summaryrefslogtreecommitdiff
path: root/python/caffe/_caffe.cpp
blob: 020a5bee16b317efab87b55c7650bd3a43813d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include <Python.h>  // NOLINT(build/include_alpha)

// Produce deprecation warnings (needs to come before arrayobject.h inclusion).
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

#include <boost/make_shared.hpp>
#include <boost/python.hpp>
#include <boost/python/raw_function.hpp>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <numpy/arrayobject.h>

// these need to be included after boost on OS X
#include <string>  // NOLINT(build/include_order)
#include <vector>  // NOLINT(build/include_order)
#include <fstream>  // NOLINT

#include "caffe/caffe.hpp"
#include "caffe/python_layer.hpp"

// Temporary solution for numpy < 1.7 versions: old macro, no promises.
// You're strongly advised to upgrade to >= 1.7.
#ifndef NPY_ARRAY_C_CONTIGUOUS
#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
#define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
#endif

namespace bp = boost::python;

namespace caffe {

// For Python, for now, we'll just always use float as the type.
typedef float Dtype;
const int NPY_DTYPE = NPY_FLOAT32;

// Selecting mode.
void set_mode_cpu() { Caffe::set_mode(Caffe::CPU); }
void set_mode_gpu() { Caffe::set_mode(Caffe::GPU); }

// For convenience, check that input files can be opened, and raise an
// exception that boost will send to Python if not (caffe could still crash
// later if the input files are disturbed before they are actually used, but
// this saves frustration in most cases).
static void CheckFile(const string& filename) {
    std::ifstream f(filename.c_str());
    if (!f.good()) {
      f.close();
      throw std::runtime_error("Could not open file " + filename);
    }
    f.close();
}

void CheckContiguousArray(PyArrayObject* arr, string name,
    int channels, int height, int width) {
  if (!(PyArray_FLAGS(arr) & NPY_ARRAY_C_CONTIGUOUS)) {
    throw std::runtime_error(name + " must be C contiguous");
  }
  if (PyArray_NDIM(arr) != 4) {
    throw std::runtime_error(name + " must be 4-d");
  }
  if (PyArray_TYPE(arr) != NPY_FLOAT32) {
    throw std::runtime_error(name + " must be float32");
  }
  if (PyArray_DIMS(arr)[1] != channels) {
    throw std::runtime_error(name + " has wrong number of channels");
  }
  if (PyArray_DIMS(arr)[2] != height) {
    throw std::runtime_error(name + " has wrong height");
  }
  if (PyArray_DIMS(arr)[3] != width) {
    throw std::runtime_error(name + " has wrong width");
  }
}

// Net constructor for passing phase as int
shared_ptr<Net<Dtype> > Net_Init(
    string param_file, int phase) {
  CheckFile(param_file);

  shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
      static_cast<Phase>(phase)));
  return net;
}

// Net construct-and-load convenience constructor
shared_ptr<Net<Dtype> > Net_Init_Load(
    string param_file, string pretrained_param_file, int phase) {
  CheckFile(param_file);
  CheckFile(pretrained_param_file);

  shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
      static_cast<Phase>(phase)));
  net->CopyTrainedLayersFrom(pretrained_param_file);
  return net;
}

void Net_Save(const Net<Dtype>& net, string filename) {
  NetParameter net_param;
  net.ToProto(&net_param, false);
  WriteProtoToBinaryFile(net_param, filename.c_str());
}

void Net_SetInputArrays(Net<Dtype>* net, bp::object data_obj,
    bp::object labels_obj) {
  // check that this network has an input MemoryDataLayer
  shared_ptr<MemoryDataLayer<Dtype> > md_layer =
    boost::dynamic_pointer_cast<MemoryDataLayer<Dtype> >(net->layers()[0]);
  if (!md_layer) {
    throw std::runtime_error("set_input_arrays may only be called if the"
        " first layer is a MemoryDataLayer");
  }

  // check that we were passed appropriately-sized contiguous memory
  PyArrayObject* data_arr =
      reinterpret_cast<PyArrayObject*>(data_obj.ptr());
  PyArrayObject* labels_arr =
      reinterpret_cast<PyArrayObject*>(labels_obj.ptr());
  CheckContiguousArray(data_arr, "data array", md_layer->channels(),
      md_layer->height(), md_layer->width());
  CheckContiguousArray(labels_arr, "labels array", 1, 1, 1);
  if (PyArray_DIMS(data_arr)[0] != PyArray_DIMS(labels_arr)[0]) {
    throw std::runtime_error("data and labels must have the same first"
        " dimension");
  }
  if (PyArray_DIMS(data_arr)[0] % md_layer->batch_size() != 0) {
    throw std::runtime_error("first dimensions of input arrays must be a"
        " multiple of batch size");
  }

  md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)),
      static_cast<Dtype*>(PyArray_DATA(labels_arr)),
      PyArray_DIMS(data_arr)[0]);
}

Solver<Dtype>* GetSolverFromFile(const string& filename) {
  SolverParameter param;
  ReadProtoFromTextFileOrDie(filename, &param);
  return GetSolver<Dtype>(param);
}

struct NdarrayConverterGenerator {
  template <typename T> struct apply;
};

template <>
struct NdarrayConverterGenerator::apply<Dtype*> {
  struct type {
    PyObject* operator() (Dtype* data) const {
      // Just store the data pointer, and add the shape information in postcall.
      return PyArray_SimpleNewFromData(0, NULL, NPY_DTYPE, data);
    }
    const PyTypeObject* get_pytype() {
      return &PyArray_Type;
    }
  };
};

struct NdarrayCallPolicies : public bp::default_call_policies {
  typedef NdarrayConverterGenerator result_converter;
  PyObject* postcall(PyObject* pyargs, PyObject* result) {
    bp::object pyblob = bp::extract<bp::tuple>(pyargs)()[0];
    shared_ptr<Blob<Dtype> > blob =
      bp::extract<shared_ptr<Blob<Dtype> > >(pyblob);
    // Free the temporary pointer-holding array, and construct a new one with
    // the shape information from the blob.
    void* data = PyArray_DATA(reinterpret_cast<PyArrayObject*>(result));
    Py_DECREF(result);
    const int num_axes = blob->num_axes();
    vector<npy_intp> dims(blob->shape().begin(), blob->shape().end());
    PyObject *arr_obj = PyArray_SimpleNewFromData(num_axes, dims.data(),
                                                  NPY_FLOAT32, data);
    // SetBaseObject steals a ref, so we need to INCREF.
    Py_INCREF(pyblob.ptr());
    PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(arr_obj),
        pyblob.ptr());
    return arr_obj;
  }
};

bp::object Blob_Reshape(bp::tuple args, bp::dict kwargs) {
  if (bp::len(kwargs) > 0) {
    throw std::runtime_error("Blob.reshape takes no kwargs");
  }
  Blob<Dtype>* self = bp::extract<Blob<Dtype>*>(args[0]);
  vector<int> shape(bp::len(args) - 1);
  for (int i = 1; i < bp::len(args); ++i) {
    shape[i - 1] = bp::extract<int>(args[i]);
  }
  self->Reshape(shape);
  // We need to explicitly return None to use bp::raw_function.
  return bp::object();
}

BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1);

BOOST_PYTHON_MODULE(_caffe) {
  // below, we prepend an underscore to methods that will be replaced
  // in Python
  // Caffe utility functions
  bp::def("set_mode_cpu", &set_mode_cpu);
  bp::def("set_mode_gpu", &set_mode_gpu);
  bp::def("set_device", &Caffe::SetDevice);

  bp::def("layer_type_list", &LayerRegistry<Dtype>::LayerTypeList);

  bp::class_<Net<Dtype>, shared_ptr<Net<Dtype> >, boost::noncopyable >("Net",
    bp::no_init)
    .def("__init__", bp::make_constructor(&Net_Init))
    .def("__init__", bp::make_constructor(&Net_Init_Load))
    .def("_forward", &Net<Dtype>::ForwardFromTo)
    .def("_backward", &Net<Dtype>::BackwardFromTo)
    .def("reshape", &Net<Dtype>::Reshape)
    // The cast is to select a particular overload.
    .def("copy_from", static_cast<void (Net<Dtype>::*)(const string)>(
        &Net<Dtype>::CopyTrainedLayersFrom))
    .def("share_with", &Net<Dtype>::ShareTrainedLayersWith)
    .add_property("_blob_loss_weights", bp::make_function(
        &Net<Dtype>::blob_loss_weights, bp::return_internal_reference<>()))
    .add_property("_blobs", bp::make_function(&Net<Dtype>::blobs,
        bp::return_internal_reference<>()))
    .add_property("layers", bp::make_function(&Net<Dtype>::layers,
        bp::return_internal_reference<>()))
    .add_property("_blob_names", bp::make_function(&Net<Dtype>::blob_names,
        bp::return_value_policy<bp::copy_const_reference>()))
    .add_property("_layer_names", bp::make_function(&Net<Dtype>::layer_names,
        bp::return_value_policy<bp::copy_const_reference>()))
    .add_property("_inputs", bp::make_function(&Net<Dtype>::input_blob_indices,
        bp::return_value_policy<bp::copy_const_reference>()))
    .add_property("_outputs",
        bp::make_function(&Net<Dtype>::output_blob_indices,
        bp::return_value_policy<bp::copy_const_reference>()))
    .def("_set_input_arrays", &Net_SetInputArrays,
        bp::with_custodian_and_ward<1, 2, bp::with_custodian_and_ward<1, 3> >())
    .def("save", &Net_Save);

  bp::class_<Blob<Dtype>, shared_ptr<Blob<Dtype> >, boost::noncopyable>(
    "Blob", bp::no_init)
    .add_property("shape",
        bp::make_function(
            static_cast<const vector<int>& (Blob<Dtype>::*)() const>(
                &Blob<Dtype>::shape),
            bp::return_value_policy<bp::copy_const_reference>()))
    .add_property("num",      &Blob<Dtype>::num)
    .add_property("channels", &Blob<Dtype>::channels)
    .add_property("height",   &Blob<Dtype>::height)
    .add_property("width",    &Blob<Dtype>::width)
    .add_property("count",    static_cast<int (Blob<Dtype>::*)() const>(
        &Blob<Dtype>::count))
    .def("reshape",           bp::raw_function(&Blob_Reshape))
    .add_property("data",     bp::make_function(&Blob<Dtype>::mutable_cpu_data,
          NdarrayCallPolicies()))
    .add_property("diff",     bp::make_function(&Blob<Dtype>::mutable_cpu_diff,
          NdarrayCallPolicies()));

  bp::class_<Layer<Dtype>, shared_ptr<PythonLayer<Dtype> >,
    boost::noncopyable>("Layer", bp::init<const LayerParameter&>())
    .add_property("blobs", bp::make_function(&Layer<Dtype>::blobs,
          bp::return_internal_reference<>()))
    .def("setup", &Layer<Dtype>::LayerSetUp)
    .def("reshape", &Layer<Dtype>::Reshape)
    .add_property("type", bp::make_function(&Layer<Dtype>::type));
  bp::register_ptr_to_python<shared_ptr<Layer<Dtype> > >();

  bp::class_<LayerParameter>("LayerParameter", bp::no_init);

  bp::class_<Solver<Dtype>, shared_ptr<Solver<Dtype> >, boost::noncopyable>(
    "Solver", bp::no_init)
    .add_property("net", &Solver<Dtype>::net)
    .add_property("test_nets", bp::make_function(&Solver<Dtype>::test_nets,
          bp::return_internal_reference<>()))
    .add_property("iter", &Solver<Dtype>::iter)
    .def("solve", static_cast<void (Solver<Dtype>::*)(const char*)>(
          &Solver<Dtype>::Solve), SolveOverloads())
    .def("step", &Solver<Dtype>::Step)
    .def("restore", &Solver<Dtype>::Restore);

  bp::class_<SGDSolver<Dtype>, bp::bases<Solver<Dtype> >,
    shared_ptr<SGDSolver<Dtype> >, boost::noncopyable>(
        "SGDSolver", bp::init<string>());
  bp::class_<NesterovSolver<Dtype>, bp::bases<Solver<Dtype> >,
    shared_ptr<NesterovSolver<Dtype> >, boost::noncopyable>(
        "NesterovSolver", bp::init<string>());
  bp::class_<AdaGradSolver<Dtype>, bp::bases<Solver<Dtype> >,
    shared_ptr<AdaGradSolver<Dtype> >, boost::noncopyable>(
        "AdaGradSolver", bp::init<string>());

  bp::def("get_solver", &GetSolverFromFile,
      bp::return_value_policy<bp::manage_new_object>());

  // vector wrappers for all the vector types we use
  bp::class_<vector<shared_ptr<Blob<Dtype> > > >("BlobVec")
    .def(bp::vector_indexing_suite<vector<shared_ptr<Blob<Dtype> > >, true>());
  bp::class_<vector<Blob<Dtype>*> >("RawBlobVec")
    .def(bp::vector_indexing_suite<vector<Blob<Dtype>*>, true>());
  bp::class_<vector<shared_ptr<Layer<Dtype> > > >("LayerVec")
    .def(bp::vector_indexing_suite<vector<shared_ptr<Layer<Dtype> > >, true>());
  bp::class_<vector<string> >("StringVec")
    .def(bp::vector_indexing_suite<vector<string> >());
  bp::class_<vector<int> >("IntVec")
    .def(bp::vector_indexing_suite<vector<int> >());
  bp::class_<vector<Dtype> >("DtypeVec")
    .def(bp::vector_indexing_suite<vector<Dtype> >());
  bp::class_<vector<shared_ptr<Net<Dtype> > > >("NetVec")
    .def(bp::vector_indexing_suite<vector<shared_ptr<Net<Dtype> > >, true>());
  bp::class_<vector<bool> >("BoolVec")
    .def(bp::vector_indexing_suite<vector<bool> >());

  // boost python expects a void (missing) return value, while import_array
  // returns NULL for python3. import_array1() forces a void return value.
  import_array1();
}

}  // namespace caffe