#include #include #include #include "google/protobuf/text_format.h" #include "gtest/gtest.h" #include "caffe/common.hpp" #include "caffe/filler.hpp" #include "caffe/net.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" namespace caffe { template class NetTest : public MultiDeviceTest { typedef typename TypeParam::Dtype Dtype; protected: NetTest() : seed_(1701) {} virtual void InitNetFromProtoString(const string& proto) { NetParameter param; CHECK(google::protobuf::TextFormat::ParseFromString(proto, ¶m)); net_.reset(new Net(param)); } virtual void InitNetFromProtoFileWithState(const string& proto, Phase phase = caffe::TRAIN, const int level = 0, const vector* stages = NULL) { NetParameter param; CHECK(google::protobuf::TextFormat::ParseFromString(proto, ¶m)); string param_file; MakeTempFilename(¶m_file); WriteProtoToTextFile(param, param_file); net_.reset(new Net(param_file, phase, level, stages)); } virtual void CopyNetBlobs(const bool copy_diff, vector > >* blobs_copy) { CHECK(net_); const vector > >& net_blobs = net_->blobs(); blobs_copy->clear(); blobs_copy->resize(net_blobs.size()); const bool kReshape = true; for (int i = 0; i < net_blobs.size(); ++i) { (*blobs_copy)[i].reset(new Blob()); (*blobs_copy)[i]->CopyFrom(*net_blobs[i], copy_diff, kReshape); } } virtual void CopyNetParams(const bool copy_diff, vector > >* params_copy) { CHECK(net_); const vector > >& net_params = net_->params(); params_copy->clear(); params_copy->resize(net_params.size()); const bool kReshape = true; for (int i = 0; i < net_params.size(); ++i) { (*params_copy)[i].reset(new Blob()); (*params_copy)[i]->CopyFrom(*net_params[i], copy_diff, kReshape); } } virtual void InitTinyNet(const bool force_backward = false, const bool accuracy_layer = false) { string proto = "name: 'TinyTestNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " shape { " " dim: 5 " " dim: 2 " " dim: 3 " " dim: 4 " " } " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " shape { " " dim: 5 " " } " " data_filler { " " type: 'constant' " " value: 0 " " } " " } " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1000 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " param { " " lr_mult: 1 " " decay_mult: 1 " " } " " param { " " lr_mult: 2 " " decay_mult: 0 " " } " " bottom: 'data' " " top: 'innerproduct' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerproduct' " " bottom: 'label' " " top: 'top_loss' " "} "; if (accuracy_layer) { proto += "layer { " " name: 'loss' " " type: 'Accuracy' " " bottom: 'innerproduct' " " bottom: 'label' " " top: 'accuracy' " "} "; } if (force_backward) { proto += "force_backward: true "; } InitNetFromProtoString(proto); } virtual void InitTinyNetEuclidean(const bool force_backward = false) { string proto = "name: 'TinyTestEuclidLossNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 5 " " channels: 2 " " height: 3 " " width: 4 " " num: 5 " " channels: 1 " " height: 1 " " width: 1 " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " } " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " param { " " lr_mult: 1 " " decay_mult: 1 " " } " " param { " " lr_mult: 2 " " decay_mult: 0 " " } " " bottom: 'data' " " top: 'innerproduct' " "} " "layer { " " name: 'loss' " " type: 'EuclideanLoss' " " bottom: 'innerproduct' " " bottom: 'label' " "} "; if (force_backward) { proto += "force_backward: true "; } InitNetFromProtoString(proto); } virtual void InitTrickyNet(Dtype* loss_weight = NULL) { ostringstream loss_weight_stream; if (loss_weight) { loss_weight_stream << " loss_weight: " << *loss_weight << " "; } const string& proto = "name: 'TrickyTestNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 5 " " channels: 2 " " height: 3 " " width: 4 " " num: 5 " " channels: 1 " " height: 1 " " width: 1 " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " } " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1000 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " param { " " lr_mult: 1 " " decay_mult: 1 " " } " " param { " " lr_mult: 2 " " decay_mult: 0 " " } " " bottom: 'data' " " top: 'transformed_data' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " param { " " lr_mult: 1 " " decay_mult: 1 " " } " " param { " " lr_mult: 2 " " decay_mult: 0 " " } " " bottom: 'label' " " top: 'transformed_label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " + loss_weight_stream.str() + " bottom: 'transformed_data' " " bottom: 'transformed_label' " "} "; InitNetFromProtoString(proto); } // loss_weight is the loss weight for the 'EuclideanLoss' layer output. // midnet_loss_weight is the loss weight for the first 'InnerProduct' layer // output. Should both default to 0.0 if unspecified (i.e., if NULL is // passed to this function). virtual void InitUnsharedWeightsNet(const Dtype* loss_weight = NULL, const Dtype* midnet_loss_weight = NULL, const bool force_backward = false, const bool bias_term = false, const Dtype blobs_lr_w1 = 1, const Dtype blobs_lr_b1 = 2, const Dtype blobs_lr_w2 = 1, const Dtype blobs_lr_b2 = 2) { string bias_str = bias_term ? "true ":"false "; ostringstream proto; proto << "name: 'UnsharedWeightsNetwork' "; if (force_backward) { proto << "force_backward: true "; } proto << "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 5 " " channels: 2 " " height: 3 " " width: 4 " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " } " " top: 'data' " "} " "layer { " " name: 'innerproduct1' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: " << bias_str << " weight_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " param { " " name: 'unsharedweights1' " " lr_mult: " << blobs_lr_w1 << " } "; if (bias_term) { proto << " param { lr_mult: " << blobs_lr_b1 << " } "; } proto << " bottom: 'data' " " top: 'innerproduct1' "; if (midnet_loss_weight) { proto << " loss_weight: " << *midnet_loss_weight << " "; } proto << "} " "layer { " " name: 'innerproduct2' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: " << bias_str << " weight_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " param { " " name: 'unsharedweights2' " " lr_mult: " << blobs_lr_w2 << " } "; if (bias_term) { proto << " param { lr_mult: " << blobs_lr_b2 << " } "; } proto << " bottom: 'data' " " top: 'innerproduct2' " "} " "layer { " " name: 'loss' " " type: 'EuclideanLoss' "; if (loss_weight) { proto << " loss_weight: " << *loss_weight << " "; } proto << " bottom: 'innerproduct1' " " bottom: 'innerproduct2' " "} "; InitNetFromProtoString(proto.str()); } virtual void InitSharedWeightsNet() { const string& proto = "name: 'SharedWeightsNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 5 " " channels: 2 " " height: 3 " " width: 4 " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " } " " top: 'data' " "} " "layer { " " name: 'innerproduct1' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " param { name: 'sharedweights' } " " bottom: 'data' " " top: 'innerproduct1' " "} " "layer { " " name: 'innerproduct2' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " param { name: 'sharedweights' } " " bottom: 'data' " " top: 'innerproduct2' " "} " "layer { " " name: 'loss' " " type: 'EuclideanLoss' " " bottom: 'innerproduct1' " " bottom: 'innerproduct2' " "} "; InitNetFromProtoString(proto); } virtual void InitDiffDataUnsharedWeightsNet() { const string& proto = "name: 'DiffDataUnsharedWeightsNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 10 " " channels: 10 " " height: 1 " " width: 1 " " num: 10 " " channels: 10 " " height: 1 " " width: 1 " " data_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " top: 'data1' " " top: 'data2' " "} " "layer { " " name: 'innerproduct1' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'constant' " " value: 0.5 " " } " " } " " param { name: 'unsharedweights1' } " " bottom: 'data1' " " top: 'innerproduct1' " "} " "layer { " " name: 'innerproduct2' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'constant' " " value: 0.5 " " } " " } " " param { name: 'unsharedweights2' } " " bottom: 'innerproduct1' " " top: 'innerproduct2' " "} " "layer { " " name: 'loss' " " type: 'EuclideanLoss' " " bottom: 'data2' " " bottom: 'innerproduct2' " "} "; InitNetFromProtoString(proto); } virtual void InitDiffDataSharedWeightsNet() { const string& proto = "name: 'DiffDataSharedWeightsNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " num: 10 " " channels: 10 " " height: 1 " " width: 1 " " num: 10 " " channels: 10 " " height: 1 " " width: 1 " " data_filler { " " type: 'gaussian' " " std: 10 " " } " " } " " top: 'data1' " " top: 'data2' " "} " "layer { " " name: 'innerproduct1' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'constant' " " value: 0.5 " " } " " } " " param { name: 'sharedweights' } " " bottom: 'data1' " " top: 'innerproduct1' " "} " "layer { " " name: 'innerproduct2' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 10 " " bias_term: false " " weight_filler { " " type: 'constant' " " value: 0.5 " " } " " } " " param { name: 'sharedweights' } " " bottom: 'innerproduct1' " " top: 'innerproduct2' " "} " "layer { " " name: 'loss' " " type: 'EuclideanLoss' " " bottom: 'data2' " " bottom: 'innerproduct2' " "} "; InitNetFromProtoString(proto); } virtual void InitReshapableNet() { const string& proto = "name: 'ReshapableNetwork' " "layer { " " name: 'data' " " type: 'Input' " " top: 'data' " " input_param { " " shape: { dim: 1 dim: 3 dim: 100 dim: 100 } " " } " "} " "layer { " " name: 'conv1' " " type: 'Convolution' " " bottom: 'data' " " top: 'conv1' " " convolution_param { " " num_output: 5 " " kernel_size: 3 " " stride: 2 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0.2 " " } " " } " "} " "layer { " " name: 'relu1' " " type: 'ReLU' " " bottom: 'conv1' " " top: 'conv1' " "} " "layer { " " name: 'pool1' " " type: 'Pooling' " " bottom: 'conv1' " " top: 'pool1' " " pooling_param { " " pool: MAX " " kernel_size: 2 " " stride: 2 " " } " "} " "layer { " " name: 'norm1' " " type: 'LRN' " " bottom: 'pool1' " " top: 'norm1' " " lrn_param { " " local_size: 3 " " } " "} " "layer { " " name: 'softmax' " " type: 'Softmax' " " bottom: 'norm1' " " top: 'softmax' " "} "; InitNetFromProtoString(proto); } virtual void InitSkipPropNet(bool test_skip_true) { string proto = "name: 'SkipPropTestNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " shape { " " dim: 5 " " dim: 2 " " dim: 3 " " dim: 4 " " } " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " shape { " " dim: 5 " " } " " data_filler { " " type: 'constant' " " value: 0 " " } " " } " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'silence' " " bottom: 'label' " " type: 'Silence' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " param { " " lr_mult: 1 " " decay_mult: 1 " " } " " param { " " lr_mult: 2 " " decay_mult: 0 " " } " " bottom: 'data' " " top: 'innerproduct' " "} " "layer { " " name: 'ip_fake_labels' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " bias_filler { " " type: 'constant' " " value: 0 " " } " " } " " bottom: 'data' " " top: 'fake_labels' " "} " "layer { " " name: 'argmax' " " bottom: 'fake_labels' " " top: 'label_argmax' " " type: 'ArgMax' " "} " "layer { " " name: 'loss' " " bottom: 'innerproduct' " " bottom: 'label_argmax' "; if (test_skip_true) proto += " propagate_down: true " " propagate_down: false "; else proto += " propagate_down: true " " propagate_down: true "; proto += " top: 'cross_entropy_loss' " " type: 'SigmoidCrossEntropyLoss' " " loss_weight: 0.1 " "} "; InitNetFromProtoString(proto); } virtual void InitForcePropNet(bool test_force_true) { string proto = "name: 'ForcePropTestNetwork' " "layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " " shape { " " dim: 5 " " dim: 2 " " dim: 3 " " dim: 4 " " } " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " " shape { " " dim: 5 " " } " " data_filler { " " type: 'constant' " " value: 0 " " } " " } " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerproduct' " " type: 'InnerProduct' " " inner_product_param { " " num_output: 1 " " weight_filler { " " type: 'gaussian' " " std: 0.01 " " } " " } " " bottom: 'data' " " top: 'innerproduct' "; if (test_force_true) { proto += " propagate_down: true "; } proto += "} " "layer { " " name: 'loss' " " bottom: 'innerproduct' " " bottom: 'label' " " top: 'cross_entropy_loss' " " type: 'SigmoidCrossEntropyLoss' " "} "; InitNetFromProtoString(proto); } virtual void InitAllInOneNet(Phase phase = caffe::TRAIN, const int level = 0, const vector* stages = NULL) { string proto = "name: 'All-in-one Network'" "layer { " " name: 'train-data' " " type: 'DummyData' " " top: 'data' " " top: 'label' " " dummy_data_param { " " shape { dim: 1 dim: 10 } " " shape { dim: 1 dim: 1 } " " } " " include { phase: TRAIN stage: 'train' } " "} " "layer { " " name: 'val-data' " " type: 'DummyData' " " top: 'data' " " top: 'label' " " dummy_data_param { " " shape { dim: 1 dim: 10 } " " shape { dim: 1 dim: 1 } " " } " " include { phase: TEST stage: 'val' } " "} " "layer { " " name: 'deploy-data' " " type: 'Input' " " top: 'data' " " input_param { " " shape { dim: 1 dim: 10 } " " } " " include { phase: TEST stage: 'deploy' } " "} " "layer { " " name: 'ip' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'ip' " " inner_product_param { " " num_output: 2 " " } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'ip' " " bottom: 'label' " " top: 'loss' " " include { phase: TRAIN stage: 'train' } " " include { phase: TEST stage: 'val' } " "} "; InitNetFromProtoFileWithState(proto, phase, level, stages); } int seed_; shared_ptr > net_; }; TYPED_TEST_CASE(NetTest, TestDtypesAndDevices); TYPED_TEST(NetTest, TestHasBlob) { this->InitTinyNet(); EXPECT_TRUE(this->net_->has_blob("data")); EXPECT_TRUE(this->net_->has_blob("label")); EXPECT_TRUE(this->net_->has_blob("innerproduct")); EXPECT_FALSE(this->net_->has_blob("loss")); EXPECT_TRUE(this->net_->has_blob("top_loss")); } TYPED_TEST(NetTest, TestGetBlob) { this->InitTinyNet(); EXPECT_EQ(this->net_->blob_by_name("data"), this->net_->blobs()[0]); EXPECT_EQ(this->net_->blob_by_name("label"), this->net_->blobs()[1]); EXPECT_EQ(this->net_->blob_by_name("innerproduct"), this->net_->blobs()[2]); EXPECT_FALSE(this->net_->blob_by_name("loss")); EXPECT_EQ(this->net_->blob_by_name("top_loss"), this->net_->blobs()[3]); } TYPED_TEST(NetTest, TestHasLayer) { this->InitTinyNet(); EXPECT_TRUE(this->net_->has_layer("data")); EXPECT_TRUE(this->net_->has_layer("innerproduct")); EXPECT_TRUE(this->net_->has_layer("loss")); EXPECT_FALSE(this->net_->has_layer("label")); } TYPED_TEST(NetTest, TestGetLayerByName) { this->InitTinyNet(); EXPECT_EQ(this->net_->layer_by_name("data"), this->net_->layers()[0]); EXPECT_EQ(this->net_->layer_by_name("innerproduct"), this->net_->layers()[1]); EXPECT_EQ(this->net_->layer_by_name("loss"), this->net_->layers()[2]); EXPECT_FALSE(this->net_->layer_by_name("label")); } TYPED_TEST(NetTest, TestBottomNeedBackward) { this->InitTinyNet(); const vector >& bottom_need_backward = this->net_->bottom_need_backward(); EXPECT_EQ(3, bottom_need_backward.size()); EXPECT_EQ(0, bottom_need_backward[0].size()); EXPECT_EQ(1, bottom_need_backward[1].size()); EXPECT_EQ(false, bottom_need_backward[1][0]); EXPECT_EQ(2, bottom_need_backward[2].size()); EXPECT_EQ(true, bottom_need_backward[2][0]); EXPECT_EQ(false, bottom_need_backward[2][1]); } TYPED_TEST(NetTest, TestBottomNeedBackwardForce) { const bool force_backward = true; this->InitTinyNet(force_backward); const vector >& bottom_need_backward = this->net_->bottom_need_backward(); EXPECT_EQ(3, bottom_need_backward.size()); EXPECT_EQ(0, bottom_need_backward[0].size()); EXPECT_EQ(1, bottom_need_backward[1].size()); EXPECT_EQ(true, bottom_need_backward[1][0]); EXPECT_EQ(2, bottom_need_backward[2].size()); EXPECT_EQ(true, bottom_need_backward[2][0]); EXPECT_EQ(false, bottom_need_backward[2][1]); } TYPED_TEST(NetTest, TestBottomNeedBackwardEuclideanForce) { const bool force_backward = true; this->InitTinyNetEuclidean(force_backward); const vector >& bottom_need_backward = this->net_->bottom_need_backward(); EXPECT_EQ(3, bottom_need_backward.size()); EXPECT_EQ(0, bottom_need_backward[0].size()); EXPECT_EQ(1, bottom_need_backward[1].size()); EXPECT_EQ(true, bottom_need_backward[1][0]); EXPECT_EQ(2, bottom_need_backward[2].size()); EXPECT_EQ(true, bottom_need_backward[2][0]); EXPECT_EQ(true, bottom_need_backward[2][1]); } TYPED_TEST(NetTest, TestBottomNeedBackwardTricky) { this->InitTrickyNet(); const vector >& bottom_need_backward = this->net_->bottom_need_backward(); EXPECT_EQ(4, bottom_need_backward.size()); EXPECT_EQ(0, bottom_need_backward[0].size()); EXPECT_EQ(1, bottom_need_backward[1].size()); EXPECT_EQ(false, bottom_need_backward[1][0]); EXPECT_EQ(1, bottom_need_backward[2].size()); EXPECT_EQ(false, bottom_need_backward[2][0]); EXPECT_EQ(2, bottom_need_backward[3].size()); EXPECT_EQ(true, bottom_need_backward[3][0]); // The label input to the SoftmaxLossLayer should say it "needs backward" // since it has weights under it, even though we expect this to cause a crash // at training/test time. EXPECT_EQ(true, bottom_need_backward[3][1]); } TYPED_TEST(NetTest, TestLossWeight) { typedef typename TypeParam::Dtype Dtype; // First, compute the loss and gradients with no loss_weight specified. // In this case, the loss weight for the 'EuclideanLoss' layer should default // to 1. vector*> bottom; Caffe::set_random_seed(this->seed_); const bool kForceBackward = true; this->InitUnsharedWeightsNet(NULL, NULL, kForceBackward); const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; vector > > blob_grads; this->CopyNetBlobs(kCopyDiff, &blob_grads); vector > > param_grads; this->CopyNetParams(kCopyDiff, ¶m_grads); // Check that the loss is non-trivial, otherwise the test doesn't prove much. const Dtype kMinLossAbsValue = 1e-2; ASSERT_GE(fabs(loss), kMinLossAbsValue); const Dtype kErrorMargin = 1e-4; const int kNumLossWeights = 6; Dtype kLossWeights[kNumLossWeights] = {2, 0, 1, -1, -2.5, 3.7}; for (int i = 0; i < kNumLossWeights; ++i) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&kLossWeights[i], NULL, kForceBackward); const Dtype weighted_loss = this->net_->ForwardBackward(); const Dtype error_margin = kErrorMargin * fabs(kLossWeights[i]); EXPECT_NEAR(loss * kLossWeights[i], weighted_loss, error_margin) << "loss weight = " << kLossWeights[i]; const vector > >& weighted_blobs = this->net_->blobs(); ASSERT_EQ(blob_grads.size(), weighted_blobs.size()); for (int j = 0; j < blob_grads.size(); ++j) { ASSERT_EQ(blob_grads[j]->count(), weighted_blobs[j]->count()); for (int k = 0; k < blob_grads[j]->count(); ++k) { EXPECT_NEAR(blob_grads[j]->cpu_diff()[k] * kLossWeights[i], weighted_blobs[j]->cpu_diff()[k], error_margin); } } const vector > >& weighted_params = this->net_->params(); ASSERT_EQ(param_grads.size(), weighted_params.size()); for (int j = 0; j < param_grads.size(); ++j) { ASSERT_EQ(param_grads[j]->count(), weighted_params[j]->count()); for (int k = 0; k < param_grads[j]->count(); ++k) { EXPECT_NEAR(param_grads[j]->cpu_diff()[k] * kLossWeights[i], weighted_params[j]->cpu_diff()[k], error_margin); } } } } TYPED_TEST(NetTest, TestLossWeightMidNet) { typedef typename TypeParam::Dtype Dtype; Caffe::set_random_seed(this->seed_); const bool kForceBackward = true; Dtype loss_weight = 0; Dtype midnet_loss_weight = 1; this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; const bool kReshape = true; Blob data_grad; data_grad.CopyFrom(*this->net_->blob_by_name("data"), kCopyDiff, kReshape); // Check that the loss is non-trivial, otherwise the test doesn't prove much. const Dtype kMinLossAbsValue = 1e-2; ASSERT_GE(fabs(loss), kMinLossAbsValue); const Dtype kErrorMargin = 1e-4; const int kNumLossWeights = 6; Dtype kLossWeights[kNumLossWeights] = {2, 0, 1, -1, -2.5, 3.7}; for (int i = 0; i < kNumLossWeights; ++i) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &kLossWeights[i], kForceBackward); const Dtype weighted_loss = this->net_->ForwardBackward(); const Dtype error_margin = kErrorMargin * fabs(kLossWeights[i]); EXPECT_NEAR(loss * kLossWeights[i], weighted_loss, error_margin) << "loss weight = " << kLossWeights[i]; const shared_ptr >& weighted_blob = this->net_->blob_by_name("data"); ASSERT_EQ(data_grad.count(), weighted_blob->count()); for (int j = 0; j < data_grad.count(); ++j) { EXPECT_NEAR(data_grad.cpu_diff()[j] * kLossWeights[i], weighted_blob->cpu_diff()[j], error_margin); } } } TYPED_TEST(NetTest, TestComboLossWeight) { typedef typename TypeParam::Dtype Dtype; Dtype loss_weight; Dtype midnet_loss_weight; const bool kForceBackward = true; const Dtype kErrorMargin = 1e-4; // Get the loss and gradients with 'EuclideanLoss' weight 1, // 'InnerProduct' weight 1. loss_weight = 1; midnet_loss_weight = 1; Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; vector > > blob_grads; this->CopyNetBlobs(kCopyDiff, &blob_grads); vector > > param_grads; this->CopyNetParams(kCopyDiff, ¶m_grads); loss_weight = 2; midnet_loss_weight = 1; Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss_main_2 = this->net_->ForwardBackward(); vector > > blob_grads_loss_2; this->CopyNetBlobs(kCopyDiff, &blob_grads_loss_2); vector > > param_grads_loss_2; this->CopyNetParams(kCopyDiff, ¶m_grads_loss_2); loss_weight = 3; midnet_loss_weight = 1; Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss_main_3 = this->net_->ForwardBackward(); const vector > >& blob_grads_loss_3 = this->net_->blobs(); ASSERT_EQ(blob_grads.size(), blob_grads_loss_3.size()); ASSERT_EQ(blob_grads_loss_2.size(), blob_grads_loss_3.size()); for (int j = 0; j < blob_grads.size(); ++j) { const string& blob_name = this->net_->blob_names()[j]; bool grad_should_change = true; if (blob_name == "innerproduct1_innerproduct1_0_split_0") { grad_should_change = false; } ASSERT_EQ(blob_grads[j]->count(), blob_grads_loss_3[j]->count()); ASSERT_EQ(blob_grads_loss_2[j]->count(), blob_grads_loss_3[j]->count()); for (int k = 0; k < blob_grads[j]->count(); ++k) { const Dtype grad_diff_2 = blob_grads_loss_2[j]->cpu_diff()[k] - blob_grads[j]->cpu_diff()[k]; const Dtype grad_diff_3 = blob_grads_loss_3[j]->cpu_diff()[k] - blob_grads[j]->cpu_diff()[k]; if (grad_should_change) { // Test non-triviality. const Dtype kMinGradDiffAbsValue = 1e-4; EXPECT_GT(fabs(grad_diff_2), kMinGradDiffAbsValue) << blob_name; EXPECT_NEAR(2 * grad_diff_2, grad_diff_3, kErrorMargin) << blob_name; } else { EXPECT_EQ(0, grad_diff_2) << blob_name; EXPECT_EQ(0, grad_diff_3) << blob_name; } } } loss_weight = 1; midnet_loss_weight = 2; Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss_midnet_2 = this->net_->ForwardBackward(); this->CopyNetBlobs(kCopyDiff, &blob_grads_loss_2); this->CopyNetParams(kCopyDiff, ¶m_grads_loss_2); loss_weight = 1; midnet_loss_weight = 3; Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); const Dtype loss_midnet_3 = this->net_->ForwardBackward(); const vector > >& blob_grads_midnet_loss_3 = this->net_->blobs(); ASSERT_EQ(blob_grads.size(), blob_grads_midnet_loss_3.size()); ASSERT_EQ(blob_grads_loss_2.size(), blob_grads_midnet_loss_3.size()); const vector& blob_names = this->net_->blob_names(); for (int j = 0; j < blob_grads.size(); ++j) { const string& blob_name = blob_names[j]; bool grad_should_change = false; if (blob_name == "innerproduct1" || blob_name == "innerproduct1_innerproduct1_0_split_0" || blob_name == "data_data_0_split_0" || blob_name == "data") { grad_should_change = true; } ASSERT_EQ(blob_grads[j]->count(), blob_grads_midnet_loss_3[j]->count()); ASSERT_EQ(blob_grads[j]->count(), blob_grads_loss_2[j]->count()); for (int k = 0; k < blob_grads[j]->count(); ++k) { const Dtype grad_diff_2 = blob_grads_loss_2[j]->cpu_diff()[k] - blob_grads[j]->cpu_diff()[k]; const Dtype grad_diff_3 = blob_grads_midnet_loss_3[j]->cpu_diff()[k] - blob_grads[j]->cpu_diff()[k]; if (grad_should_change) { // Test non-triviality. const Dtype kMinGradDiffAbsValue = 1e-4; EXPECT_GT(fabs(grad_diff_2), kMinGradDiffAbsValue) << blob_name; EXPECT_NEAR(2 * grad_diff_2, grad_diff_3, kErrorMargin) << blob_name; } else { EXPECT_EQ(0, grad_diff_2) << blob_name; EXPECT_EQ(0, grad_diff_3) << blob_name; } } } const Dtype kMinLossDiffAbsValue = 1e-4; Dtype loss_diff_2 = loss_main_2 - loss; // Test non-triviality. EXPECT_GT(fabs(loss_diff_2), kMinLossDiffAbsValue); Dtype loss_diff_3 = loss_main_3 - loss; EXPECT_NEAR(2 * loss_diff_2, loss_diff_3, kErrorMargin); loss_diff_2 = loss_midnet_2 - loss; // Test non-triviality. EXPECT_GT(fabs(loss_diff_2), kMinLossDiffAbsValue); loss_diff_3 = loss_midnet_3 - loss; EXPECT_NEAR(2 * loss_diff_2, loss_diff_3, kErrorMargin); } TYPED_TEST(NetTest, TestBackwardWithAccuracyLayer) { const bool kForceBackward = false; const bool kAccuracyLayer = true; this->InitTinyNet(kForceBackward, kAccuracyLayer); EXPECT_TRUE(this->net_->has_blob("accuracy")); // Test that we can do Backward even though we have an 'Accuracy' layer. this->net_->ForwardBackward(); } TYPED_TEST(NetTest, TestUnsharedWeightsDataNet) { typedef typename TypeParam::Dtype Dtype; this->InitUnsharedWeightsNet(); Dtype loss; this->net_->Forward(&loss); EXPECT_GT(loss, 0); } TYPED_TEST(NetTest, TestSharedWeightsDataNet) { typedef typename TypeParam::Dtype Dtype; this->InitSharedWeightsNet(); Dtype loss; this->net_->Forward(&loss); EXPECT_FLOAT_EQ(loss, 0); } TYPED_TEST(NetTest, TestUnsharedWeightsDiffNet) { typedef typename TypeParam::Dtype Dtype; this->InitUnsharedWeightsNet(); Net* net = this->net_.get(); net->Forward(); net->Backward(); Layer* ip1_layer = net->layer_by_name("innerproduct1").get(); Layer* ip2_layer = net->layer_by_name("innerproduct2").get(); const int count = ip1_layer->blobs()[0]->count(); const Dtype* grad1 = ip1_layer->blobs()[0]->cpu_diff(); const Dtype* grad2 = ip2_layer->blobs()[0]->cpu_diff(); for (int i = 0; i < count; ++i) { EXPECT_GT(fabs(grad1[i]), 0); EXPECT_FLOAT_EQ(-1 * grad1[i], grad2[i]); } } TYPED_TEST(NetTest, TestSharedWeightsDiffNet) { typedef typename TypeParam::Dtype Dtype; this->InitSharedWeightsNet(); Net* net = this->net_.get(); Dtype loss; net->Forward(&loss); net->Backward(); EXPECT_FLOAT_EQ(loss, 0); Layer* ip1_layer = net->layer_by_name("innerproduct1").get(); Layer* ip2_layer = net->layer_by_name("innerproduct2").get(); const int count = ip1_layer->blobs()[0]->count(); const Dtype* grad1 = ip1_layer->blobs()[0]->cpu_diff(); const Dtype* grad2 = ip2_layer->blobs()[0]->cpu_diff(); for (int i = 0; i < count; ++i) { EXPECT_FLOAT_EQ(0, grad1[i]); EXPECT_FLOAT_EQ(0, grad2[i]); } } TYPED_TEST(NetTest, TestSharedWeightsUpdate) { typedef typename TypeParam::Dtype Dtype; Caffe::set_random_seed(this->seed_); this->InitDiffDataSharedWeightsNet(); EXPECT_EQ(this->net_->layer_names()[1], "innerproduct1"); EXPECT_EQ(this->net_->layer_names()[2], "innerproduct2"); Blob* ip1_weights = this->net_->layers()[1]->blobs()[0].get(); Blob* ip2_weights = this->net_->layers()[2]->blobs()[0].get(); // Check that data and diff blobs of shared weights share the same memory // locations. EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_EQ(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); this->net_->Forward(); this->net_->Backward(); // Compute the expected update as the data minus the two diffs. Blob shared_params; const bool reshape = true; const bool copy_diff = false; shared_params.CopyFrom(*ip1_weights, copy_diff, reshape); shared_params.CopyFrom(*ip1_weights, !copy_diff, reshape); const int count = ip1_weights->count(); // Make sure the diffs are non-trivial. for (int i = 0; i < count; ++i) { EXPECT_NE(0, ip1_weights->cpu_diff()[i]); } caffe_axpy(count, Dtype(-1), shared_params.cpu_diff(), shared_params.mutable_cpu_data()); const Dtype* expected_updated_params = shared_params.cpu_data(); this->net_->Update(); const Dtype* actual_updated_params = ip1_weights->cpu_data(); for (int i = 0; i < count; ++i) { EXPECT_EQ(expected_updated_params[i], actual_updated_params[i]); } // Check that data blobs of shared weights STILL point to the same memory // location (because ... who knows). EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); Caffe::set_random_seed(this->seed_); this->InitDiffDataUnsharedWeightsNet(); EXPECT_EQ(this->net_->layer_names()[1], "innerproduct1"); EXPECT_EQ(this->net_->layer_names()[2], "innerproduct2"); ip1_weights = this->net_->layers()[1]->blobs()[0].get(); ip2_weights = this->net_->layers()[2]->blobs()[0].get(); // Check that data and diff blobs of unshared weights are at different // locations in memory. EXPECT_NE(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_NE(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); this->net_->Forward(); this->net_->Backward(); // Compute the expected update. Blob unshared_params1; unshared_params1.CopyFrom(*ip1_weights, copy_diff, reshape); unshared_params1.CopyFrom(*ip1_weights, !copy_diff, reshape); Blob unshared_params2; unshared_params2.CopyFrom(*ip2_weights, copy_diff, reshape); unshared_params2.CopyFrom(*ip2_weights, !copy_diff, reshape); // Make sure the diffs are non-trivial and sum to the diff in the shared net. for (int i = 0; i < count; ++i) { EXPECT_NE(0, ip1_weights->cpu_diff()[i]); EXPECT_NE(0, ip2_weights->cpu_diff()[i]); EXPECT_NE(ip1_weights->cpu_diff()[i], ip2_weights->cpu_diff()[i]); EXPECT_FLOAT_EQ(ip1_weights->cpu_diff()[i] + ip2_weights->cpu_diff()[i], shared_params.cpu_diff()[i]); } caffe_axpy(count, Dtype(-1), ip1_weights->cpu_diff(), unshared_params1.mutable_cpu_data()); caffe_axpy(count, Dtype(-1), ip2_weights->cpu_diff(), unshared_params2.mutable_cpu_data()); const Dtype* expected_updated_params1 = unshared_params1.cpu_data(); const Dtype* expected_updated_params2 = unshared_params2.cpu_data(); this->net_->Update(); const Dtype* actual_updated_params1 = ip1_weights->cpu_data(); const Dtype* actual_updated_params2 = ip2_weights->cpu_data(); for (int i = 0; i < count; ++i) { EXPECT_EQ(expected_updated_params1[i], actual_updated_params1[i]); EXPECT_EQ(expected_updated_params2[i], actual_updated_params2[i]); EXPECT_NE(actual_updated_params1[i], actual_updated_params2[i]); EXPECT_NE(expected_updated_params, expected_updated_params1); } } TYPED_TEST(NetTest, TestSharedWeightsResume) { typedef typename TypeParam::Dtype Dtype; // Create a net with weight sharing; Update it once. Caffe::set_random_seed(this->seed_); this->InitDiffDataSharedWeightsNet(); EXPECT_EQ(this->net_->layer_names()[1], "innerproduct1"); EXPECT_EQ(this->net_->layer_names()[2], "innerproduct2"); Blob* ip1_weights = this->net_->layers()[1]->blobs()[0].get(); Blob* ip2_weights = this->net_->layers()[2]->blobs()[0].get(); // Check that data and diff blobs of shared weights share the same memory // locations. EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_EQ(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); this->net_->ForwardBackward(); this->net_->Update(); Blob shared_params; const bool kReshape = true; const bool kCopyDiff = false; shared_params.CopyFrom(*ip1_weights, kCopyDiff, kReshape); const int count = ip1_weights->count(); // Write the net to a NetParameter, as in Solver::Snapshot. NetParameter net_param; this->net_->ToProto(&net_param); // Reinitialize the net and copy parameters from net_param, as in // Solver::Restore. Caffe::set_random_seed(this->seed_); this->InitDiffDataSharedWeightsNet(); this->net_->CopyTrainedLayersFrom(net_param); ip1_weights = this->net_->layers()[1]->blobs()[0].get(); ip2_weights = this->net_->layers()[2]->blobs()[0].get(); ASSERT_FALSE(NULL == ip1_weights); ASSERT_FALSE(NULL == ip2_weights); EXPECT_NE(ip1_weights, ip2_weights); // Check that data and diff blobs of shared weights share the same memory // locations. EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_EQ(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); for (int i = 0; i < count; ++i) { EXPECT_FLOAT_EQ(shared_params.cpu_data()[i], ip1_weights->cpu_data()[i]); } } TYPED_TEST(NetTest, TestParamPropagateDown) { typedef typename TypeParam::Dtype Dtype; const bool kBiasTerm = true, kForceBackward = false; const Dtype* kLossWeight1 = NULL; const Dtype* kLossWeight2 = NULL; // Run the net with all params learned; check that gradients are non-zero. Caffe::set_random_seed(this->seed_); Dtype blobs_lr_w1 = 1, blobs_lr_w2 = 1, blobs_lr_b1 = 2, blobs_lr_b2 = 2; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); this->net_->Forward(); this->net_->Backward(); const vector > >& params = this->net_->params(); const int num_params = params.size(); ASSERT_EQ(4, num_params); const Dtype kNonZeroTestMin = 1e-3; vector param_asums(params.size()); for (int i = 0; i < num_params; ++i) { const Dtype param_asum = caffe_cpu_asum(params[i]->count(), params[i]->cpu_diff()); param_asums[i] = param_asum; EXPECT_GT(param_asum, kNonZeroTestMin); } // Change the learning rates to different non-zero values; should see same // gradients. Caffe::set_random_seed(this->seed_); blobs_lr_w1 *= 2, blobs_lr_w2 *= 2, blobs_lr_b1 *= 2, blobs_lr_b2 *= 2; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); this->net_->Forward(); this->net_->Backward(); const vector > >& params2 = this->net_->params(); ASSERT_EQ(num_params, params2.size()); for (int i = 0; i < num_params; ++i) { const Dtype param_asum = caffe_cpu_asum(params2[i]->count(), params2[i]->cpu_diff()); EXPECT_FLOAT_EQ(param_asum, param_asums[i]); } // Change a subset of the learning rates to zero; check that we see zero // gradients for those. Caffe::set_random_seed(this->seed_); blobs_lr_w1 = 1, blobs_lr_w2 = 0, blobs_lr_b1 = 0, blobs_lr_b2 = 1; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); this->net_->Forward(); this->net_->Backward(); const vector > >& params3 = this->net_->params(); ASSERT_EQ(num_params, params3.size()); for (int i = 0; i < num_params; ++i) { const Dtype param_asum = caffe_cpu_asum(params3[i]->count(), params3[i]->cpu_diff()); if (i == 1 || i == 2) { EXPECT_FLOAT_EQ(0, param_asum); } else { EXPECT_FLOAT_EQ(param_asum, param_asums[i]); } } // Change the opposite subset of the learning rates to zero. Caffe::set_random_seed(this->seed_); blobs_lr_w1 = 0, blobs_lr_w2 = 1, blobs_lr_b1 = 1, blobs_lr_b2 = 0; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); this->net_->Forward(); this->net_->Backward(); const vector > >& params4 = this->net_->params(); ASSERT_EQ(num_params, params4.size()); for (int i = 0; i < num_params; ++i) { const Dtype param_asum = caffe_cpu_asum(params4[i]->count(), params4[i]->cpu_diff()); if (i == 0 || i == 3) { EXPECT_FLOAT_EQ(0, param_asum); } else { EXPECT_FLOAT_EQ(param_asum, param_asums[i]); } } } TYPED_TEST(NetTest, TestFromTo) { typedef typename TypeParam::Dtype Dtype; this->InitTinyNet(); // Run Forward and Backward, recording the data diff and loss. Blob data; data.ReshapeLike(*this->net_->blob_by_name("data")); this->net_->Forward(); this->net_->Backward(); data.CopyFrom(*this->net_->blob_by_name("data"), true, true); const Dtype *loss_ptr = this->net_->output_blobs()[0]->cpu_data(); Dtype loss = *loss_ptr; // Check that combining partial Forwards gives the same loss. for (int i = 1; i < this->net_->layers().size(); ++i) { // Note that we skip layer zero to keep the same data. this->net_->ForwardFromTo(1, 1); if (i < this->net_->layers().size() - 1) { this->net_->ForwardFrom(i + 1); } EXPECT_EQ(loss, *loss_ptr); } // Check that combining partial Backwards gives the same data diff. for (int i = 1; i < this->net_->layers().size(); ++i) { this->net_->BackwardTo(i); this->net_->BackwardFrom(i - 1); for (int j = 0; j < data.count(); ++j) { EXPECT_EQ(data.cpu_diff()[j], this->net_->blob_by_name("data")->cpu_diff()[j]); } } } class FilterNetTest : public ::testing::Test { protected: void RunFilterNetTest( const string& input_param_string, const string& filtered_param_string) { NetParameter input_param; CHECK(google::protobuf::TextFormat::ParseFromString( input_param_string, &input_param)); NetParameter expected_filtered_param; CHECK(google::protobuf::TextFormat::ParseFromString( filtered_param_string, &expected_filtered_param)); NetParameter actual_filtered_param; Net::FilterNet(input_param, &actual_filtered_param); EXPECT_EQ(expected_filtered_param.DebugString(), actual_filtered_param.DebugString()); // Also test idempotence. NetParameter double_filtered_param; Net::FilterNet(actual_filtered_param, &double_filtered_param); EXPECT_EQ(actual_filtered_param.DebugString(), double_filtered_param.DebugString()); } }; TEST_F(FilterNetTest, TestNoFilter) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterLeNetTrainTest) { const string& input_proto = "name: 'LeNet' " "layer { " " name: 'mnist' " " type: 'Data' " " top: 'data' " " top: 'label' " " data_param { " " source: 'mnist-train-leveldb' " " batch_size: 64 " " } " " transform_param { " " scale: 0.00390625 " " } " " include: { phase: TRAIN } " "} " "layer { " " name: 'mnist' " " type: 'Data' " " top: 'data' " " top: 'label' " " data_param { " " source: 'mnist-test-leveldb' " " batch_size: 100 " " } " " transform_param { " " scale: 0.00390625 " " } " " include: { phase: TEST } " "} " "layer { " " name: 'conv1' " " type: 'Convolution' " " bottom: 'data' " " top: 'conv1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " convolution_param { " " num_output: 20 " " kernel_size: 5 " " stride: 1 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'ip1' " " type: 'InnerProduct' " " bottom: 'conv1' " " top: 'ip1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " inner_product_param { " " num_output: 10 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'accuracy' " " type: 'Accuracy' " " bottom: 'ip1' " " bottom: 'label' " " top: 'accuracy' " " include: { phase: TEST } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'ip2' " " bottom: 'label' " " top: 'loss' " "} "; const string input_proto_train = "state: { phase: TRAIN } " + input_proto; const string input_proto_test = "state: { phase: TEST } " + input_proto; const string output_proto_train = "name: 'LeNet' " "layer { " " name: 'mnist' " " type: 'Data' " " top: 'data' " " top: 'label' " " data_param { " " source: 'mnist-train-leveldb' " " batch_size: 64 " " } " " transform_param { " " scale: 0.00390625 " " } " " include: { phase: TRAIN } " "} " "layer { " " name: 'conv1' " " type: 'Convolution' " " bottom: 'data' " " top: 'conv1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " convolution_param { " " num_output: 20 " " kernel_size: 5 " " stride: 1 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'ip1' " " type: 'InnerProduct' " " bottom: 'conv1' " " top: 'ip1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " inner_product_param { " " num_output: 10 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'ip2' " " bottom: 'label' " " top: 'loss' " "} "; const string& output_proto_test = "name: 'LeNet' " "layer { " " name: 'mnist' " " type: 'Data' " " top: 'data' " " top: 'label' " " data_param { " " source: 'mnist-test-leveldb' " " batch_size: 100 " " } " " transform_param { " " scale: 0.00390625 " " } " " include: { phase: TEST } " "} " "layer { " " name: 'conv1' " " type: 'Convolution' " " bottom: 'data' " " top: 'conv1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " convolution_param { " " num_output: 20 " " kernel_size: 5 " " stride: 1 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'ip1' " " type: 'InnerProduct' " " bottom: 'conv1' " " top: 'ip1' " " param { " " lr_mult: 1 " " } " " param { " " lr_mult: 2 " " } " " inner_product_param { " " num_output: 10 " " weight_filler { " " type: 'xavier' " " } " " bias_filler { " " type: 'constant' " " } " " } " "} " "layer { " " name: 'accuracy' " " type: 'Accuracy' " " bottom: 'ip1' " " bottom: 'label' " " top: 'accuracy' " " include: { phase: TEST } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'ip2' " " bottom: 'label' " " top: 'loss' " "} "; const string output_proto_train_explicit = output_proto_train + " state: { phase: TRAIN } "; const string output_proto_test_explicit = output_proto_test + " state: { phase: TEST } "; this->RunFilterNetTest(input_proto_train, output_proto_train_explicit); this->RunFilterNetTest(input_proto_test, output_proto_test_explicit); } TEST_F(FilterNetTest, TestFilterOutByStage) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " " include: { stage: 'mystage' } " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; const string& output_proto = "name: 'TestNetwork' " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterOutByStage2) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { stage: 'mystage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; const string& output_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterInByStage) { const string& input_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { stage: 'mystage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByStage2) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " exclude: { stage: 'mystage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterOutByMultipleStage) { const string& input_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { stage: 'mystage' stage: 'myotherstage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { stage: 'mystage' } " "} "; const string& output_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { stage: 'mystage' } " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterInByMultipleStage) { const string& input_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { stage: 'myotherstage' } " " include: { stage: 'mystage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { stage: 'mystage' } " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByMultipleStage2) { const string& input_proto = "state: { stage: 'mystage' stage: 'myotherstage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { stage: 'mystage' stage: 'myotherstage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { stage: 'mystage' } " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByNotStage) { const string& input_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { not_stage: 'myotherstage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { not_stage: 'myotherstage' } " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterOutByNotStage) { const string& input_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { not_stage: 'mystage' } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { not_stage: 'mystage' } " "} "; const string& output_proto = "state: { stage: 'mystage' } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterOutByMinLevel) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 3 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; const string& output_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterOutByMaxLevel) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { max_level: -3 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; const string& output_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, output_proto); } TEST_F(FilterNetTest, TestFilterInByMinLevel) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 0 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByMinLevel2) { const string& input_proto = "state: { level: 7 } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 3 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByMaxLevel) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { max_level: 0 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInByMaxLevel2) { const string& input_proto = "state: { level: -7 } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { max_level: -3 } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " "} "; this->RunFilterNetTest(input_proto, input_proto); } TEST_F(FilterNetTest, TestFilterInOutByIncludeMultiRule) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 2 phase: TRAIN } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { min_level: 2 phase: TEST } " "} "; const string& input_proto_train = "state: { level: 4 phase: TRAIN } " + input_proto; const string& input_proto_test = "state: { level: 4 phase: TEST } " + input_proto; const string& output_proto_train = "state: { level: 4 phase: TRAIN } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 2 phase: TRAIN } " "} "; const string& output_proto_test = "state: { level: 4 phase: TEST } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { min_level: 2 phase: TEST } " "} "; this->RunFilterNetTest(input_proto_train, output_proto_train); this->RunFilterNetTest(input_proto_test, output_proto_test); } TEST_F(FilterNetTest, TestFilterInByIncludeMultiRule) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " include: { min_level: 2 phase: TRAIN } " " include: { phase: TEST } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " include: { min_level: 2 phase: TEST } " " include: { phase: TRAIN } " "} "; const string& input_proto_train = "state: { level: 2 phase: TRAIN } " + input_proto; const string& input_proto_test = "state: { level: 2 phase: TEST } " + input_proto; this->RunFilterNetTest(input_proto_train, input_proto_train); this->RunFilterNetTest(input_proto_test, input_proto_test); } TEST_F(FilterNetTest, TestFilterInOutByExcludeMultiRule) { const string& input_proto = "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " exclude: { min_level: 2 phase: TRAIN } " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " exclude: { min_level: 2 phase: TEST } " "} "; const string& input_proto_train = "state: { level: 4 phase: TRAIN } " + input_proto; const string& input_proto_test = "state: { level: 4 phase: TEST } " + input_proto; const string& output_proto_train = "state: { level: 4 phase: TRAIN } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'loss' " " type: 'SoftmaxWithLoss' " " bottom: 'innerprod' " " bottom: 'label' " " exclude: { min_level: 2 phase: TEST } " "} "; const string& output_proto_test = "state: { level: 4 phase: TEST } " "name: 'TestNetwork' " "layer { " " name: 'data' " " type: 'Data' " " top: 'data' " " top: 'label' " "} " "layer { " " name: 'innerprod' " " type: 'InnerProduct' " " bottom: 'data' " " top: 'innerprod' " " exclude: { min_level: 2 phase: TRAIN } " "} "; this->RunFilterNetTest(input_proto_train, output_proto_train); this->RunFilterNetTest(input_proto_test, output_proto_test); } TYPED_TEST(NetTest, TestReshape) { typedef typename TypeParam::Dtype Dtype; // We set up bottom blobs of two different sizes, switch between // them, check that forward and backward both run and the results // are the same, and check that the output shapes change. Caffe::set_random_seed(this->seed_); Caffe::set_mode(Caffe::CPU); FillerParameter filler_param; filler_param.set_std(1); GaussianFiller filler(filler_param); // Check smaller shape first as larger first could hide realloc failures. Blob blob1(2, 3, 12, 10); Blob blob2(4, 3, 9, 11); ASSERT_LT(blob1.count(), blob2.count()); filler.Fill(&blob1); filler.Fill(&blob2); this->InitReshapableNet(); shared_ptr > input_blob = this->net_->blob_by_name("data"); Blob* output_blob = this->net_->output_blobs()[0]; input_blob->Reshape(blob1.num(), blob1.channels(), blob1.height(), blob1.width()); caffe_copy(blob1.count(), blob1.cpu_data(), input_blob->mutable_cpu_data()); this->net_->Forward(); // call backward just to make sure it runs this->net_->Backward(); Blob output1(output_blob->num(), output_blob->channels(), output_blob->height(), output_blob->width()); caffe_copy(output1.count(), output_blob->cpu_data(), output1.mutable_cpu_data()); input_blob->Reshape(blob2.num(), blob2.channels(), blob2.height(), blob2.width()); caffe_copy(blob2.count(), blob2.cpu_data(), input_blob->mutable_cpu_data()); this->net_->Forward(); this->net_->Backward(); Blob output2(output_blob->num(), output_blob->channels(), output_blob->height(), output_blob->width()); caffe_copy(output2.count(), output_blob->cpu_data(), output2.mutable_cpu_data()); input_blob->Reshape(blob1.num(), blob1.channels(), blob1.height(), blob1.width()); caffe_copy(blob1.count(), blob1.cpu_data(), input_blob->mutable_cpu_data()); this->net_->Forward(); this->net_->Backward(); for (int i = 0; i < output1.count(); ++i) { EXPECT_FLOAT_EQ(*(output1.cpu_data() + i), *(output_blob->cpu_data() + i)); } input_blob->Reshape(blob2.num(), blob2.channels(), blob2.height(), blob2.width()); caffe_copy(blob2.count(), blob2.cpu_data(), input_blob->mutable_cpu_data()); this->net_->Forward(); this->net_->Backward(); for (int i = 0; i < output2.count(); ++i) { EXPECT_FLOAT_EQ(*(output2.cpu_data() + i), *(output_blob->cpu_data() + i)); } EXPECT_EQ(output1.num(), blob1.num()); EXPECT_EQ(output2.num(), blob2.num()); bool same_spatial_shape = true; const int kFirstSpatialAxis = 2; for (int i = kFirstSpatialAxis; i < output1.num_axes(); ++i) { if (output1.shape(i) != output2.shape(i)) { same_spatial_shape = false; break; } } EXPECT_FALSE(same_spatial_shape); } TYPED_TEST(NetTest, TestSkipPropagateDown) { // check bottom_need_backward if propagate_down is true this->InitSkipPropNet(false); vector vec_layer_need_backward = this->net_->layer_need_backward(); for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { string layer_name = this->net_->layer_names()[layer_id]; if (layer_name == "loss") { // access to bottom_need_backward coresponding to label's blob bool need_back = this->net_->bottom_need_backward()[layer_id][1]; // if propagate_down is true, the loss layer will try to // backpropagate on labels EXPECT_TRUE(need_back) << "bottom_need_backward should be True"; } // layer_need_backward should be True except for data and silence layers if (layer_name.find("data") != std::string::npos || layer_name == "silence") { EXPECT_FALSE(vec_layer_need_backward[layer_id]) << "layer_need_backward for " << layer_name << " should be False"; } else { EXPECT_TRUE(vec_layer_need_backward[layer_id]) << "layer_need_backward for " << layer_name << " should be True"; } } // check bottom_need_backward if propagat_down is false this->InitSkipPropNet(true); vec_layer_need_backward.clear(); vec_layer_need_backward = this->net_->layer_need_backward(); for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { string layer_name = this->net_->layer_names()[layer_id]; if (layer_name == "loss") { // access to bottom_need_backward coresponding to label's blob bool need_back = this->net_->bottom_need_backward()[layer_id][1]; // if propagate_down is false, the loss layer will not try to // backpropagate on labels EXPECT_FALSE(need_back) << "bottom_need_backward should be False"; } // layer_need_backward should be False except for innerproduct and // loss layers if (layer_name == "innerproduct" || layer_name == "loss") { EXPECT_TRUE(vec_layer_need_backward[layer_id]) << "layer_need_backward for " << layer_name << " should be True"; } else { EXPECT_FALSE(vec_layer_need_backward[layer_id]) << "layer_need_backward for " << layer_name << " should be False"; } } } TYPED_TEST(NetTest, TestForcePropagateDown) { this->InitForcePropNet(false); vector layer_need_backward = this->net_->layer_need_backward(); for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { const string& layer_name = this->net_->layer_names()[layer_id]; const vector need_backward = this->net_->bottom_need_backward()[layer_id]; if (layer_name == "data") { ASSERT_EQ(need_backward.size(), 0); EXPECT_FALSE(layer_need_backward[layer_id]); } else if (layer_name == "innerproduct") { ASSERT_EQ(need_backward.size(), 1); EXPECT_FALSE(need_backward[0]); // data EXPECT_TRUE(layer_need_backward[layer_id]); } else if (layer_name == "loss") { ASSERT_EQ(need_backward.size(), 2); EXPECT_TRUE(need_backward[0]); // innerproduct EXPECT_FALSE(need_backward[1]); // label EXPECT_TRUE(layer_need_backward[layer_id]); } else { LOG(FATAL) << "Unknown layer: " << layer_name; } } this->InitForcePropNet(true); layer_need_backward = this->net_->layer_need_backward(); for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { const string& layer_name = this->net_->layer_names()[layer_id]; const vector need_backward = this->net_->bottom_need_backward()[layer_id]; if (layer_name == "data") { ASSERT_EQ(need_backward.size(), 0); EXPECT_FALSE(layer_need_backward[layer_id]); } else if (layer_name == "innerproduct") { ASSERT_EQ(need_backward.size(), 1); EXPECT_TRUE(need_backward[0]); // data EXPECT_TRUE(layer_need_backward[layer_id]); } else if (layer_name == "loss") { ASSERT_EQ(need_backward.size(), 2); EXPECT_TRUE(need_backward[0]); // innerproduct EXPECT_FALSE(need_backward[1]); // label EXPECT_TRUE(layer_need_backward[layer_id]); } else { LOG(FATAL) << "Unknown layer: " << layer_name; } } } TYPED_TEST(NetTest, TestAllInOneNetTrain) { vector stages; stages.push_back("train"); this->InitAllInOneNet(caffe::TRAIN, 0, &stages); bool found_data = false; bool found_loss = false; for (int i = 0; i < this->net_->layers().size(); ++i) { const string& layer_name = this->net_->layer_names()[i]; if (layer_name == "train-data") { found_data = true; } else if (layer_name == "loss") { found_loss = true; } else { ASSERT_NE(layer_name, "val-data"); ASSERT_NE(layer_name, "deploy-data"); } } ASSERT_TRUE(found_data); ASSERT_TRUE(found_loss); } TYPED_TEST(NetTest, TestAllInOneNetVal) { vector stages; stages.push_back("val"); this->InitAllInOneNet(caffe::TEST, 0, &stages); bool found_data = false; bool found_loss = false; for (int i = 0; i < this->net_->layers().size(); ++i) { const string& layer_name = this->net_->layer_names()[i]; if (layer_name == "val-data") { found_data = true; } else if (layer_name == "loss") { found_loss = true; } else { ASSERT_NE(layer_name, "train-data"); ASSERT_NE(layer_name, "deploy-data"); } } ASSERT_TRUE(found_data); ASSERT_TRUE(found_loss); } TYPED_TEST(NetTest, TestAllInOneNetDeploy) { vector stages; stages.push_back("deploy"); this->InitAllInOneNet(caffe::TEST, 0, &stages); bool found_data = false; for (int i = 0; i < this->net_->layers().size(); ++i) { const string& layer_name = this->net_->layer_names()[i]; if (layer_name == "deploy-data") { found_data = true; } else { ASSERT_NE(layer_name, "train-data"); ASSERT_NE(layer_name, "val-data"); ASSERT_NE(layer_name, "loss"); } } ASSERT_TRUE(found_data); } } // namespace caffe