summaryrefslogtreecommitdiff
path: root/Source/cm_sha2.c
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-10-30 22:39:57 (GMT)
committerAnas Nashif <anas.nashif@intel.com>2012-10-30 22:39:57 (GMT)
commit035c7fabc3b82cbc9a346c11abe2e9462b4c0379 (patch)
tree7e40f5a790eae329a8c5d3e59f046451767956ff /Source/cm_sha2.c
downloadcmake-035c7fabc3b82cbc9a346c11abe2e9462b4c0379.zip
cmake-035c7fabc3b82cbc9a346c11abe2e9462b4c0379.tar.gz
cmake-035c7fabc3b82cbc9a346c11abe2e9462b4c0379.tar.bz2
Imported Upstream version 2.8.9upstream/2.8.9
Diffstat (limited to 'Source/cm_sha2.c')
-rw-r--r--Source/cm_sha2.c1613
1 files changed, 1613 insertions, 0 deletions
diff --git a/Source/cm_sha2.c b/Source/cm_sha2.c
new file mode 100644
index 0000000..12c39ed
--- /dev/null
+++ b/Source/cm_sha2.c
@@ -0,0 +1,1613 @@
+/*
+ * FILE: sha2.c
+ * AUTHOR: Aaron D. Gifford
+ * http://www.aarongifford.com/computers/sha.html
+ *
+ * Copyright (c) 2000-2003, Aaron D. Gifford
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holder nor the names of contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $
+ */
+
+#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
+#include <assert.h> /* assert() */
+#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */
+
+/*
+ * ASSERT NOTE:
+ * Some sanity checking code is included using assert(). On my FreeBSD
+ * system, this additional code can be removed by compiling with NDEBUG
+ * defined. Check your own systems manpage on assert() to see how to
+ * compile WITHOUT the sanity checking code on your system.
+ *
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file). Either define on the command line, for example:
+ *
+ * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ * #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+
+
+/*** SHA-224/256/384/512 Machine Architecture Definitions *************/
+/*
+ * BYTE_ORDER NOTE:
+ *
+ * Please make sure that your system defines BYTE_ORDER. If your
+ * architecture is little-endian, make sure it also defines
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
+ * equivilent.
+ *
+ * If your system does not define the above, then you can do so by
+ * hand like this:
+ *
+ * #define LITTLE_ENDIAN 1234
+ * #define BIG_ENDIAN 4321
+ *
+ * And for little-endian machines, add:
+ *
+ * #define BYTE_ORDER LITTLE_ENDIAN
+ *
+ * Or for big-endian machines:
+ *
+ * #define BYTE_ORDER BIG_ENDIAN
+ *
+ * The FreeBSD machine this was written on defines BYTE_ORDER
+ * appropriately by including <sys/types.h> (which in turn includes
+ * <machine/endian.h> where the appropriate definitions are actually
+ * made).
+ */
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
+/* CMake modification: use byte order from cmIML. */
+# include "cmIML/ABI.h"
+# undef BYTE_ORDER
+# undef BIG_ENDIAN
+# undef LITTLE_ENDIAN
+# define BYTE_ORDER cmIML_ABI_ENDIAN_ID
+# define BIG_ENDIAN cmIML_ABI_ENDIAN_ID_BIG
+# define LITTLE_ENDIAN cmIML_ABI_ENDIAN_ID_LITTLE
+#endif
+
+/* CMake modification: use types computed in header. */
+typedef cm_sha2_uint8_t sha_byte; /* Exactly 1 byte */
+typedef cm_sha2_uint32_t sha_word32; /* Exactly 4 bytes */
+typedef cm_sha2_uint64_t sha_word64; /* Exactly 8 bytes */
+#define SHA_UINT32_C(x) cmIML_INT_UINT32_C(x)
+#define SHA_UINT64_C(x) cmIML_INT_UINT64_C(x)
+#if defined(__BORLANDC__)
+# pragma warn -8004 /* variable assigned value that is never used */
+#endif
+#if defined(__clang__)
+# pragma clang diagnostic ignored "-Wcast-align"
+#endif
+
+/*** ENDIAN REVERSAL MACROS *******************************************/
+#if BYTE_ORDER == LITTLE_ENDIAN
+#define REVERSE32(w,x) { \
+ sha_word32 tmp = (w); \
+ tmp = (tmp >> 16) | (tmp << 16); \
+ (x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \
+ ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \
+}
+#define REVERSE64(w,x) { \
+ sha_word64 tmp = (w); \
+ tmp = (tmp >> 32) | (tmp << 32); \
+ tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
+ ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
+ (x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \
+ ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \
+}
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+/*
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
+ * unsigned 128-bit integer (represented using a two-element array of
+ * 64-bit words):
+ */
+#define ADDINC128(w,n) { \
+ (w)[0] += (sha_word64)(n); \
+ if ((w)[0] < (n)) { \
+ (w)[1]++; \
+ } \
+}
+
+/*
+ * Macros for copying blocks of memory and for zeroing out ranges
+ * of memory. Using these macros makes it easy to switch from
+ * using memset()/memcpy() and using bzero()/bcopy().
+ *
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
+ * choose to use:
+ */
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
+/* Default to memset()/memcpy() if no option is specified */
+#define SHA2_USE_MEMSET_MEMCPY 1
+#endif
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
+/* Abort with an error if BOTH options are defined */
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
+#endif
+
+#ifdef SHA2_USE_MEMSET_MEMCPY
+#define MEMSET_BZERO(p,l) memset((p), 0, (l))
+#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
+#endif
+#ifdef SHA2_USE_BZERO_BCOPY
+#define MEMSET_BZERO(p,l) bzero((p), (l))
+#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
+#endif
+
+
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
+/*
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
+ *
+ * NOTE: In the original SHA-256/384/512 document, the shift-right
+ * function was named R and the rotate-right function was called S.
+ * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
+ * web.)
+ *
+ * The newer NIST FIPS 180-2 document uses a much clearer naming
+ * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
+ * rotate-left. (See:
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ * on the web.)
+ *
+ * WARNING: These macros must be used cautiously, since they reference
+ * supplied parameters sometimes more than once, and thus could have
+ * unexpected side-effects if used without taking this into account.
+ */
+/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
+#define SHR(b,x) ((x) >> (b))
+/* 32-bit Rotate-right (used in SHA-256): */
+#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
+#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
+/* 32-bit Rotate-left (used in SHA-1): */
+#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
+
+/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */
+#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+/* Function used in SHA-1: */
+#define Parity(x,y,z) ((x) ^ (y) ^ (z))
+
+/* Four logical functions used in SHA-256: */
+#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
+#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
+#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x)))
+#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x)))
+
+/* Four of six logical functions used in SHA-384 and SHA-512: */
+#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
+#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
+#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
+#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
+
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
+
+/* SHA-224 and SHA-256: */
+void SHA256_Internal_Init(SHA_CTX*, const sha_word32*);
+void SHA256_Internal_Last(SHA_CTX*);
+void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*);
+
+/* SHA-384 and SHA-512: */
+void SHA512_Internal_Init(SHA_CTX*, const sha_word64*);
+void SHA512_Internal_Last(SHA_CTX*);
+void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*);
+
+
+/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/
+
+/* Hash constant words K for SHA-1: */
+#define K1_0_TO_19 SHA_UINT32_C(0x5a827999)
+#define K1_20_TO_39 SHA_UINT32_C(0x6ed9eba1)
+#define K1_40_TO_59 SHA_UINT32_C(0x8f1bbcdc)
+#define K1_60_TO_79 SHA_UINT32_C(0xca62c1d6)
+
+/* Initial hash value H for SHA-1: */
+static const sha_word32 sha1_initial_hash_value[5] = {
+ SHA_UINT32_C(0x67452301),
+ SHA_UINT32_C(0xefcdab89),
+ SHA_UINT32_C(0x98badcfe),
+ SHA_UINT32_C(0x10325476),
+ SHA_UINT32_C(0xc3d2e1f0)
+};
+
+/* Hash constant words K for SHA-224 and SHA-256: */
+static const sha_word32 K256[64] = {
+ SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491),
+ SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5),
+ SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1),
+ SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5),
+ SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01),
+ SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3),
+ SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe),
+ SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174),
+ SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786),
+ SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc),
+ SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa),
+ SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da),
+ SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d),
+ SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7),
+ SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147),
+ SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967),
+ SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138),
+ SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13),
+ SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb),
+ SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85),
+ SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b),
+ SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3),
+ SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624),
+ SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070),
+ SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08),
+ SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5),
+ SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a),
+ SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3),
+ SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f),
+ SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208),
+ SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb),
+ SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2)
+};
+
+/* Initial hash value H for SHA-224: */
+static const sha_word32 sha224_initial_hash_value[8] = {
+ SHA_UINT32_C(0xc1059ed8),
+ SHA_UINT32_C(0x367cd507),
+ SHA_UINT32_C(0x3070dd17),
+ SHA_UINT32_C(0xf70e5939),
+ SHA_UINT32_C(0xffc00b31),
+ SHA_UINT32_C(0x68581511),
+ SHA_UINT32_C(0x64f98fa7),
+ SHA_UINT32_C(0xbefa4fa4)
+};
+
+/* Initial hash value H for SHA-256: */
+static const sha_word32 sha256_initial_hash_value[8] = {
+ SHA_UINT32_C(0x6a09e667),
+ SHA_UINT32_C(0xbb67ae85),
+ SHA_UINT32_C(0x3c6ef372),
+ SHA_UINT32_C(0xa54ff53a),
+ SHA_UINT32_C(0x510e527f),
+ SHA_UINT32_C(0x9b05688c),
+ SHA_UINT32_C(0x1f83d9ab),
+ SHA_UINT32_C(0x5be0cd19)
+};
+
+/* Hash constant words K for SHA-384 and SHA-512: */
+static const sha_word64 K512[80] = {
+ SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd),
+ SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc),
+ SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019),
+ SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118),
+ SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe),
+ SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2),
+ SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1),
+ SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694),
+ SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3),
+ SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65),
+ SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483),
+ SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5),
+ SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210),
+ SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4),
+ SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725),
+ SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70),
+ SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926),
+ SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df),
+ SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8),
+ SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b),
+ SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001),
+ SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30),
+ SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910),
+ SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8),
+ SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53),
+ SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8),
+ SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb),
+ SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3),
+ SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60),
+ SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec),
+ SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9),
+ SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b),
+ SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207),
+ SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178),
+ SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6),
+ SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b),
+ SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493),
+ SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c),
+ SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a),
+ SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817)
+};
+
+/* Initial hash value H for SHA-384 */
+static const sha_word64 sha384_initial_hash_value[8] = {
+ SHA_UINT64_C(0xcbbb9d5dc1059ed8),
+ SHA_UINT64_C(0x629a292a367cd507),
+ SHA_UINT64_C(0x9159015a3070dd17),
+ SHA_UINT64_C(0x152fecd8f70e5939),
+ SHA_UINT64_C(0x67332667ffc00b31),
+ SHA_UINT64_C(0x8eb44a8768581511),
+ SHA_UINT64_C(0xdb0c2e0d64f98fa7),
+ SHA_UINT64_C(0x47b5481dbefa4fa4)
+};
+
+/* Initial hash value H for SHA-512 */
+static const sha_word64 sha512_initial_hash_value[8] = {
+ SHA_UINT64_C(0x6a09e667f3bcc908),
+ SHA_UINT64_C(0xbb67ae8584caa73b),
+ SHA_UINT64_C(0x3c6ef372fe94f82b),
+ SHA_UINT64_C(0xa54ff53a5f1d36f1),
+ SHA_UINT64_C(0x510e527fade682d1),
+ SHA_UINT64_C(0x9b05688c2b3e6c1f),
+ SHA_UINT64_C(0x1f83d9abfb41bd6b),
+ SHA_UINT64_C(0x5be0cd19137e2179)
+};
+
+/*
+ * Constant used by SHA224/256/384/512_End() functions for converting the
+ * digest to a readable hexadecimal character string:
+ */
+static const char *sha_hex_digits = "0123456789abcdef";
+
+
+/*** SHA-1: ***********************************************************/
+void SHA1_Init(SHA_CTX* context) {
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5);
+ MEMSET_BZERO(context->s1.buffer, 64);
+ context->s1.bitcount = 0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-1 round macros: */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND1_0_TO_15(a,b,c,d,e) \
+ REVERSE32(*data++, W1[j]); \
+ (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
+ K1_0_TO_19 + W1[j]; \
+ (b) = ROTL32(30, (b)); \
+ j++;
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND1_0_TO_15(a,b,c,d,e) \
+ (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
+ K1_0_TO_19 + ( W1[j] = *data++ ); \
+ (b) = ROTL32(30, (b)); \
+ j++;
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND1_16_TO_19(a,b,c,d,e) \
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
+ (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
+ (b) = ROTL32(30, b); \
+ j++;
+
+#define ROUND1_20_TO_39(a,b,c,d,e) \
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
+ (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
+ (b) = ROTL32(30, b); \
+ j++;
+
+#define ROUND1_40_TO_59(a,b,c,d,e) \
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
+ (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
+ (b) = ROTL32(30, b); \
+ j++;
+
+#define ROUND1_60_TO_79(a,b,c,d,e) \
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
+ (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
+ (b) = ROTL32(30, b); \
+ j++;
+
+void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
+ sha_word32 a, b, c, d, e;
+ sha_word32 T1, *W1;
+ int j;
+
+ W1 = (sha_word32*)context->s1.buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s1.state[0];
+ b = context->s1.state[1];
+ c = context->s1.state[2];
+ d = context->s1.state[3];
+ e = context->s1.state[4];
+
+ j = 0;
+
+ /* Rounds 0 to 15 unrolled: */
+ ROUND1_0_TO_15(a,b,c,d,e);
+ ROUND1_0_TO_15(e,a,b,c,d);
+ ROUND1_0_TO_15(d,e,a,b,c);
+ ROUND1_0_TO_15(c,d,e,a,b);
+ ROUND1_0_TO_15(b,c,d,e,a);
+ ROUND1_0_TO_15(a,b,c,d,e);
+ ROUND1_0_TO_15(e,a,b,c,d);
+ ROUND1_0_TO_15(d,e,a,b,c);
+ ROUND1_0_TO_15(c,d,e,a,b);
+ ROUND1_0_TO_15(b,c,d,e,a);
+ ROUND1_0_TO_15(a,b,c,d,e);
+ ROUND1_0_TO_15(e,a,b,c,d);
+ ROUND1_0_TO_15(d,e,a,b,c);
+ ROUND1_0_TO_15(c,d,e,a,b);
+ ROUND1_0_TO_15(b,c,d,e,a);
+ ROUND1_0_TO_15(a,b,c,d,e);
+
+ /* Rounds 16 to 19 unrolled: */
+ ROUND1_16_TO_19(e,a,b,c,d);
+ ROUND1_16_TO_19(d,e,a,b,c);
+ ROUND1_16_TO_19(c,d,e,a,b);
+ ROUND1_16_TO_19(b,c,d,e,a);
+
+ /* Rounds 20 to 39 unrolled: */
+ ROUND1_20_TO_39(a,b,c,d,e);
+ ROUND1_20_TO_39(e,a,b,c,d);
+ ROUND1_20_TO_39(d,e,a,b,c);
+ ROUND1_20_TO_39(c,d,e,a,b);
+ ROUND1_20_TO_39(b,c,d,e,a);
+ ROUND1_20_TO_39(a,b,c,d,e);
+ ROUND1_20_TO_39(e,a,b,c,d);
+ ROUND1_20_TO_39(d,e,a,b,c);
+ ROUND1_20_TO_39(c,d,e,a,b);
+ ROUND1_20_TO_39(b,c,d,e,a);
+ ROUND1_20_TO_39(a,b,c,d,e);
+ ROUND1_20_TO_39(e,a,b,c,d);
+ ROUND1_20_TO_39(d,e,a,b,c);
+ ROUND1_20_TO_39(c,d,e,a,b);
+ ROUND1_20_TO_39(b,c,d,e,a);
+ ROUND1_20_TO_39(a,b,c,d,e);
+ ROUND1_20_TO_39(e,a,b,c,d);
+ ROUND1_20_TO_39(d,e,a,b,c);
+ ROUND1_20_TO_39(c,d,e,a,b);
+ ROUND1_20_TO_39(b,c,d,e,a);
+
+ /* Rounds 40 to 59 unrolled: */
+ ROUND1_40_TO_59(a,b,c,d,e);
+ ROUND1_40_TO_59(e,a,b,c,d);
+ ROUND1_40_TO_59(d,e,a,b,c);
+ ROUND1_40_TO_59(c,d,e,a,b);
+ ROUND1_40_TO_59(b,c,d,e,a);
+ ROUND1_40_TO_59(a,b,c,d,e);
+ ROUND1_40_TO_59(e,a,b,c,d);
+ ROUND1_40_TO_59(d,e,a,b,c);
+ ROUND1_40_TO_59(c,d,e,a,b);
+ ROUND1_40_TO_59(b,c,d,e,a);
+ ROUND1_40_TO_59(a,b,c,d,e);
+ ROUND1_40_TO_59(e,a,b,c,d);
+ ROUND1_40_TO_59(d,e,a,b,c);
+ ROUND1_40_TO_59(c,d,e,a,b);
+ ROUND1_40_TO_59(b,c,d,e,a);
+ ROUND1_40_TO_59(a,b,c,d,e);
+ ROUND1_40_TO_59(e,a,b,c,d);
+ ROUND1_40_TO_59(d,e,a,b,c);
+ ROUND1_40_TO_59(c,d,e,a,b);
+ ROUND1_40_TO_59(b,c,d,e,a);
+
+ /* Rounds 60 to 79 unrolled: */
+ ROUND1_60_TO_79(a,b,c,d,e);
+ ROUND1_60_TO_79(e,a,b,c,d);
+ ROUND1_60_TO_79(d,e,a,b,c);
+ ROUND1_60_TO_79(c,d,e,a,b);
+ ROUND1_60_TO_79(b,c,d,e,a);
+ ROUND1_60_TO_79(a,b,c,d,e);
+ ROUND1_60_TO_79(e,a,b,c,d);
+ ROUND1_60_TO_79(d,e,a,b,c);
+ ROUND1_60_TO_79(c,d,e,a,b);
+ ROUND1_60_TO_79(b,c,d,e,a);
+ ROUND1_60_TO_79(a,b,c,d,e);
+ ROUND1_60_TO_79(e,a,b,c,d);
+ ROUND1_60_TO_79(d,e,a,b,c);
+ ROUND1_60_TO_79(c,d,e,a,b);
+ ROUND1_60_TO_79(b,c,d,e,a);
+ ROUND1_60_TO_79(a,b,c,d,e);
+ ROUND1_60_TO_79(e,a,b,c,d);
+ ROUND1_60_TO_79(d,e,a,b,c);
+ ROUND1_60_TO_79(c,d,e,a,b);
+ ROUND1_60_TO_79(b,c,d,e,a);
+
+ /* Compute the current intermediate hash value */
+ context->s1.state[0] += a;
+ context->s1.state[1] += b;
+ context->s1.state[2] += c;
+ context->s1.state[3] += d;
+ context->s1.state[4] += e;
+
+ /* Clean up */
+ a = b = c = d = e = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
+ sha_word32 a, b, c, d, e;
+ sha_word32 T1, *W1;
+ int j;
+
+ W1 = (sha_word32*)context->s1.buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s1.state[0];
+ b = context->s1.state[1];
+ c = context->s1.state[2];
+ d = context->s1.state[3];
+ e = context->s1.state[4];
+ j = 0;
+ do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+ T1 = data[j];
+ /* Copy data while converting to host byte order */
+ REVERSE32(*data++, W1[j]);
+ T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+ T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+ e = d;
+ d = c;
+ c = ROTL32(30, b);
+ b = a;
+ a = T1;
+ j++;
+ } while (j < 16);
+
+ do {
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
+ T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
+ e = d;
+ d = c;
+ c = ROTL32(30, b);
+ b = a;
+ a = T1;
+ j++;
+ } while (j < 20);
+
+ do {
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
+ T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
+ e = d;
+ d = c;
+ c = ROTL32(30, b);
+ b = a;
+ a = T1;
+ j++;
+ } while (j < 40);
+
+ do {
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
+ T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
+ e = d;
+ d = c;
+ c = ROTL32(30, b);
+ b = a;
+ a = T1;
+ j++;
+ } while (j < 60);
+
+ do {
+ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
+ T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
+ e = d;
+ d = c;
+ c = ROTL32(30, b);
+ b = a;
+ a = T1;
+ j++;
+ } while (j < 80);
+
+
+ /* Compute the current intermediate hash value */
+ context->s1.state[0] += a;
+ context->s1.state[1] += b;
+ context->s1.state[2] += c;
+ context->s1.state[3] += d;
+ context->s1.state[4] += e;
+
+ /* Clean up */
+ a = b = c = d = e = T1 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
+ unsigned int freespace, usedspace;
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
+
+ usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = 64 - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace);
+ context->s1.bitcount += freespace << 3;
+ len -= freespace;
+ data += freespace;
+ SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len);
+ context->s1.bitcount += len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= 64) {
+ /* Process as many complete blocks as we can */
+ SHA1_Internal_Transform(context, (sha_word32*)data);
+ context->s1.bitcount += 512;
+ len -= 64;
+ data += 64;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->s1.buffer, data, len);
+ context->s1.bitcount += len << 3;
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+
+void SHA1_Final(sha_byte digest[], SHA_CTX* context) {
+ sha_word32 *d = (sha_word32*)digest;
+ unsigned int usedspace;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (digest == (sha_byte*)0) {
+ /*
+ * No digest buffer, so we can do nothing
+ * except clean up and go home
+ */
+ MEMSET_BZERO(context, sizeof(*context));
+ return;
+ }
+
+ usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
+ if (usedspace == 0) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(context->s1.buffer, 56);
+
+ /* Begin padding with a 1 bit: */
+ *context->s1.buffer = 0x80;
+ } else {
+ /* Begin padding with a 1 bit: */
+ context->s1.buffer[usedspace++] = 0x80;
+
+ if (usedspace <= 56) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace);
+ } else {
+ if (usedspace < 64) {
+ MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->s1.buffer, 56);
+ }
+ /* Clean up: */
+ usedspace = 0;
+ }
+ /* Set the bit count: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Convert FROM host byte order */
+ REVERSE64(context->s1.bitcount,context->s1.bitcount);
+#endif
+ *(sha_word64*)&context->s1.buffer[56] = context->s1.bitcount;
+
+ /* Final transform: */
+ SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) {
+ REVERSE32(context->s1.state[j],context->s1.state[j]);
+ *d++ = context->s1.state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH);
+#endif
+
+ /* Clean up: */
+ MEMSET_BZERO(context, sizeof(*context));
+}
+
+char *SHA1_End(SHA_CTX* context, char buffer[]) {
+ sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA1_Final(digest, context);
+
+ for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
+ *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
+ SHA_CTX context;
+
+ SHA1_Init(&context);
+ SHA1_Update(&context, data, len);
+ return SHA1_End(&context, digest);
+}
+
+
+/*** SHA-256: *********************************************************/
+void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) {
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8);
+ MEMSET_BZERO(context->s256.buffer, 64);
+ context->s256.bitcount = 0;
+}
+
+void SHA256_Init(SHA_CTX* context) {
+ SHA256_Internal_Init(context, sha256_initial_hash_value);
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ REVERSE32(*data++, W256[j]); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + W256[j]; \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + (W256[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256(a,b,c,d,e,f,g,h) \
+ s0 = W256[(j+1)&0x0f]; \
+ s0 = sigma0_256(s0); \
+ s1 = W256[(j+14)&0x0f]; \
+ s1 = sigma1_256(s1); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
+ sha_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha_word32 T1, *W256;
+ int j;
+
+ W256 = (sha_word32*)context->s256.buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s256.state[0];
+ b = context->s256.state[1];
+ c = context->s256.state[2];
+ d = context->s256.state[3];
+ e = context->s256.state[4];
+ f = context->s256.state[5];
+ g = context->s256.state[6];
+ h = context->s256.state[7];
+
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds to 64: */
+ do {
+ ROUND256(a,b,c,d,e,f,g,h);
+ ROUND256(h,a,b,c,d,e,f,g);
+ ROUND256(g,h,a,b,c,d,e,f);
+ ROUND256(f,g,h,a,b,c,d,e);
+ ROUND256(e,f,g,h,a,b,c,d);
+ ROUND256(d,e,f,g,h,a,b,c);
+ ROUND256(c,d,e,f,g,h,a,b);
+ ROUND256(b,c,d,e,f,g,h,a);
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->s256.state[0] += a;
+ context->s256.state[1] += b;
+ context->s256.state[2] += c;
+ context->s256.state[3] += d;
+ context->s256.state[4] += e;
+ context->s256.state[5] += f;
+ context->s256.state[6] += g;
+ context->s256.state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
+ sha_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha_word32 T1, T2, *W256;
+ int j;
+
+ W256 = (sha_word32*)context->s256.buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s256.state[0];
+ b = context->s256.state[1];
+ c = context->s256.state[2];
+ d = context->s256.state[3];
+ e = context->s256.state[4];
+ f = context->s256.state[5];
+ g = context->s256.state[6];
+ h = context->s256.state[7];
+
+ j = 0;
+ do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Copy data while converting to host byte order */
+ REVERSE32(*data++,W256[j]);
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+ /* Apply the SHA-256 compression function to update a..h with copy */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W256[(j+1)&0x0f];
+ s0 = sigma0_256(s0);
+ s1 = W256[(j+14)&0x0f];
+ s1 = sigma1_256(s1);
+
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->s256.state[0] += a;
+ context->s256.state[1] += b;
+ context->s256.state[2] += c;
+ context->s256.state[3] += d;
+ context->s256.state[4] += e;
+ context->s256.state[5] += f;
+ context->s256.state[6] += g;
+ context->s256.state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
+ unsigned int freespace, usedspace;
+
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
+
+ usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = 64 - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace);
+ context->s256.bitcount += freespace << 3;
+ len -= freespace;
+ data += freespace;
+ SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len);
+ context->s256.bitcount += len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= 64) {
+ /* Process as many complete blocks as we can */
+ SHA256_Internal_Transform(context, (sha_word32*)data);
+ context->s256.bitcount += 512;
+ len -= 64;
+ data += 64;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->s256.buffer, data, len);
+ context->s256.bitcount += len << 3;
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+
+void SHA256_Internal_Last(SHA_CTX* context) {
+ unsigned int usedspace;
+
+ usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Convert FROM host byte order */
+ REVERSE64(context->s256.bitcount,context->s256.bitcount);
+#endif
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->s256.buffer[usedspace++] = 0x80;
+
+ if (usedspace <= 56) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace);
+ } else {
+ if (usedspace < 64) {
+ MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->s256.buffer, 56);
+ }
+ /* Clean up: */
+ usedspace = 0;
+ } else {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(context->s256.buffer, 56);
+
+ /* Begin padding with a 1 bit: */
+ *context->s256.buffer = 0x80;
+ }
+ /* Set the bit count: */
+ *(sha_word64*)&context->s256.buffer[56] = context->s256.bitcount;
+
+ /* Final transform: */
+ SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
+}
+
+void SHA256_Final(sha_byte digest[], SHA_CTX* context) {
+ sha_word32 *d = (sha_word32*)digest;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha_byte*)0) {
+ SHA256_Internal_Last(context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) {
+ REVERSE32(context->s256.state[j],context->s256.state[j]);
+ *d++ = context->s256.state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH);
+#endif
+ }
+
+ /* Clean up state data: */
+ MEMSET_BZERO(context, sizeof(*context));
+}
+
+char *SHA256_End(SHA_CTX* context, char buffer[]) {
+ sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA256_Final(digest, context);
+
+ for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+ *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+ SHA_CTX context;
+
+ SHA256_Init(&context);
+ SHA256_Update(&context, data, len);
+ return SHA256_End(&context, digest);
+}
+
+
+/*** SHA-224: *********************************************************/
+void SHA224_Init(SHA_CTX* context) {
+ SHA256_Internal_Init(context, sha224_initial_hash_value);
+}
+
+void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
+ SHA256_Internal_Transform(context, data);
+}
+
+void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
+ SHA256_Update(context, data, len);
+}
+
+void SHA224_Final(sha_byte digest[], SHA_CTX* context) {
+ sha_word32 *d = (sha_word32*)digest;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha_byte*)0) {
+ SHA256_Internal_Last(context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) {
+ REVERSE32(context->s256.state[j],context->s256.state[j]);
+ *d++ = context->s256.state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH);
+#endif
+ }
+
+ /* Clean up state data: */
+ MEMSET_BZERO(context, sizeof(*context));
+}
+
+char *SHA224_End(SHA_CTX* context, char buffer[]) {
+ sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA224_Final(digest, context);
+
+ for (i = 0; i < SHA224_DIGEST_LENGTH; i++) {
+ *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) {
+ SHA_CTX context;
+
+ SHA224_Init(&context);
+ SHA224_Update(&context, data, len);
+ return SHA224_End(&context, digest);
+}
+
+
+/*** SHA-512: *********************************************************/
+void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) {
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8);
+ MEMSET_BZERO(context->s512.buffer, 128);
+ context->s512.bitcount[0] = context->s512.bitcount[1] = 0;
+}
+
+void SHA512_Init(SHA_CTX* context) {
+ SHA512_Internal_Init(context, sha512_initial_hash_value);
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-512 round macros: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
+ REVERSE64(*data++, W512[j]); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ K512[j] + W512[j]; \
+ (d) += T1, \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
+ j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ K512[j] + (W512[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512(a,b,c,d,e,f,g,h) \
+ s0 = W512[(j+1)&0x0f]; \
+ s0 = sigma0_512(s0); \
+ s1 = W512[(j+14)&0x0f]; \
+ s1 = sigma1_512(s1); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
+
+void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
+ sha_word64 a, b, c, d, e, f, g, h, s0, s1;
+ sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer;
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s512.state[0];
+ b = context->s512.state[1];
+ c = context->s512.state[2];
+ d = context->s512.state[3];
+ e = context->s512.state[4];
+ f = context->s512.state[5];
+ g = context->s512.state[6];
+ h = context->s512.state[7];
+
+ j = 0;
+ do {
+ ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds up to 79: */
+ do {
+ ROUND512(a,b,c,d,e,f,g,h);
+ ROUND512(h,a,b,c,d,e,f,g);
+ ROUND512(g,h,a,b,c,d,e,f);
+ ROUND512(f,g,h,a,b,c,d,e);
+ ROUND512(e,f,g,h,a,b,c,d);
+ ROUND512(d,e,f,g,h,a,b,c);
+ ROUND512(c,d,e,f,g,h,a,b);
+ ROUND512(b,c,d,e,f,g,h,a);
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ context->s512.state[0] += a;
+ context->s512.state[1] += b;
+ context->s512.state[2] += c;
+ context->s512.state[3] += d;
+ context->s512.state[4] += e;
+ context->s512.state[5] += f;
+ context->s512.state[6] += g;
+ context->s512.state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
+ sha_word64 a, b, c, d, e, f, g, h, s0, s1;
+ sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer;
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->s512.state[0];
+ b = context->s512.state[1];
+ c = context->s512.state[2];
+ d = context->s512.state[3];
+ e = context->s512.state[4];
+ f = context->s512.state[5];
+ g = context->s512.state[6];
+ h = context->s512.state[7];
+
+ j = 0;
+ do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Convert TO host byte order */
+ REVERSE64(*data++, W512[j]);
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+ /* Apply the SHA-512 compression function to update a..h with copy */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W512[(j+1)&0x0f];
+ s0 = sigma0_512(s0);
+ s1 = W512[(j+14)&0x0f];
+ s1 = sigma1_512(s1);
+
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ context->s512.state[0] += a;
+ context->s512.state[1] += b;
+ context->s512.state[2] += c;
+ context->s512.state[3] += d;
+ context->s512.state[4] += e;
+ context->s512.state[5] += f;
+ context->s512.state[6] += g;
+ context->s512.state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
+ unsigned int freespace, usedspace;
+
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
+
+ usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = 128 - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace);
+ ADDINC128(context->s512.bitcount, freespace << 3);
+ len -= freespace;
+ data += freespace;
+ SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len);
+ ADDINC128(context->s512.bitcount, len << 3);
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= 128) {
+ /* Process as many complete blocks as we can */
+ SHA512_Internal_Transform(context, (sha_word64*)data);
+ ADDINC128(context->s512.bitcount, 1024);
+ len -= 128;
+ data += 128;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->s512.buffer, data, len);
+ ADDINC128(context->s512.bitcount, len << 3);
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+
+void SHA512_Internal_Last(SHA_CTX* context) {
+ unsigned int usedspace;
+
+ usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Convert FROM host byte order */
+ REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]);
+ REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]);
+#endif
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->s512.buffer[usedspace++] = 0x80;
+
+ if (usedspace <= 112) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace);
+ } else {
+ if (usedspace < 128) {
+ MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->s512.buffer, 112);
+ }
+ /* Clean up: */
+ usedspace = 0;
+ } else {
+ /* Prepare for final transform: */
+ MEMSET_BZERO(context->s512.buffer, 112);
+
+ /* Begin padding with a 1 bit: */
+ *context->s512.buffer = 0x80;
+ }
+ /* Store the length of input data (in bits): */
+ *(sha_word64*)&context->s512.buffer[112] = context->s512.bitcount[1];
+ *(sha_word64*)&context->s512.buffer[120] = context->s512.bitcount[0];
+
+ /* Final transform: */
+ SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
+}
+
+void SHA512_Final(sha_byte digest[], SHA_CTX* context) {
+ sha_word64 *d = (sha_word64*)digest;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha_byte*)0) {
+ SHA512_Internal_Last(context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) {
+ REVERSE64(context->s512.state[j],context->s512.state[j]);
+ *d++ = context->s512.state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH);
+#endif
+ }
+
+ /* Zero out state data */
+ MEMSET_BZERO(context, sizeof(*context));
+}
+
+char *SHA512_End(SHA_CTX* context, char buffer[]) {
+ sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA512_Final(digest, context);
+
+ for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
+ *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
+ SHA_CTX context;
+
+ SHA512_Init(&context);
+ SHA512_Update(&context, data, len);
+ return SHA512_End(&context, digest);
+}
+
+
+/*** SHA-384: *********************************************************/
+void SHA384_Init(SHA_CTX* context) {
+ SHA512_Internal_Init(context, sha384_initial_hash_value);
+}
+
+void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) {
+ SHA512_Update(context, data, len);
+}
+
+void SHA384_Final(sha_byte digest[], SHA_CTX* context) {
+ sha_word64 *d = (sha_word64*)digest;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha_byte*)0) {
+ SHA512_Internal_Last(context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) {
+ REVERSE64(context->s512.state[j],context->s512.state[j]);
+ *d++ = context->s512.state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH);
+#endif
+ }
+
+ /* Zero out state data */
+ MEMSET_BZERO(context, sizeof(*context));
+}
+
+char *SHA384_End(SHA_CTX* context, char buffer[]) {
+ sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA384_Final(digest, context);
+
+ for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
+ *buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
+ SHA_CTX context;
+
+ SHA384_Init(&context);
+ SHA384_Update(&context, data, len);
+ return SHA384_End(&context, digest);
+}