227CN( chars, charCount, bytes, byteCount, encoder );
+ break;
+*/
+ case 52936:
+ iCount = GetBytesCP52936( chars, charCount, bytes, byteCount, encoder );
+ break;
+ }
+
+ return iCount;
+ }
+
+ // This is internal and called by something else,
+ [System.Security.SecurityCritical] // auto-generated
+ internal override unsafe int GetCharCount(byte* bytes, int count, DecoderNLS baseDecoder)
+ {
+ // Just assert, we're called internally so these should be safe, checked already
+ Contract.Assert(bytes != null, "[ISO2022Encoding.GetCharCount]bytes is null");
+ Contract.Assert(count >= 0, "[ISO2022Encoding.GetCharCount]byteCount is negative");
+
+ // Just call getChars with null char* to get count
+ return GetChars(bytes, count, null, 0, baseDecoder);
+ }
+
+ [System.Security.SecurityCritical] // auto-generated
+ internal override unsafe int GetChars(byte* bytes, int byteCount,
+ char* chars, int charCount, DecoderNLS baseDecoder)
+ {
+ // Just need to ASSERT, this is called by something else internal that checked parameters already
+ Contract.Assert(bytes != null, "[ISO2022Encoding.GetChars]bytes is null");
+ Contract.Assert(byteCount >= 0, "[ISO2022Encoding.GetChars]byteCount is negative");
+ Contract.Assert(charCount >= 0, "[ISO2022Encoding.GetChars]charCount is negative");
+
+ // Fix our decoder
+ ISO2022Decoder decoder = (ISO2022Decoder)baseDecoder;
+ int iCount = 0;
+
+ switch (CodePage)
+ {
+ case 50220:
+ case 50221:
+ case 50222:
+ iCount = GetCharsCP5022xJP( bytes, byteCount, chars, charCount, decoder);
+ break;
+ case 50225:
+ iCount = GetCharsCP50225KR( bytes, byteCount, chars, charCount, decoder);
+ break;
+ // Currently 50227 is the same as 936
+// case 50227:
+ // iCount = GetCharsCP50227CN( bytes, byteCount, chars, charCount, decoder);
+ // break;
+ case 52936:
+ iCount = GetCharsCP52936( bytes, byteCount, chars, charCount, decoder);
+ break;
+ default:
+ Contract.Assert(false, "[ISO2022Encoding.GetChars] had unexpected code page");
+ break;
+ }
+
+ return iCount;
+ }
+
+ // ISO 2022 Code pages for JP.
+ // 50220 - No halfwidth Katakana, convert to full width
+ // 50221 - Use escape sequence for half width Katakana
+ // 50222 - Use shift-in/shift-out for half width Katakana
+ //
+ // These are the JIS code pages, superset of ISO-2022 / ISO-2022-JP-1
+ // 0E Shift Out (following bytes are Katakana)
+ // 0F Shift In (back to "normal" behavior)
+ // 21-7E Byte ranges (1 or 2 bytes)
+ // <ESC> $ @ To Double Byte 0208 Mode (actually older code page, but subset of 0208)
+ // <ESC> $ B To Double Byte 0208 Mode (duplicate)
+ // <ESC> $ ( D To Double Byte 0212 Mode (previously we misinterpreted this)
+ // <ESC> $ I To half width Katakana
+ // <ESC> ( J To JIS-Roman
+ // <ESC> ( H To JIS-Roman (swedish character set)
+ // <ESC> ( B To ASCII
+ // <ESC> & @ Alternate lead in to <ESC> $ B so just ignore it.
+ //
+ // So in Katakana mode we add 0x8e as a lead byte and use CP 20932 to convert it
+ // In ASCII mode we just spit out the single byte.
+ // In Roman mode we should change 0x5c (\) -> Yen sign and 0x7e (~) to Overline, however
+ // we didn't in mLang, otherwise roman is like ASCII.
+ // In 0208 double byte mode we have to |= with 0x8080 and use CP 20932 to convert it.
+ // In 0212 double byte mode we have to |= with 0x8000 and use CP 20932 to convert it.
+ //
+ // Note that JIS Shift In/Shift Out is different than the other ISO2022 encodings. For JIS
+ // Shift out always shifts to half-width Katakana. Chinese encodings use designator sequences
+ // instead of escape sequences and shift out to the designated sequence or back in to ASCII.
+ //
+ // When decoding JIS 0208, MLang used a '*' (0x2a) character in JIS 0208 mode to map the trailing byte
+ // to halfwidth katakana. I found no description of that behavior, however that block of 0208 is
+ // undefined, so we maintain that behavior when decoding. We will never generate characters using
+ // that technique, but the decoder will process them.
+ //
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetBytesCP5022xJP(char* chars, int charCount,
+ byte* bytes, int byteCount, ISO2022Encoder encoder)
+ {
+ // prepare our helpers
+ Encoding.EncodingByteBuffer buffer = new Encoding.EncodingByteBuffer(
+ this, encoder, bytes, byteCount, chars, charCount);
+
+ // Get our mode
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII; // Mode
+ ISO2022Modes shiftInMode = ISO2022Modes.ModeASCII; // Mode that shift in will go back to (only used by CP 50222)
+
+ // Check our encoder
+ if (encoder != null)
+ {
+ char charLeftOver = encoder.charLeftOver;
+
+ currentMode = encoder.currentMode;
+ shiftInMode = encoder.shiftInOutMode;
+
+ // We may have a left over character from last time, try and process it.
+ if (charLeftOver > 0)
+ {
+ Contract.Assert(Char.IsHighSurrogate(charLeftOver), "[ISO2022Encoding.GetBytesCP5022xJP]leftover character should be high surrogate");
+
+ // It has to be a high surrogate, which we don't support, so it has to be a fallback
+ buffer.Fallback(charLeftOver);
+ }
+ }
+
+ while (buffer.MoreData)
+ {
+ // Get our char
+ char ch = buffer.GetNextChar();
+
+ // Get our bytes
+ ushort iBytes = mapUnicodeToBytes[ch];
+
+ StartConvert:
+ // Check for halfwidth bytes
+ byte bLeadByte = (byte)(iBytes >> 8);
+ byte bTrailByte = (byte)(iBytes & 0xff);
+
+ if (bLeadByte == LEADBYTE_HALFWIDTH)
+ {
+ // Its Halfwidth Katakana
+ if (CodePage == 50220)
+ {
+ // CodePage 50220 doesn't use halfwidth Katakana, convert to fullwidth
+ // See if its out of range, fallback if so, throws if recursive fallback
+ if (bTrailByte < 0x21 || bTrailByte >= 0x21 + HalfToFullWidthKanaTable.Length)
+ {
+ buffer.Fallback(ch);
+ continue;
+ }
+
+ // Get the full width katakana char to use.
+ iBytes = unchecked((ushort)(HalfToFullWidthKanaTable[bTrailByte - 0x21] & 0x7F7F));
+
+ // May have to do all sorts of fun stuff for mode, go back to start convert
+ goto StartConvert;
+ }
+
+ // Can use halfwidth Katakana, make sure we're in right mode
+
+ // Make sure we're in right mode
+ if (currentMode != ISO2022Modes.ModeHalfwidthKatakana)
+ {
+ // 50222 or 50221, either shift in/out or escape to get to Katakana mode
+ if (CodePage == 50222)
+ {
+ // Shift Out
+ if (!buffer.AddByte(SHIFT_OUT))
+ break; // convert out of space, stop
+
+ // Don't change modes until after AddByte in case it fails for convert
+ // We get to shift out to Katakana, make sure we'll go back to the right mode
+ // (This ends up always being ASCII)
+ shiftInMode = currentMode;
+ currentMode = ISO2022Modes.ModeHalfwidthKatakana;
+ }
+ else
+ {
+ // 50221 does halfwidth katakana by escape sequence
+ Contract.Assert(CodePage == 50221, "[ISO2022Encoding.GetBytesCP5022xJP]Expected Code Page 50221");
+
+ // Add our escape sequence
+ if (!buffer.AddByte(ESCAPE, unchecked((byte)'('), unchecked((byte)'I')))
+ break; // convert out of space, stop
+
+ currentMode = ISO2022Modes.ModeHalfwidthKatakana;
+ }
+ }
+
+ // We know we're in Katakana mode now, so add it.
+ // Go ahead and add the Katakana byte. Our table tail bytes are 0x80 too big.
+ if (!buffer.AddByte(unchecked((byte)(bTrailByte & 0x7F))))
+ break; // convert out of space, stop
+
+ // Done with this one
+ continue;
+ }
+ else if (bLeadByte != 0)
+ {
+ //
+ // It's a double byte character.
+ //
+
+ // If we're CP 50222 we may have to shift in from Katakana mode first
+ if (CodePage == 50222 && currentMode == ISO2022Modes.ModeHalfwidthKatakana)
+ {
+ // Shift In
+ if (!buffer.AddByte(SHIFT_IN))
+ break; // convert out of space, stop
+
+ // Need to shift in from katakana. (Still might not be right, but won't be shifted out anyway)
+ currentMode = shiftInMode;
+ }
+
+ // Make sure we're in the right mode (JIS 0208 or JIS 0212)
+ // Note: Right now we don't use JIS 0212. Also this table'd be wrong
+
+ // Its JIS extension 0208
+ if (currentMode != ISO2022Modes.ModeJIS0208)
+ {
+ // Escape sequence, we can fail after this, mode will be correct for convert
+ if (!buffer.AddByte(ESCAPE, unchecked((byte)'$'), unchecked((byte)'B')))
+ break; // Convert out of space, stop
+
+ currentMode = ISO2022Modes.ModeJIS0208;
+ }
+
+ // Add our double bytes
+ if (!buffer.AddByte(unchecked((byte)(bLeadByte)), unchecked((byte)(bTrailByte))))
+ break; // Convert out of space, stop
+ continue;
+ }
+ else if (iBytes != 0 || ch == 0)
+ {
+ // Single byte Char
+ // If we're CP 50222 we may have to shift in from Katakana mode first
+ if (CodePage == 50222 && currentMode == ISO2022Modes.ModeHalfwidthKatakana)
+ {
+ // Shift IN
+ if (!buffer.AddByte(SHIFT_IN))
+ break; // convert ran out of room
+
+ // Need to shift in from katakana. (Still might not be right, but won't be shifted out anyway)
+ currentMode = shiftInMode;
+ }
+
+ // Its a single byte character, switch to ASCII if we have to
+ if (currentMode != ISO2022Modes.ModeASCII)
+ {
+ if (!buffer.AddByte(ESCAPE,unchecked((byte)'('), unchecked((byte)'B')))
+ break; // convert ran out of room
+
+ currentMode = ISO2022Modes.ModeASCII;
+ }
+
+ // Add the ASCII char
+ if (!buffer.AddByte(bTrailByte))
+ break; // convert had no room left
+ continue;
+ }
+
+ // Its unknown, do fallback, throws if recursive (knows because we called InternalGetNextChar)
+ buffer.Fallback(ch);
+ }
+
+ // Switch back to ASCII if MustFlush or no encoder
+ if (currentMode != ISO2022Modes.ModeASCII &&
+ (encoder == null || encoder.MustFlush))
+ {
+ // If we're CP 50222 we may have to shift in from Katakana mode first
+ if (CodePage == 50222 && currentMode == ISO2022Modes.ModeHalfwidthKatakana)
+ {
+ // Shift IN, only shift mode if necessary.
+ if (buffer.AddByte(SHIFT_IN))
+ // Need to shift in from katakana. (Still might not be right, but won't be shifted out anyway)
+ currentMode = shiftInMode;
+ else
+ // If not successful, convert will maintain state for next time, also
+ // AddByte will have decremented our char count, however we need it to remain the same
+ buffer.GetNextChar();
+ }
+
+ // switch back to ASCII to finish neatly
+ if (currentMode != ISO2022Modes.ModeASCII &&
+ (CodePage != 50222 || currentMode != ISO2022Modes.ModeHalfwidthKatakana))
+ {
+ // only shift if it was successful
+ if (buffer.AddByte(ESCAPE, unchecked((byte)'('), unchecked((byte)'B')))
+ currentMode = ISO2022Modes.ModeASCII;
+ else
+ // If not successful, convert will maintain state for next time, also
+ // AddByte will have decremented our char count, however we need it to remain the same
+ buffer.GetNextChar();
+ }
+ }
+
+ // Remember our encoder state
+ if (bytes != null && encoder != null)
+ {
+ // This is ASCII if we had to flush
+ encoder.currentMode = currentMode;
+ encoder.shiftInOutMode = shiftInMode;
+
+ if (!buffer.fallbackBuffer.bUsedEncoder)
+ {
+ encoder.charLeftOver = (char)0;
+ }
+
+ encoder.m_charsUsed = buffer.CharsUsed;
+ }
+
+ // Return our length
+ return buffer.Count;
+ }
+
+ // ISO 2022 Code pages for Korean - CP 50225
+ //
+ // CP 50225 has Shift In/Shift Out codes, and a single designator sequence that is supposed
+ // to appear once in the file, at the beginning of a line, before any multibyte code points.
+ // So we stick the designator at the beginning of the output.
+ //
+ // These are the KR code page codes for ISO-2022-KR
+ // 0E Shift Out (following bytes are double byte)
+ // 0F Shift In (back to ASCII behavior)
+ // 21-7E Byte ranges (1 or 2 bytes)
+ // <ESC> $)C Double byte ISO-2022-KR designator
+ //
+ // Note that this encoding is a little different than other encodings. The <esc>$)C sequence
+ // should only appear once per file. (Actually I saw another spec/rfc that said at the beginning
+ // of each line, but it shouldn't really matter.)
+ //
+ // During decoding Mlang accepted ' ', '\t, and '\n' as their respective characters, even if
+ // it was in double byte mode. We maintain that behavior, although I couldn't find a reference or
+ // reason for that behavior. We never generate data using that shortcut.
+ //
+ // Also Mlang always assumed KR mode, even if the designator wasn't found yet, so we do that as
+ // well. So basically we just ignore <ESC>$)C when decoding.
+ //
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetBytesCP50225KR(char* chars, int charCount,
+ byte* bytes, int byteCount, ISO2022Encoder encoder)
+ {
+ // prepare our helpers
+ Encoding.EncodingByteBuffer buffer = new Encoding.EncodingByteBuffer(
+ this, encoder, bytes, byteCount, chars, charCount);
+
+ // Get our mode
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII; // Mode
+ ISO2022Modes shiftOutMode = ISO2022Modes.ModeASCII; // ModeKR if already stamped lead bytes
+
+ // Check our encoder
+ if (encoder != null)
+ {
+ // May have leftover stuff
+ char charLeftOver = encoder.charLeftOver;
+ currentMode = encoder.currentMode;
+ shiftOutMode = encoder.shiftInOutMode;
+
+ // We may have a l left over character from last time, try and process it.
+ if (charLeftOver > 0)
+ {
+ Contract.Assert(Char.IsHighSurrogate(charLeftOver), "[ISO2022Encoding.GetBytesCP50225KR]leftover character should be high surrogate");
+
+ // It has to be a high surrogate, which we don't support, so it has to be a fallback
+ buffer.Fallback(charLeftOver);
+ }
+ }
+
+ while (buffer.MoreData)
+ {
+ // Get our data
+ char ch = buffer.GetNextChar();
+
+ // Get our bytes
+ ushort iBytes = mapUnicodeToBytes[ch];
+
+ // Check for double byte bytes
+ byte bLeadByte = (byte)(iBytes >> 8);
+ byte bTrailByte = (byte)(iBytes & 0xff);
+
+ if (bLeadByte != 0)
+ {
+ //
+ // It's a double byte character.
+ //
+
+ // If we haven't done our Korean designator, then do so, if we have any input
+ if (shiftOutMode != ISO2022Modes.ModeKR)
+ {
+ // Add our code page designator sequence
+ if (!buffer.AddByte(ESCAPE, unchecked((byte)'$'), unchecked((byte)')'), unchecked((byte)'C')))
+ break; // No room during convert.
+
+ shiftOutMode = ISO2022Modes.ModeKR;
+ }
+
+ // May have to switch to ModeKR first
+ if (currentMode != ISO2022Modes.ModeKR)
+ {
+ if (!buffer.AddByte(SHIFT_OUT))
+ break; // No convert room
+
+ currentMode = ISO2022Modes.ModeKR;
+ }
+
+ // Add the bytes
+ if (!buffer.AddByte(bLeadByte, bTrailByte))
+ break; // no convert room
+ continue;
+ }
+ else if (iBytes != 0 || ch == 0)
+ {
+ // Its a single byte character, switch to ASCII if we have to
+ if (currentMode != ISO2022Modes.ModeASCII)
+ {
+ if (!buffer.AddByte(SHIFT_IN))
+ break;
+
+ currentMode = ISO2022Modes.ModeASCII;
+ }
+
+ // Add the ASCII char
+ if (!buffer.AddByte(bTrailByte))
+ break;
+ continue;
+ }
+
+ // Its unknown, do fallback, throws if recursive (knows because we called InternalGetNextChar)
+ buffer.Fallback(ch);
+ }
+
+ // Switch back to ASCII if MustFlush or no encoder
+ if (currentMode != ISO2022Modes.ModeASCII &&
+ (encoder == null || encoder.MustFlush))
+ {
+ // Get back to ASCII to be safe. Only do it if it success.
+ if (buffer.AddByte(SHIFT_IN))
+ currentMode = ISO2022Modes.ModeASCII;
+ else
+ // If not successful, convert will maintain state for next time, also
+ // AddByte will have decremented our char count, however we need it to remain the same
+ buffer.GetNextChar();
+ }
+
+ // Remember our encoder state
+ if (bytes != null && encoder != null)
+ {
+ // If we didn't use the encoder, then there's no chars left over
+ if (!buffer.fallbackBuffer.bUsedEncoder)
+ {
+ encoder.charLeftOver = (char)0;
+ }
+
+ // This is ASCII if we had to flush
+ encoder.currentMode = currentMode;
+
+ // We don't use shift out mode, but if we've flushed we need to reset it so it doesn't
+ // get output again.
+ if (!encoder.MustFlush || encoder.charLeftOver != (char)0)
+ {
+ // We should be not flushing or converting
+ Contract.Assert(!encoder.MustFlush || !encoder.m_throwOnOverflow,
+ "[ISO2022Encoding.GetBytesCP50225KR]Expected no left over data or not flushing or not converting");
+ encoder.shiftInOutMode = shiftOutMode;
+ }
+ else
+ encoder.shiftInOutMode = ISO2022Modes.ModeASCII;
+
+ encoder.m_charsUsed = buffer.CharsUsed;
+ }
+
+ // Return our length
+ return buffer.Count;
+ }
+
+ // CP52936 is HZ Encoding
+ // HZ Encoding has 4 shift sequences:
+ // ~~ '~' (\u7e)
+ // ~} shift into 1 byte mode,
+ // ~{ shift into 2 byte GB 2312-80
+ // ~<NL> Maintain 2 byte mode across new lines (ignore both ~ and <NL> characters)
+ // (This is for mailers that restrict to 70 or 80 or whatever character lines)
+ //
+ // According to comment in mlang, lead & trail byte ranges are described in RFC 1843
+ // RFC 1843 => valid HZ code range: leading byte 0x21 - 0x77, 2nd byte 0x21 - 0x7e
+ // Our 936 code points are or'd with 0x8080, so lead byte 0xa1 - 0xf7, trail byte 0xa1 - 0xfe
+ //
+ // This encoding is designed for transmission by e-mail and news. No bytes should have high bit set.
+ // (all bytes <= 0x7f)
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetBytesCP52936(char* chars, int charCount,
+ byte* bytes, int byteCount, ISO2022Encoder encoder)
+ {
+ // prepare our helpers
+ Encoding.EncodingByteBuffer buffer = new Encoding.EncodingByteBuffer(
+ this, encoder, bytes, byteCount, chars, charCount);
+
+ // Mode
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII;
+
+ // Check our encoder
+ if (encoder != null)
+ {
+ char charLeftOver = encoder.charLeftOver;
+ currentMode = encoder.currentMode;
+
+ // We may have a left over character from last time, try and process it.
+ if (charLeftOver > 0)
+ {
+ Contract.Assert(Char.IsHighSurrogate(charLeftOver), "[ISO2022Encoding.GetBytesCP52936]leftover character should be high surrogate");
+
+ // It has to be a high surrogate, which we don't support, so it has to be a fallback
+ buffer.Fallback(charLeftOver);
+ }
+ }
+
+ while (buffer.MoreData)
+ {
+ // Get our char
+ char ch = buffer.GetNextChar();
+
+ // Get our bytes
+ ushort sChar = mapUnicodeToBytes[ch];
+ if (sChar == 0 && ch != 0)
+ {
+ // Wasn't a legal byte sequence, its a surrogate or fallback
+ // Throws if recursive (knows because we called InternalGetNextChar)
+ buffer.Fallback(ch);
+
+ // Done with our char, now process fallback
+ continue;
+ }
+
+ // Check for halfwidth bytes
+ byte bLeadByte = (byte)(sChar >> 8);
+ byte bTrailByte = (byte)(sChar & 0xff);
+
+ // If its a double byte, it has to fit in the lead byte 0xa1 - 0xf7, trail byte 0xa1 - 0xfe range
+ // (including the 0x8080 that our codepage or's to the value)
+ if ((bLeadByte != 0 &&
+ (bLeadByte < 0xa1 || bLeadByte > 0xf7 || bTrailByte < 0xa1 || bTrailByte > 0xfe)) ||
+ (bLeadByte == 0 && bTrailByte > 0x80 && bTrailByte != 0xff))
+ {
+ // Illegal character, in 936 code page, but not in HZ subset, get fallback for it
+ buffer.Fallback(ch);
+ continue;
+ }
+
+ // sChar is now either ASCII or has an 0x8080 mask
+ if (bLeadByte != 0)
+ {
+ // Its a double byte mode
+ if (currentMode != ISO2022Modes.ModeHZ)
+ {
+ // Need to add the double byte mode marker
+ if (!buffer.AddByte((byte)'~', (byte)'{', 2))
+ break; // Stop if no buffer space in convert
+
+ currentMode = ISO2022Modes.ModeHZ;
+ }
+
+ // Go ahead and add the 2 bytes
+ if (!buffer.AddByte(unchecked((byte)(bLeadByte & 0x7f)), unchecked((byte)(bTrailByte & 0x7f))))
+ break; // Stop if no buffer space in convert
+ }
+ else
+ {
+ // Its supposed to be ASCII
+ if (currentMode != ISO2022Modes.ModeASCII)
+ {
+ // Need to add the ASCII mode marker
+ // Will have 1 more byte (or 2 if ~)
+ if (!buffer.AddByte((byte)'~', (byte)'}', bTrailByte == '~' ? 2:1))
+ break;
+
+ currentMode = ISO2022Modes.ModeASCII;
+ }
+
+ // If its a '~' we'll need an extra one
+ if (bTrailByte == '~')
+ {
+ // Need to add the extra ~
+ if (!buffer.AddByte((byte)'~', 1))
+ break;
+ }
+
+ // Need to add the character
+ if (!buffer.AddByte(bTrailByte))
+ break;
+ }
+ }
+
+ // Add ASCII shift out if we're at end of decoder
+ if (currentMode != ISO2022Modes.ModeASCII &&
+ (encoder == null || encoder.MustFlush))
+ {
+ // Need to add the ASCII mode marker
+ // Only turn off other mode if this works
+ if (buffer.AddByte((byte)'~',(byte)'}'))
+ currentMode = ISO2022Modes.ModeASCII;
+ else
+ // If not successful, convert will maintain state for next time, also
+ // AddByte will have decremented our char count, however we need it to remain the same
+ buffer.GetNextChar();
+ }
+
+ // Need to remember our mode
+ if (encoder != null && bytes != null)
+ {
+ // This is ASCII if we had to flush
+ encoder.currentMode = currentMode;
+
+ if (!buffer.fallbackBuffer.bUsedEncoder)
+ {
+ encoder.charLeftOver = (char)0;
+ }
+
+ encoder.m_charsUsed = buffer.CharsUsed;
+ }
+
+ // Return our length
+ return buffer.Count;
+ }
+
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetCharsCP5022xJP(byte* bytes, int byteCount,
+ char* chars, int charCount, ISO2022Decoder decoder)
+ {
+ // Get our info.
+ Encoding.EncodingCharBuffer buffer = new Encoding.EncodingCharBuffer(
+ this, decoder, chars, charCount, bytes, byteCount);
+
+ // No mode information yet
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII; // Our current Mode
+ ISO2022Modes shiftInMode = ISO2022Modes.ModeASCII; // Mode that we'll shift in to
+ byte[] escapeBytes = new byte[4];
+ int escapeCount = 0;
+
+ if (decoder != null)
+ {
+ currentMode = decoder.currentMode;
+ shiftInMode = decoder.shiftInOutMode;
+
+ // See if we have leftover decoder buffer to use
+ // Load our bytesLeftOver
+ escapeCount = decoder.bytesLeftOverCount;
+
+ // Don't want to mess up decoder if we're counting or throw an exception
+ for (int i = 0; i < escapeCount; i++)
+ escapeBytes[i] = decoder.bytesLeftOver[i];
+ }
+
+ // Do this until the end
+ while (buffer.MoreData || escapeCount > 0)
+ {
+ byte ch;
+
+ if (escapeCount > 0)
+ {
+ // Get more escape sequences if necessary
+ if (escapeBytes[0] == ESCAPE)
+ {
+ // Stop if no more input
+ if (!buffer.MoreData)
+ {
+ if (decoder != null && !decoder.MustFlush)
+ break;
+ }
+ else
+ {
+ // Add it to the sequence we can check
+ escapeBytes[escapeCount++] = buffer.GetNextByte();
+
+ // We have an escape sequence
+ ISO2022Modes modeReturn =
+ CheckEscapeSequenceJP(escapeBytes, escapeCount);
+
+ if (modeReturn != ISO2022Modes.ModeInvalidEscape)
+ {
+ if (modeReturn != ISO2022Modes.ModeIncompleteEscape)
+ {
+ // Processed escape correctly
+ escapeCount = 0;
+
+ // We're now this mode
+ currentMode = shiftInMode = modeReturn;
+ }
+
+ // Either way, continue to get next escape or real byte
+ continue;
+ }
+ }
+
+ // If ModeInvalidEscape, or no input & must flush, then fall through to add escape.
+ }
+
+ // Read next escape byte and move them down one.
+ ch = DecrementEscapeBytes(ref escapeBytes, ref escapeCount);
+ }
+ else
+ {
+ // Get our next byte
+ ch = buffer.GetNextByte();
+
+ if (ch == ESCAPE)
+ {
+ // We'll have an escape sequence, use it if we don't have one buffered already
+ if (escapeCount == 0)
+ {
+ // Start this new escape sequence
+ escapeBytes[0] = ch;
+ escapeCount = 1;
+ continue;
+ }
+
+ // Flush the previous escape sequence, then reuse this escape byte
+ buffer.AdjustBytes(-1);
+ }
+ }
+
+ if (ch == SHIFT_OUT)
+ {
+ shiftInMode = currentMode;
+ currentMode = ISO2022Modes.ModeHalfwidthKatakana;
+ continue;
+ }
+ else if (ch == SHIFT_IN)
+ {
+ currentMode = shiftInMode;
+ continue;
+ }
+
+ // Get our full character
+ ushort iBytes = ch;
+ bool b2Bytes = false;
+
+ if (currentMode == ISO2022Modes.ModeJIS0208)
+ {
+ //
+ // To handle errors, we need to check:
+ // 1. if trailbyte is there
+ // 2. if code is valid
+ //
+ if (escapeCount > 0)
+ {
+ // Let another escape fall through
+ if (escapeBytes[0] != ESCAPE)
+ {
+ // Move them down one & get the next data
+ iBytes <<= 8;
+ iBytes |= DecrementEscapeBytes(ref escapeBytes, ref escapeCount);
+ b2Bytes = true;
+ }
+ }
+ else if (buffer.MoreData)
+ {
+ iBytes <<= 8;
+ iBytes |= buffer.GetNextByte();
+ b2Bytes = true;
+ }
+ else
+ {
+ // Not enough input, use decoder if possible
+ if (decoder == null || decoder.MustFlush)
+ {
+ // No decoder, do fallback for this byte
+ buffer.Fallback(ch);
+ break;
+ }
+
+ // Stick it in the decoder if we're not counting
+ if (chars != null)
+ {
+ escapeBytes[0] = ch;
+ escapeCount = 1;
+ }
+ break;
+ }
+
+ // MLang treated JIS 0208 '*' lead byte like a single halfwidth katakana
+ // escape, so use 0x8e00 as katakana lead byte and keep same trail byte.
+ // 0x2a lead byte range is normally unused in JIS 0208, so shouldn't have
+ // any wierd compatibility issues.
+ if ((b2Bytes == true) && ((iBytes & 0xff00) == 0x2a00))
+ {
+ iBytes = (ushort)(iBytes & 0xff);
+ iBytes |= (LEADBYTE_HALFWIDTH << 8); // Put us in the halfwidth katakana range
+ }
+ }
+ else if (iBytes >= 0xA1 && iBytes <= 0xDF)
+ {
+ // Everett accidentally mapped Katakana like shift-jis (932),
+ // even though this is a 7 bit code page. We keep that mapping
+ iBytes |= (LEADBYTE_HALFWIDTH << 8); // Map to halfwidth katakana range
+ iBytes &= 0xff7f; // remove extra 0x80
+ }
+ else if (currentMode == ISO2022Modes.ModeHalfwidthKatakana )
+ {
+ // Add 0x10 lead byte that our encoding expects for Katakana:
+ iBytes |= (LEADBYTE_HALFWIDTH << 8);
+ }
+
+ // We have an iBytes to try to convert.
+ char c = mapBytesToUnicode[iBytes];
+
+ // See if it was unknown
+ if (c == UNKNOWN_CHAR_FLAG && iBytes != 0)
+ {
+ // Have to do fallback
+ if (b2Bytes)
+ {
+ if (!buffer.Fallback((byte)(iBytes >> 8), (byte)iBytes))
+ break;
+ }
+ else
+ {
+ if (!buffer.Fallback(ch))
+ break;
+ }
+ }
+ else
+ {
+ // If we were JIS 0208, then we consumed an extra byte
+ if (!buffer.AddChar(c, b2Bytes ? 2:1))
+ break;
+ }
+ }
+
+ // Make sure our decoder state matches our mode, if not counting
+ if (chars != null && decoder != null)
+ {
+ // Remember it if we don't flush
+ if (!decoder.MustFlush || escapeCount != 0)
+ {
+ // Either not flushing or had state (from convert)
+ Contract.Assert(!decoder.MustFlush || !decoder.m_throwOnOverflow,
+ "[ISO2022Encoding.GetCharsCP5022xJP]Expected no state or not converting or not flushing");
+
+ decoder.currentMode = currentMode;
+ decoder.shiftInOutMode = shiftInMode;
+
+ // Remember escape buffer
+ decoder.bytesLeftOverCount = escapeCount;
+ decoder.bytesLeftOver = escapeBytes;
+ }
+ else
+ {
+ // We flush, clear buffer
+ decoder.currentMode = ISO2022Modes.ModeASCII;
+ decoder.shiftInOutMode = ISO2022Modes.ModeASCII;
+ decoder.bytesLeftOverCount = 0;
+ // Slightly different if counting/not counting
+ }
+
+ decoder.m_bytesUsed = buffer.BytesUsed;
+ }
+
+ // Return # of characters we found
+ return buffer.Count;
+ }
+
+ // We know we have an escape sequence, so check it starting with the byte after the escape
+ private ISO2022Modes CheckEscapeSequenceJP( byte[] bytes, int escapeCount )
+ {
+ // Have an escape sequence
+ if (bytes[0] != ESCAPE)
+ return ISO2022Modes.ModeInvalidEscape;
+
+ if (escapeCount < 3)
+ return ISO2022Modes.ModeIncompleteEscape;
+
+ if (bytes[1] == '(')
+ {
+ if (bytes[2] == 'B') // <esc>(B
+ {
+ return ISO2022Modes.ModeASCII;
+ }
+ else if (bytes[2] == 'H') // <esc>(H
+ {
+ // Actually this is supposed to be Swedish
+ // We treat it like ASCII though.
+ return ISO2022Modes.ModeASCII;
+ }
+ else if (bytes[2] == 'J') // <esc>(J
+ {
+ // Actually this is supposed to be Roman
+ // 2 characters are different, but historically we treat it as ascii
+ return ISO2022Modes.ModeASCII;
+ }
+ else if (bytes[2] == 'I') // <esc>(I
+ {
+ return ISO2022Modes.ModeHalfwidthKatakana;
+ }
+ }
+ else if (bytes[1] == '$')
+ {
+ if (bytes[2] == '@' || // <esc>$@
+ bytes[2] == 'B') // <esc>$B
+ {
+ return ISO2022Modes.ModeJIS0208;
+ }
+ else
+ {
+ // Looking for <esc>$(D
+ if (escapeCount < 4)
+ return ISO2022Modes.ModeIncompleteEscape;
+
+ if (bytes[2] == '(' && bytes[3] == 'D') // <esc>$(D
+ {
+ // Mlang treated 0208 like 0212 even though that's wrong
+ return ISO2022Modes.ModeJIS0208;
+ }
+ }
+ }
+ else if (bytes[1] == '&')
+ {
+ if (bytes[2] == '@') // <esc>&@
+ {
+ // Ignore ESC & @ (prefix to <esc>$B)
+ return ISO2022Modes.ModeNOOP;
+ }
+ }
+
+ // If we get here we fell through and have an invalid/unknown escape sequence
+ return ISO2022Modes.ModeInvalidEscape;
+ }
+
+ private byte DecrementEscapeBytes(ref byte[] bytes, ref int count)
+ {
+ Contract.Assert(count > 0, "[ISO2022Encoding.DecrementEscapeBytes]count > 0");
+
+ // Decrement our count
+ count--;
+
+ // Remember the first one
+ byte returnValue = bytes[0];
+
+ // Move them down one.
+ for (int i = 0; i < count; i++)
+ {
+ bytes[i] = bytes[i+1];
+ }
+
+ // Clear out the last byte
+ bytes[count] = 0;
+
+ // Return the old 1st byte
+ return returnValue;
+ }
+
+ // Note that in DBCS mode mlang passed through ' ', '\t' and '\n' as SBCS characters
+ // probably to allow mailer formatting without too much extra work.
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetCharsCP50225KR(byte* bytes, int byteCount,
+ char* chars, int charCount, ISO2022Decoder decoder)
+ {
+ // Get our info.
+ Encoding.EncodingCharBuffer buffer = new Encoding.EncodingCharBuffer(
+ this, decoder, chars, charCount, bytes, byteCount);
+
+ // No mode information yet
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII; // Our current Mode
+
+ byte[] escapeBytes = new byte[4];
+ int escapeCount = 0;
+
+ if (decoder != null)
+ {
+ currentMode = decoder.currentMode;
+
+ // See if we have leftover decoder buffer to use
+ // Load our bytesLeftOver
+ escapeCount = decoder.bytesLeftOverCount;
+
+ // Don't want to mess up decoder if we're counting or throw an exception
+ for (int i = 0; i < escapeCount; i++)
+ escapeBytes[i] = decoder.bytesLeftOver[i];
+ }
+
+ // Do this until the end, just do '?' replacement because we don't have fallbacks for decodings.
+ while (buffer.MoreData || escapeCount > 0)
+ {
+ byte ch;
+
+ if (escapeCount > 0)
+ {
+ // Get more escape sequences if necessary
+ if (escapeBytes[0] == ESCAPE)
+ {
+ // Stop if no more input
+ if (!buffer.MoreData)
+ {
+ if (decoder != null && !decoder.MustFlush)
+ break;
+ }
+ else
+ {
+ // Add it to the sequence we can check
+ escapeBytes[escapeCount++] = buffer.GetNextByte();
+
+ // We have an escape sequence
+ ISO2022Modes modeReturn =
+ CheckEscapeSequenceKR(escapeBytes, escapeCount);
+
+ if (modeReturn != ISO2022Modes.ModeInvalidEscape)
+ {
+ if (modeReturn != ISO2022Modes.ModeIncompleteEscape)
+ {
+ // Processed escape correctly, no effect (we know about KR mode)
+ escapeCount = 0;
+ }
+
+ // Either way, continue to get next escape or real byte
+ continue;
+ }
+ }
+
+ // If ModeInvalidEscape, or no input & must flush, then fall through to add escape.
+ }
+
+ // Still have something left over in escape buffer
+ // Get it and move them down one
+ ch = DecrementEscapeBytes(ref escapeBytes, ref escapeCount);
+ }
+ else
+ {
+ // Get our next byte
+ ch = buffer.GetNextByte();
+
+ if (ch == ESCAPE)
+ {
+ // We'll have an escape sequence, use it if we don't have one buffered already
+ if (escapeCount == 0)
+ {
+ // Start this new escape sequence
+ escapeBytes[0] = ch;
+ escapeCount = 1;
+ continue;
+ }
+
+ // Flush previous escape sequence, then reuse this escape byte
+ buffer.AdjustBytes(-1);
+ }
+ }
+
+ if (ch == SHIFT_OUT)
+ {
+ currentMode = ISO2022Modes.ModeKR;
+ continue;
+ }
+ else if (ch == SHIFT_IN)
+ {
+ currentMode = ISO2022Modes.ModeASCII;
+ continue;
+ }
+
+ // Get our full character
+ ushort iBytes = ch;
+ bool b2Bytes = false;
+
+ // MLANG was passing through ' ', '\t' and '\n', so we do so as well, but I don't see that in the RFC.
+ if (currentMode == ISO2022Modes.ModeKR && ch != ' ' && ch != '\t' && ch != '\n')
+ {
+ //
+ // To handle errors, we need to check:
+ // 1. if trailbyte is there
+ // 2. if code is valid
+ //
+ if (escapeCount > 0)
+ {
+ // Let another escape fall through
+ if (escapeBytes[0] != ESCAPE)
+ {
+ // Move them down one & get the next data
+ iBytes <<= 8;
+ iBytes |= DecrementEscapeBytes(ref escapeBytes, ref escapeCount);
+ b2Bytes = true;
+ }
+ }
+ else if (buffer.MoreData)
+ {
+ iBytes <<= 8;
+ iBytes |= buffer.GetNextByte();
+ b2Bytes = true;
+ }
+ else
+ {
+ // Not enough input, use decoder if possible
+ if (decoder == null || decoder.MustFlush)
+ {
+ // No decoder, do fallback for lonely 1st byte
+ buffer.Fallback(ch);
+ break;
+ }
+
+ // Stick it in the decoder if we're not counting
+ if (chars != null)
+ {
+ escapeBytes[0] = ch;
+ escapeCount = 1;
+ }
+ break;
+ }
+ }
+
+ // We have a iBytes to try to convert.
+ char c = mapBytesToUnicode[iBytes];
+
+ // See if it was unknown
+ if (c == UNKNOWN_CHAR_FLAG && iBytes != 0)
+ {
+ // Have to do fallback
+ if (b2Bytes)
+ {
+ if (!buffer.Fallback((byte)(iBytes >> 8), (byte)iBytes))
+ break;
+ }
+ else
+ {
+ if (!buffer.Fallback(ch))
+ break;
+ }
+ }
+ else
+ {
+ if (!buffer.AddChar(c, b2Bytes ? 2:1))
+ break;
+ }
+ }
+
+ // Make sure our decoder state matches our mode, if not counting
+ if (chars != null && decoder != null)
+ {
+ // Remember it if we don't flush
+ if (!decoder.MustFlush || escapeCount != 0)
+ {
+ // Either not flushing or had state (from convert)
+ Contract.Assert(!decoder.MustFlush || !decoder.m_throwOnOverflow,
+ "[ISO2022Encoding.GetCharsCP50225KR]Expected no state or not converting or not flushing");
+
+ decoder.currentMode = currentMode;
+
+ // Remember escape buffer
+ decoder.bytesLeftOverCount = escapeCount;
+ decoder.bytesLeftOver = escapeBytes;
+ }
+ else
+ {
+ // We flush, clear buffer
+ decoder.currentMode = ISO2022Modes.ModeASCII;
+ decoder.shiftInOutMode = ISO2022Modes.ModeASCII;
+ decoder.bytesLeftOverCount = 0;
+ }
+
+ decoder.m_bytesUsed = buffer.BytesUsed;
+ }
+
+ // Return # of characters we found
+ return buffer.Count;
+ }
+
+ // We know we have an escape sequence, so check it starting with the byte after the escape
+ private ISO2022Modes CheckEscapeSequenceKR( byte[] bytes, int escapeCount )
+ {
+ // Have an escape sequence
+ if (bytes[0] != ESCAPE)
+ return ISO2022Modes.ModeInvalidEscape;
+
+ if (escapeCount < 4)
+ return ISO2022Modes.ModeIncompleteEscape;
+
+ if (bytes[1] == '$' && bytes[2] == ')' && bytes[3] == 'C') // <esc>$)C
+ return ISO2022Modes.ModeKR;
+
+ // If we get here we fell through and have an invalid/unknown escape sequence
+ return ISO2022Modes.ModeInvalidEscape;
+ }
+
+ // CP52936 is HZ Encoding
+ // HZ Encoding has 4 shift sequences:
+ // ~~ '~' (\u7e)
+ // ~} shift into 1 byte mode,
+ // ~{ shift into 2 byte GB 2312-80
+ // ~<NL> Maintain 2 byte mode across new lines (ignore both ~ and <NL> characters)
+ // (This is for mailers that restrict to 70 or 80 or whatever character lines)
+ //
+ // According to comment in mlang, lead & trail byte ranges are described in RFC 1843
+ // RFC 1843 => valid HZ code range: leading byte 0x21 - 0x77, 2nd byte 0x21 - 0x7e
+ // Our 936 code points are or'd with 0x8080, so lead byte 0xa1 - 0xf7, trail byte 0xa1 - 0xfe
+ //
+ // This encoding is designed for transmission by e-mail and news. No bytes should have high bit set.
+ // (all bytes <= 0x7f)
+ [System.Security.SecurityCritical] // auto-generated
+ private unsafe int GetCharsCP52936(byte* bytes, int byteCount,
+ char* chars, int charCount, ISO2022Decoder decoder)
+ {
+ Contract.Assert(byteCount >=0, "[ISO2022Encoding.GetCharsCP52936]count >=0");
+ Contract.Assert(bytes!=null, "[ISO2022Encoding.GetCharsCP52936]bytes!=null");
+
+ // Get our info.
+ Encoding.EncodingCharBuffer buffer = new Encoding.EncodingCharBuffer(
+ this, decoder, chars, charCount, bytes, byteCount);
+
+ // No mode information yet
+ ISO2022Modes currentMode = ISO2022Modes.ModeASCII;
+ int byteLeftOver = -1;
+ bool bUsedDecoder = false;
+
+ if (decoder != null)
+ {
+ currentMode = decoder.currentMode;
+ // See if we have leftover decoder buffer to use
+ // Don't want to mess up decoder if we're counting or throw an exception
+ if (decoder.bytesLeftOverCount != 0 )
+ {
+ // Load our bytesLeftOver
+ byteLeftOver = decoder.bytesLeftOver[0];
+ }
+ }
+
+ // Do this until the end, just do '?' replacement because we don't have fallbacks for decodings.
+ while (buffer.MoreData || byteLeftOver >= 0)
+ {
+ byte ch;
+
+ // May have a left over byte
+ if (byteLeftOver >= 0)
+ {
+ ch = (byte)byteLeftOver;
+ byteLeftOver = -1;
+ }
+ else
+ {
+ ch = buffer.GetNextByte();
+ }
+
+ // We're in escape mode
+ if (ch == '~')
+ {
+ // Next char is type of switch
+ if (!buffer.MoreData)
+ {
+ // We don't have anything left, it'll be in decoder or a ?
+ // don't fail if we are allowing overflows
+ if (decoder == null || decoder.MustFlush)
+ {
+ // We'll be a '?'
+ buffer.Fallback(ch);
+ // break if we fail & break if we don't (because !MoreData)
+ // Add succeeded, continue
+ break;
+ }
+
+ // Stick it in decoder
+ if (decoder != null)
+ decoder.ClearMustFlush();
+
+ if (chars != null)
+ {
+ decoder.bytesLeftOverCount = 1;
+ decoder.bytesLeftOver[0] = (byte)'~';
+ bUsedDecoder = true;
+ }
+ break;
+ }
+
+ // What type is it?, get 2nd byte
+ ch = buffer.GetNextByte();
+
+ if (ch == '~' && currentMode == ISO2022Modes.ModeASCII)
+ {
+ // Its just a ~~ replacement for ~, add it
+ if (!buffer.AddChar((char)ch, 2))
+ // Add failed, break for converting
+ break;
+
+ // Add succeeded, continue
+ continue;
+ }
+ else if (ch == '{')
+ {
+ // Switching to Double Byte mode
+ currentMode = ISO2022Modes.ModeHZ;
+ continue;
+ }
+ else if (ch == '}')
+ {
+ // Switching to ASCII mode
+ currentMode = ISO2022Modes.ModeASCII;
+ continue;
+ }
+ else if (ch == '\n')
+ {
+ // Ignore ~\n sequence
+ continue;
+ }
+ else
+ {
+ // Unknown escape, back up and try the '~' as a "normal" byte or lead byte
+ buffer.AdjustBytes(-1);
+ ch = (byte)'~';
+ }
+ }
+
+ // go ahead and add our data
+ if (currentMode != ISO2022Modes.ModeASCII)
+ {
+ // Should be ModeHZ
+ Contract.Assert(currentMode == ISO2022Modes.ModeHZ, "[ISO2022Encoding.GetCharsCP52936]Expected ModeHZ");
+ char cm;
+
+ // Everett allowed characters < 0x20 to be passed as if they were ASCII
+ if (ch < 0x20)
+ {
+ // Emit it as ASCII
+ goto STOREASCII;
+ }
+
+ // Its multibyte, should have another byte
+ if (!buffer.MoreData)
+ {
+ // No bytes left
+ // don't fail if we are allowing overflows
+ if (decoder == null || decoder.MustFlush)
+ {
+ // Not enough bytes, fallback lead byte
+ buffer.Fallback(ch);
+
+ // Break if we fail & break because !MoreData
+ break;
+ }
+
+ if (decoder != null)
+ decoder.ClearMustFlush();
+
+ // Stick it in decoder
+ if (chars != null)
+ {
+ decoder.bytesLeftOverCount = 1;
+ decoder.bytesLeftOver[0] = ch;
+ bUsedDecoder = true;
+ }
+ break;
+ }
+
+ // Everett uses space as an escape character for single SBCS bytes
+ byte ch2 = buffer.GetNextByte();
+ ushort iBytes = (ushort)(ch << 8 | ch2);
+
+ if (ch == ' ' && ch2 != 0)
+ {
+ // Get next char and treat it like ASCII (Everett treated space like an escape
+ // allowing the next char to be just ascii)
+ cm = (char)ch2;
+ goto STOREMULTIBYTE;
+ }
+
+ // Bytes should be in range: lead byte 0x21-0x77, trail byte: 0x21 - 0x7e
+ if ((ch < 0x21 || ch > 0x77 || ch2 < 0x21 || ch2 > 0x7e) &&
+ // Everett allowed high bit mappings for same characters (but only if both bits set)
+ (ch < 0xa1 || ch > 0xf7 || ch2 < 0xa1 || ch2 > 0xfe))
+ {
+ // For some reason Everett allowed XX20 to become unicode 3000... (ideo sp)
+ if (ch2 == 0x20 && 0x21 <= ch && ch <= 0x7d)
+ {
+ iBytes = 0x2121;
+ goto MULTIBYTE;
+ }
+
+ // Illegal char, use fallback. If lead byte is 0 have to do it special and do it first
+ if (!buffer.Fallback((byte)(iBytes>>8), (byte)(iBytes)))
+ break;
+ continue;
+ }
+
+ MULTIBYTE:
+ iBytes |= 0x8080;
+ // Look up the multibyte char to stick it in our data
+
+ // We have a iBytes to try to convert.
+ cm = mapBytesToUnicode[iBytes];
+
+ STOREMULTIBYTE:
+
+ // See if it was unknown
+ if (cm == UNKNOWN_CHAR_FLAG && iBytes != 0)
+ {
+ // Fall back the unknown stuff
+ if (!buffer.Fallback((byte)(iBytes>>8), (byte)(iBytes)))
+ break;
+ continue;
+ }
+
+ if (!buffer.AddChar(cm, 2))
+ break; // convert ran out of buffer, stop
+ continue;
+ }
+
+ // Just ASCII
+ // We allow some chars > 7f because everett did, so we have to look them up.
+ STOREASCII:
+ char c = mapBytesToUnicode[ch];
+
+ // Check if it was unknown
+ if ((c == UNKNOWN_CHAR_FLAG || c == 0) && (ch != 0))
+ {
+ // fallback the unkown bytes
+ if (!buffer.Fallback((byte)ch))
+ break;
+ continue;
+ }
+
+ // Go ahead and add our ASCII character
+ if (!buffer.AddChar(c))
+ break; // convert ran out of buffer, stop
+ }
+
+ // Need to remember our state, IF we're not counting
+ if (chars != null && decoder != null)
+ {
+ if (!bUsedDecoder)
+ {
+ // If we didn't use it, clear the byte left over
+ decoder.bytesLeftOverCount = 0;
+ }
+
+ if (decoder.MustFlush && decoder.bytesLeftOverCount == 0)
+ {
+ decoder.currentMode = ISO2022Modes.ModeASCII;
+ }
+ else
+ {
+ // Either not flushing or had state (from convert)
+ Contract.Assert(!decoder.MustFlush || !decoder.m_throwOnOverflow,
+ "[ISO2022Encoding.GetCharsCP52936]Expected no state or not converting or not flushing");
+
+ decoder.currentMode = currentMode;
+ }
+ decoder.m_bytesUsed = buffer.BytesUsed;
+ }
+
+ // Return # of characters we found
+ return buffer.Count;
+ }
+
+ // Note: These all end up with 1/2 bytes of average byte count, so unless we're 1 we're always
+ // charCount/2 bytes too big.
+ public override int GetMaxByteCount(int charCount)
+ {
+ if (charCount < 0)
+ throw new ArgumentOutOfRangeException("charCount",
+ Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
+ Contract.EndContractBlock();
+
+ // Characters would be # of characters + 1 in case high surrogate is ? * max fallback
+ long byteCount = (long)charCount + 1;
+
+ if (EncoderFallback.MaxCharCount > 1)
+ byteCount *= EncoderFallback.MaxCharCount;
+
+ // Start with just generic DBCS values (sort of).
+ int perChar = 2;
+ int extraStart = 0;
+ int extraEnd = 0;
+
+ switch (CodePage)
+ {
+ case 50220:
+ case 50221:
+ // 2 bytes per char + 3 bytes switch to JIS 0208 or 1 byte + 3 bytes switch to 1 byte CP
+ perChar = 5; // 5 max (4.5 average)
+ extraEnd = 3; // 3 bytes to shift back to ASCII
+ break;
+ case 50222:
+ // 2 bytes per char + 3 bytes switch to JIS 0208 or 1 byte + 3 bytes switch to 1 byte CP
+ perChar = 5; // 5 max (4.5 average)
+ extraEnd = 4; // 1 byte to shift from Katakana -> DBCS, 3 bytes to shift back to ASCII from DBCS
+ break;
+ case 50225:
+ // 2 bytes per char + 1 byte SO, or 1 byte per char + 1 byte SI.
+ perChar = 3; // 3 max, (2.5 average)
+ extraStart = 4; // EUC-KR marker appears at beginning of file.
+ extraEnd = 1; // 1 byte to shift back to ascii if necessary.
+ break;
+ case 52936:
+ // 2 bytes per char + 2 byte shift, or 1 byte + 1 byte shift
+ // Worst case: left over surrogate with no low surrogate is extra ?, could have to switch to ASCII, then could have HZ and flush to ASCII mode
+ perChar = 4; // 4 max, (3.5 average if every other char is HZ/ASCII)
+ extraEnd = 2; // 2 if we have to shift back to ASCII
+ break;
+ }
+
+ // Return our surrogate and End plus perChar for each char.
+ byteCount *= perChar;
+ byteCount += extraStart + extraEnd;
+
+ if (byteCount > 0x7fffffff)
+ throw new ArgumentOutOfRangeException("charCount", Environment.GetResourceString("ArgumentOutOfRange_GetByteCountOverflow"));
+
+ return (int)byteCount;
+ }
+
+ public override int GetMaxCharCount(int byteCount)
+ {
+ if (byteCount < 0)
+ throw new ArgumentOutOfRangeException("byteCount",
+ Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
+ Contract.EndContractBlock();
+
+ int perChar = 1;
+ int extraDecoder = 1;
+
+ switch (CodePage)
+ {
+ case 50220:
+ case 50221:
+ case 50222:
+ case 50225:
+ perChar = 1; // Worst case all ASCII
+ extraDecoder = 3; // Could have left over 3 chars of 4 char escape sequence, that all become ?
+ break;
+ case 52936:
+ perChar = 1; // Worst case all ASCII
+ extraDecoder = 1; // sequences are 2 chars, so if next one is illegal, then previous 1 could be ?
+ break;
+ }
+
+ // Figure out our length, perchar * char + whatever extra our decoder could do to us.
+ long charCount = ((long)byteCount * perChar) + extraDecoder;
+
+ // Just in case we have to fall back unknown ones.
+ if (DecoderFallback.MaxCharCount > 1)
+ charCount *= DecoderFallback.MaxCharCount;
+
+ if (charCount > 0x7fffffff)
+ throw new ArgumentOutOfRangeException("byteCount", Environment.GetResourceString("ArgumentOutOfRange_GetCharCountOverflow"));
+
+ return (int)charCount;
+ }
+
+ public override Encoder GetEncoder()
+ {
+ return new ISO2022Encoder(this);
+ }
+
+ public override Decoder GetDecoder()
+ {
+ return new ISO2022Decoder(this);
+ }
+
+ [Serializable]
+ internal class ISO2022Encoder : System.Text.EncoderNLS
+ {
+ internal ISO2022Modes currentMode;
+ internal ISO2022Modes shiftInOutMode;
+
+ internal ISO2022Encoder(EncodingNLS encoding) : base(encoding)
+ {
+ // base calls reset
+ }
+
+ public override void Reset()
+ {
+ // Reset
+ currentMode = ISO2022Modes.ModeASCII;
+ shiftInOutMode = ISO2022Modes.ModeASCII;
+ charLeftOver = (char)0;
+ if (m_fallbackBuffer != null)
+ m_fallbackBuffer.Reset();
+ }
+
+ // Anything left in our encoder?
+ internal override bool HasState
+ {
+ get
+ {
+ // Don't check shift-out mode, it may be ascii (JP) or not (KR)
+ return (this.charLeftOver != (char)0 ||
+ currentMode != ISO2022Modes.ModeASCII);
+ }
+ }
+ }
+
+ [Serializable]
+ internal class ISO2022Decoder : System.Text.DecoderNLS
+ {
+ internal byte[] bytesLeftOver;
+ internal int bytesLeftOverCount;
+ internal ISO2022Modes currentMode;
+ internal ISO2022Modes shiftInOutMode;
+
+ internal ISO2022Decoder(EncodingNLS encoding) : base(encoding)
+ {
+ // base calls reset
+ }
+
+ public override void Reset()
+ {
+ // Reset
+ bytesLeftOverCount = 0;
+ bytesLeftOver = new byte[4];
+ currentMode = ISO2022Modes.ModeASCII;
+ shiftInOutMode = ISO2022Modes.ModeASCII;
+ if (m_fallbackBuffer != null)
+ m_fallbackBuffer.Reset();
+ }
+
+ // Anything left in our decoder?
+ internal override bool HasState
+ {
+ get
+ {
+ // If have bytes left over or not shifted back to ASCII then have problem
+ return (this.bytesLeftOverCount != 0 ||
+ currentMode != ISO2022Modes.ModeASCII);
+ }
+ }
+ }
+
+ static ushort[] HalfToFullWidthKanaTable =
+ {
+ 0xa1a3, // 0x8ea1 : Halfwidth Ideographic Period
+ 0xa1d6, // 0x8ea2 : Halfwidth Opening Corner Bracket
+ 0xa1d7, // 0x8ea3 : Halfwidth Closing Corner Bracket
+ 0xa1a2, // 0x8ea4 : Halfwidth Ideographic Comma
+ 0xa1a6, // 0x8ea5 : Halfwidth Katakana Middle Dot
+ 0xa5f2, // 0x8ea6 : Halfwidth Katakana Wo
+ 0xa5a1, // 0x8ea7 : Halfwidth Katakana Small A
+ 0xa5a3, // 0x8ea8 : Halfwidth Katakana Small I
+ 0xa5a5, // 0x8ea9 : Halfwidth Katakana Small U
+ 0xa5a7, // 0x8eaa : Halfwidth Katakana Small E
+ 0xa5a9, // 0x8eab : Halfwidth Katakana Small O
+ 0xa5e3, // 0x8eac : Halfwidth Katakana Small Ya
+ 0xa5e5, // 0x8ead : Halfwidth Katakana Small Yu
+ 0xa5e7, // 0x8eae : Halfwidth Katakana Small Yo
+ 0xa5c3, // 0x8eaf : Halfwidth Katakana Small Tu
+ 0xa1bc, // 0x8eb0 : Halfwidth Katakana-Hiragana Prolonged Sound Mark
+ 0xa5a2, // 0x8eb1 : Halfwidth Katakana A
+ 0xa5a4, // 0x8eb2 : Halfwidth Katakana I
+ 0xa5a6, // 0x8eb3 : Halfwidth Katakana U
+ 0xa5a8, // 0x8eb4 : Halfwidth Katakana E
+ 0xa5aa, // 0x8eb5 : Halfwidth Katakana O
+ 0xa5ab, // 0x8eb6 : Halfwidth Katakana Ka
+ 0xa5ad, // 0x8eb7 : Halfwidth Katakana Ki
+ 0xa5af, // 0x8eb8 : Halfwidth Katakana Ku
+ 0xa5b1, // 0x8eb9 : Halfwidth Katakana Ke
+ 0xa5b3, // 0x8eba : Halfwidth Katakana Ko
+ 0xa5b5, // 0x8ebb : Halfwidth Katakana Sa
+ 0xa5b7, // 0x8ebc : Halfwidth Katakana Si
+ 0xa5b9, // 0x8ebd : Halfwidth Katakana Su
+ 0xa5bb, // 0x8ebe : Halfwidth Katakana Se
+ 0xa5bd, // 0x8ebf : Halfwidth Katakana So
+ 0xa5bf, // 0x8ec0 : Halfwidth Katakana Ta
+ 0xa5c1, // 0x8ec1 : Halfwidth Katakana Ti
+ 0xa5c4, // 0x8ec2 : Halfwidth Katakana Tu
+ 0xa5c6, // 0x8ec3 : Halfwidth Katakana Te
+ 0xa5c8, // 0x8ec4 : Halfwidth Katakana To
+ 0xa5ca, // 0x8ec5 : Halfwidth Katakana Na
+ 0xa5cb, // 0x8ec6 : Halfwidth Katakana Ni
+ 0xa5cc, // 0x8ec7 : Halfwidth Katakana Nu
+ 0xa5cd, // 0x8ec8 : Halfwidth Katakana Ne
+ 0xa5ce, // 0x8ec9 : Halfwidth Katakana No
+ 0xa5cf, // 0x8eca : Halfwidth Katakana Ha
+ 0xa5d2, // 0x8ecb : Halfwidth Katakana Hi
+ 0xa5d5, // 0x8ecc : Halfwidth Katakana Hu
+ 0xa5d8, // 0x8ecd : Halfwidth Katakana He
+ 0xa5db, // 0x8ece : Halfwidth Katakana Ho
+ 0xa5de, // 0x8ecf : Halfwidth Katakana Ma
+ 0xa5df, // 0x8ed0 : Halfwidth Katakana Mi
+ 0xa5e0, // 0x8ed1 : Halfwidth Katakana Mu
+ 0xa5e1, // 0x8ed2 : Halfwidth Katakana Me
+ 0xa5e2, // 0x8ed3 : Halfwidth Katakana Mo
+ 0xa5e4, // 0x8ed4 : Halfwidth Katakana Ya
+ 0xa5e6, // 0x8ed5 : Halfwidth Katakana Yu
+ 0xa5e8, // 0x8ed6 : Halfwidth Katakana Yo
+ 0xa5e9, // 0x8ed7 : Halfwidth Katakana Ra
+ 0xa5ea, // 0x8ed8 : Halfwidth Katakana Ri
+ 0xa5eb, // 0x8ed9 : Halfwidth Katakana Ru
+ 0xa5ec, // 0x8eda : Halfwidth Katakana Re
+ 0xa5ed, // 0x8edb : Halfwidth Katakana Ro
+ 0xa5ef, // 0x8edc : Halfwidth Katakana Wa
+ 0xa5f3, // 0x8edd : Halfwidth Katakana N
+ 0xa1ab, // 0x8ede : Halfwidth Katakana Voiced Sound Mark
+ 0xa1ac // 0x8edf : Halfwidth Katakana Semi-Voiced Sound Mark
+ };
+ }
+}
+#endif // FEATURE_CODEPAGES_FILE
+