
Caffe:
Convolution Architecture For Feature Extraction

!
Created by Yangqing Jia
In development by BVLC
caffe.berkeleyvision.org
bvlc.eecs.berkeley.edu

http://caffe.berkeleyvision.org
http://bvlc.eecs.berkeley.edu

So what is Caffe?
Convolution Architecture For Feature Extraction
!
• C++/CUDA framework for deep learning and vision

o library of layers that compose into models
o fast stochastic gradient descent (SGD) solver
o tools, demos, and recipes

• Seamless switch between CPU and GPU
o Caffe::set_mode(Caffe::CPU);

Train Models Experiment/Prototype Inference at Scale

All with essentially the same code!

So what is Caffe?
Convolution Architecture For Feature Extraction
!
• Model schemas

o Define the model and solving strategy 
and let Caffe take care of the rest

o Adapt already learned models 
to new problems in one step

State-of-the-art solving in 14 lines.

Models are schema, not code.

. . .

So what is Caffe?
Convolution Architecture For Feature Extraction

!
• Research & Engineering

o Key part of our publication code
o State-of-the-art models
o Blazing fast, and it has unit tests!

Figure 2: An illustra
tion of the architecture of our CNN, explicitly

showing the delineation of responsibilitie
s

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts

at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–

4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized

and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥
5

⇥ 4

8

.

The third, fourth, and fifth convolutional layers are connected to one another without any intervening

pooling or normalization layers.
The third

convolutional layer has 384 kernels of size 3

⇥ 3

⇥

2

5

6

connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth

convolutional layer has 384 kernels of size 3
⇥ 3

⇥ 1

9

2

, and the fifth convolutional layer has 256

kernels of size 3⇥
3

⇥ 1

9

2

. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 millio
n parameters. Although the 1000 classes of ILSVRC

make each training example impose 10 bits of constra
int on the mapping from image to label, this

turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we

describe the two primary ways in which we combat overfitting.

4.1
Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artifi
cially enlarge

the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distin
ct forms

of data augmentation, both of which allow transformed images to be produced from the original

images with very little
computation, so the transformed images do not need to be stored on disk.

In our implementation, the transformed images are generated in Python code on the CPU while the

GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,

computationally free.

The first form of data augmentation consists
of generating image translations and horizontal reflec-

tions. We do this by extracting random 2

2

4

⇥ 2

2

4

patches (and their horizontal reflections) from the

2

5

6

⇥25
6

images and training our network on these extracted patches4 . This increases the size of our

training set by a factor of 2048, though the resulting training examples are, of course, highly inter-

dependent. Without this scheme, our network suffers from substantial overfitting, which would have

forced us to use much smaller networks. At test time, the network makes a prediction by extracting

five 2

2

4

⇥ 2

2

4

patches (the four corner patches and the center patch) as well as their horizontal

reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax

layer on the ten patches.

The second form
of data augmentation consists

of altering the intensitie
s of the RGB channels in

training images. Specifically, we perform
PCA on the set of RGB pixel values throughout the

ImageNet training set. To each training image, we add multiples of the found principal components,

4 This is the reason why the input images in Figure 2 are 2
24

⇥ 224
⇥ 3-dimensional.

5

AlexNet, K
rizhevsky NIPS12.

 Caffe Reference Im
ageNet M

odel

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

R-CNN, Girshick CVPR14.

⇡

So what is Caffe?
Convolution Architecture For Feature Extraction
• An active research and development community

Caffe and cuda-convnet
Caffe !
• C++/CUDA deep learning and vision

o library of layers
o fast, general-purpose for 

ILSVRC, PASCAL, your data 

• An active research and development
community: public on GitHub 

• Seamless GPU/CPU switch
• Model schemas

o Define the model
o Configure solver
o Finetuning  

• Wrappers for Python and MATLAB

cuda-convnet !
• C++/CUDA deep learning and vision

o library of layers
o highly-optimized for given case: 

image, kernel, and batch size. 

• Static codebase, no community
contributions: last update Jul 17, 2012 

• GPU only
• Model schemas

o Define the model
o Write and run solver command
o No finetuning 

• No wrappers: monolithic

Why not live caffeine-free?

• It’s all about speed.
• cuda-convnet and DeCAF are awesome

o but cuda-convnet is inflexible
o and DeCAF is too slow

• Caffe is fast
o with CPU: 2x speedup over DeCAF
o with GPU: 10x speedup (under C++)

• Forward pass of a single image takes 2.5ms
o Caffe reference ImageNet model with ~60 million parameters
o (when in batch mode)
o (~20ms in CPU mode)

A Caffe Net

Input Blob caffe::Net Output Blob

Blob: all your data, derivatives, and parameters.

● example input blob (256 images, RGB, height, width)

○ ImageNet training batches: 256 x 3 x 227 x 227

● example convolutional parameter blob

○ 128 filters with 96 input channels:128 x 96 x 3 x 3

A Layer

caffe::ConvolutionLayer !
 ksize: 11
 stride: 4
 num_output: 96
 ….

Output Blob !
256 x 96 x 227 x 227

Input Blob !
256 x 3 x 227 x 227

Weight Blob
96 x 3 x 11 x 11

Bias Blob
96 x 1 x 1 x 1

• The layer is the fundamental unit of computation.
• Caffe nets are composed of layers as defined in model schema.

A Layer defines...
!

• Forward: given input, computes the output.  

• Backward: given the gradient w.r.t. the output, compute the gradient w.r.t.
the input and its internal parameters.
!

• Setup: how to initialize the layer.

caffe::ConvolutionLayer
 ksize: 11
 stride: 4
 num_output: 96
 ….

Output Blob !
256 x 96 x 227 x 227

Input Blob !
256 x 3 x 227 x 227

Weight Blob
96 x 3 x 11 x

11

Bias Blob
96 x 1 x 1 x 1

Definition of a Net
Model schema are defined as Protocol Buffers:
!
!
message NetParameter {
 optional string name = 1;
 repeated LayerConnection layers = 2;
 repeated string input = 3;
 repeated int32 input_dim = 4;
}

name: “linear_regressor”
input: “data”
input_dim: 1
input_dim: 3
input_dim: 28
input_dim: 28
layers {
 layer {
 name: “ip”
 type: “innerproduct”
 num_output: 10
 }
 bottom: “data”
 top: “prediction”
}

schema definition at /src/caffe/proto/caffe.proto
Protocol Buffer documentation:
https://developers.google.com/protocol-buffers/
docs/overview

https://developers.google.com/protocol-buffers/docs/overview

Definition of a Net
name: "mnist-small"
data layer for input
layers {
 layer {
 name: "mnist"
 type: "data"
 source: "data/mnist-train-leveldb"
 batchsize: 64
 scale: 0.00390625
 }
 top: "data"
 top: "label"
}
linear classifier by inner product
layers {
 layer {
 name: "ip"
 type: "innerproduct"
 num_output: 10
 weight_filler {
 type: "xavier"
 }
 }
 bottom: "data"
 top: "ip"
}

softmax loss for training
takes classifier output and labels
layers {
 layer {
 name: "prob"
 type: "softmax_loss"
 }
 bottom: "ip"
 bottom: "label"
}

How about ImageNet?

• It’s another network definition… only this time a state-of-the-art model
• See caffe/models/imagenet.prototxt

Finetuning

• Once you have a model–like caffe_reference_imagenet_model– 
you can solve many problems.

• Where training from scratch can fail for lack of sufficient data, 
finetuning can succeed.
!
!

• Rename the layers you need to change…
• …and continue training.
• No coding needed.

layer { layer {
 name: “fc8” name: “fc8-t”
 type: “innerproduct” type: “innerproduct”
 num_output: 1000 num_output: 397
 … …
} }

A Few Practical Questions

• What’s the shortest path to features?
o Swap deep features into your pipeline without tears via the 

Caffe Reference ImageNet model.
o Any layer can be extracted.
o Prototype with Python and MATLAB wrappers.

!
!
• Do I have to train from scratch for every problem?

o Not at all! Finetune learned models to new data and tasks.
o Define a new model and solver.
o Call ./finetune_net new_solver old_model # then get a cup of coffee

!
!
• What do I do with my own loss, special operation, or data format?

o Well, this is trickier but doable.
o Code the layers needed.
o Define the model and carry on.

Questions!
!
!
!
Check out caffe.berkeleyvision.org,
the Github repository https://github.com/BVLC/caffe,
and our issue tracker https://github.com/BVLC/caffe/issues (but search before posting). !
Try our examples and tutorials!

http://caffe.berkeleyvision.org
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/issues

