1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
#include <algorithm>
#include <vector>
#include <cmath>
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layers/absval_layer.hpp"
#include "caffe/layers/bnll_layer.hpp"
#include "caffe/layers/dropout_layer.hpp"
#include "caffe/layers/elu_layer.hpp"
#include "caffe/layers/exp_layer.hpp"
#include "caffe/layers/inner_product_layer.hpp"
#include "caffe/layers/log_layer.hpp"
#include "caffe/layers/power_layer.hpp"
#include "caffe/layers/prelu_layer.hpp"
#include "caffe/layers/relu_layer.hpp"
#include "caffe/layers/sigmoid_layer.hpp"
#include "caffe/layers/tanh_layer.hpp"
#include "caffe/layers/threshold_layer.hpp"
#ifdef USE_CUDNN
#include "caffe/layers/cudnn_relu_layer.hpp"
#include "caffe/layers/cudnn_sigmoid_layer.hpp"
#include "caffe/layers/cudnn_tanh_layer.hpp"
#endif
#include "caffe/test/test_caffe_main.hpp"
#include "caffe/test/test_gradient_check_util.hpp"
namespace caffe {
typedef ::testing::Types<CPUDevice<float> > float_only;
#define TestDtypesAndDevices float_only
#define SET_LAYER(name) \
layer_param.set_type(#name);\
shared_ptr<Layer<Dtype> > new_layer=\
LayerRegistry<Dtype>::CreateLayer(layer_param);\
shared_ptr< name ## Layer <Dtype> > layer= \
boost::static_pointer_cast< name ## Layer <Dtype> > (new_layer);\
if(0) layer=shared_ptr<name ## Layer<Dtype> >(new name ## Layer<Dtype>(layer_param));\
layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
template <typename TypeParam>
class NeuronLayerTest : public MultiDeviceTest<TypeParam> {
typedef typename TypeParam::Dtype Dtype;
protected:
NeuronLayerTest()
: blob_bottom_(new Blob<Dtype>(2, 3, 4, 5)),
blob_top_(new Blob<Dtype>()) {
Caffe::set_random_seed(1701);
// fill the values
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(this->blob_bottom_);
blob_bottom_vec_.push_back(blob_bottom_);
blob_top_vec_.push_back(blob_top_);
}
virtual ~NeuronLayerTest() { delete blob_bottom_; delete blob_top_; }
Blob<Dtype>* const blob_bottom_;
Blob<Dtype>* const blob_top_;
vector<Blob<Dtype>*> blob_bottom_vec_;
vector<Blob<Dtype>*> blob_top_vec_;
void TestPReLU(PReLULayer<Dtype> *layer) {
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Now, check values
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
const Dtype* slope_data = layer->blobs()[0]->cpu_data();
int hw = this->blob_bottom_->height() * this->blob_bottom_->width();
int channels = this->blob_bottom_->channels();
bool channel_shared = layer->layer_param().prelu_param().channel_shared();
for (int i = 0; i < this->blob_bottom_->count(); ++i) {
int c = channel_shared ? 0 : (i / hw) % channels;
EXPECT_EQ(top_data[i],
std::max(bottom_data[i], (Dtype)(0))
+ slope_data[c] * std::min(bottom_data[i], (Dtype)(0)));
}
}
};
TYPED_TEST_CASE(NeuronLayerTest, TestDtypesAndDevices);
TYPED_TEST(NeuronLayerTest, TestAbsVal) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
SET_LAYER(AbsVal);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
const int count = this->blob_bottom_->count();
for (int i = 0; i < count; ++i) {
EXPECT_EQ(top_data[i], fabs(bottom_data[i]));
}
}
TYPED_TEST(NeuronLayerTest, TestReLU) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
SET_LAYER(ReLU);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Now, check values
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
for (int i = 0; i < this->blob_bottom_->count(); ++i) {
EXPECT_GE(top_data[i], 0.);
EXPECT_TRUE(top_data[i] == 0 || top_data[i] == bottom_data[i]);
}
}
#if 1
TYPED_TEST(NeuronLayerTest, TestReLUWithNegativeSlope) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
CHECK(google::protobuf::TextFormat::ParseFromString(
"relu_param { negative_slope: 0.01 }", &layer_param));
SET_LAYER(ReLU);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Now, check values
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
for (int i = 0; i < this->blob_bottom_->count(); ++i) {
if (top_data[i] >= 0) {
EXPECT_FLOAT_EQ(top_data[i], bottom_data[i]);
} else {
EXPECT_FLOAT_EQ(top_data[i], bottom_data[i] * 0.01);
}
}
}
TYPED_TEST(NeuronLayerTest, TestSigmoid) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
SET_LAYER(Sigmoid);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Now, check values
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
for (int i = 0; i < this->blob_bottom_->count(); ++i) {
EXPECT_FLOAT_EQ(top_data[i], 1. / (1 + exp(-bottom_data[i])));
// check that we squashed the value between 0 and 1
EXPECT_GE(top_data[i], 0.);
EXPECT_LE(top_data[i], 1.);
}
}
TYPED_TEST(NeuronLayerTest, TestTanH) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
int number=10;
this->blob_bottom_->Reshape(1,2,number,2);
for(int i=0;i<number;i++)
this->blob_bottom_->mutable_cpu_data()[i]=i*10;
SET_LAYER(TanH);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Test exact values
for (int i = 0; i < this->blob_bottom_->num(); ++i) {
for (int j = 0; j < this->blob_bottom_->channels(); ++j) {
for (int k = 0; k < this->blob_bottom_->height(); ++k) {
for (int l = 0; l < this->blob_bottom_->width(); ++l) {
EXPECT_GE(this->blob_top_->data_at(i, j, k, l) + 1e-4,
(exp(2*this->blob_bottom_->data_at(i, j, k, l)) - 1) /
(exp(2*this->blob_bottom_->data_at(i, j, k, l)) + 1));
EXPECT_LE(this->blob_top_->data_at(i, j, k, l) - 1e-4,
(exp(2*this->blob_bottom_->data_at(i, j, k, l)) - 1) /
(exp(2*this->blob_bottom_->data_at(i, j, k, l)) + 1));
}
}
}
}
}
TYPED_TEST(NeuronLayerTest, TestBNLL) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
SET_LAYER(BNLL);
layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
// Now, check values
const Dtype* bottom_data = this->blob_bottom_->cpu_data();
const Dtype* top_data = this->blob_top_->cpu_data();
for (int i = 0; i < this->blob_bottom_->count(); ++i) {
Dtype target=log(1+exp(bottom_data[i]));
EXPECT_NEAR(top_data[i], target,1e-4);
}
}
#endif
#if 0 /* Not try PReLU now */
TYPED_TEST(NeuronLayerTest, TestPReLUParam) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
PReLULayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
const Dtype* slopes = layer.blobs()[0]->cpu_data();
int count = layer.blobs()[0]->count();
for (int i = 0; i < count; ++i, ++slopes) {
EXPECT_EQ(*slopes, 0.25);
}
}
TYPED_TEST(NeuronLayerTest, TestPReLUForward) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
PReLULayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(layer.blobs()[0].get());
this->TestPReLU(&layer);
}
TYPED_TEST(NeuronLayerTest, TestPReLUForwardChannelShared) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_prelu_param()->set_channel_shared(true);
PReLULayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
this->TestPReLU(&layer);
}
TYPED_TEST(NeuronLayerTest, TestPReLUConsistencyReLU) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter prelu_layer_param;
LayerParameter relu_layer_param;
relu_layer_param.mutable_relu_param()->set_negative_slope(0.25);
PReLULayer<Dtype> prelu(prelu_layer_param);
ReLULayer<Dtype> relu(relu_layer_param);
// Set up blobs
vector<Blob<Dtype>*> blob_bottom_vec_2;
vector<Blob<Dtype>*> blob_top_vec_2;
shared_ptr<Blob<Dtype> > blob_bottom_2(new Blob<Dtype>());
shared_ptr<Blob<Dtype> > blob_top_2(new Blob<Dtype>());
blob_bottom_vec_2.push_back(blob_bottom_2.get());
blob_top_vec_2.push_back(blob_top_2.get());
blob_bottom_2->CopyFrom(*this->blob_bottom_, false, true);
// SetUp layers
prelu.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
relu.SetUp(blob_bottom_vec_2, blob_top_vec_2);
// Check forward
prelu.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
relu.Forward(this->blob_bottom_vec_, blob_top_vec_2);
for (int s = 0; s < blob_top_2->count(); ++s) {
EXPECT_EQ(this->blob_top_->cpu_data()[s], blob_top_2->cpu_data()[s]);
}
// Check backward
}
TYPED_TEST(NeuronLayerTest, TestPReLUInPlace) {
typedef typename TypeParam::Dtype Dtype;
// Set layer parameters
LayerParameter ip_layer_param;
LayerParameter prelu_layer_param;
InnerProductParameter *ip_param =
ip_layer_param.mutable_inner_product_param();
ip_param->mutable_weight_filler()->set_type("gaussian");
ip_param->set_num_output(3);
InnerProductLayer<Dtype> ip(ip_layer_param);
PReLULayer<Dtype> prelu(prelu_layer_param);
InnerProductLayer<Dtype> ip2(ip_layer_param);
PReLULayer<Dtype> prelu2(prelu_layer_param);
// Set up blobs
vector<Blob<Dtype>*> blob_bottom_vec_2;
vector<Blob<Dtype>*> blob_middle_vec_2;
vector<Blob<Dtype>*> blob_top_vec_2;
shared_ptr<Blob<Dtype> > blob_bottom_2(new Blob<Dtype>());
shared_ptr<Blob<Dtype> > blob_middle_2(new Blob<Dtype>());
shared_ptr<Blob<Dtype> > blob_top_2(new Blob<Dtype>());
blob_bottom_vec_2.push_back(blob_bottom_2.get());
blob_middle_vec_2.push_back(blob_middle_2.get());
blob_top_vec_2.push_back(blob_top_2.get());
blob_bottom_2->CopyFrom(*this->blob_bottom_, false, true);
// SetUp layers
ip.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
prelu.SetUp(this->blob_top_vec_, this->blob_top_vec_);
ip2.SetUp(blob_bottom_vec_2, blob_middle_vec_2);
prelu2.SetUp(blob_middle_vec_2, blob_top_vec_2);
caffe_copy(ip2.blobs()[0]->count(), ip.blobs()[0]->cpu_data(),
ip2.blobs()[0]->mutable_cpu_data());
// Forward in-place
ip.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
prelu.Forward(this->blob_top_vec_, this->blob_top_vec_);
// Forward non-in-place
ip2.Forward(blob_bottom_vec_2, blob_middle_vec_2);
prelu2.Forward(blob_middle_vec_2, blob_top_vec_2);
// Check numbers
for (int s = 0; s < blob_top_2->count(); ++s) {
EXPECT_EQ(this->blob_top_->cpu_data()[s], blob_top_2->cpu_data()[s]);
}
// Fill top diff with random numbers
shared_ptr<Blob<Dtype> > tmp_blob(new Blob<Dtype>());
tmp_blob->ReshapeLike(*blob_top_2.get());
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(tmp_blob.get());
caffe_copy(blob_top_2->count(), tmp_blob->cpu_data(),
this->blob_top_->mutable_cpu_diff());
caffe_copy(blob_top_2->count(), tmp_blob->cpu_data(),
blob_top_2->mutable_cpu_diff());
// Backward in-place
vector<bool> propagate_down;
propagate_down.push_back(true);
prelu.Backward(this->blob_top_vec_, propagate_down, this->blob_top_vec_);
ip.Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_);
// Backward non-in-place
prelu2.Backward(blob_top_vec_2, propagate_down, blob_middle_vec_2);
ip2.Backward(blob_middle_vec_2, propagate_down, blob_bottom_vec_2);
// Check numbers
for (int s = 0; s < blob_bottom_2->count(); ++s) {
EXPECT_EQ(this->blob_bottom_->cpu_diff()[s], blob_bottom_2->cpu_diff()[s]);
}
for (int s = 0; s < ip.blobs()[0]->count(); ++s) {
EXPECT_EQ(ip.blobs()[0]->cpu_diff()[s], ip2.blobs()[0]->cpu_diff()[s]);
}
for (int s = 0; s < ip.blobs()[1]->count(); ++s) {
EXPECT_EQ(ip.blobs()[1]->cpu_diff()[s], ip2.blobs()[1]->cpu_diff()[s]);
}
for (int s = 0; s < prelu.blobs()[0]->count(); ++s) {
EXPECT_EQ(prelu.blobs()[0]->cpu_diff()[s],
prelu2.blobs()[0]->cpu_diff()[s]);
}
}
#endif
} // namespace caffe
|