diff options
author | Evan Shelhamer <shelhamer@imaginarynumber.net> | 2016-03-03 16:39:18 -0800 |
---|---|---|
committer | Evan Shelhamer <shelhamer@imaginarynumber.net> | 2016-03-04 19:09:51 -0800 |
commit | 880e1474270523e3e5585a14a370fda39bb743c1 (patch) | |
tree | 55a327f5a202931f8adc8fc0be78df6aa5ae3460 /python | |
parent | 25b9ef95f35a4de766500c9c70a18d839a5f7c70 (diff) | |
download | caffeonacl-880e1474270523e3e5585a14a370fda39bb743c1.tar.gz caffeonacl-880e1474270523e3e5585a14a370fda39bb743c1.tar.bz2 caffeonacl-880e1474270523e3e5585a14a370fda39bb743c1.zip |
[pycaffe] test coord_map
- test known mappings: conv-pool-deconv stack, ReLU and 1x1 conv
- test effects of padding
- test rectangular/anisotropic coordinate mapping, test N-D
- catch error cases: negative crop, scale mismatch, tops that are not
spatially connected
Diffstat (limited to 'python')
-rw-r--r-- | python/caffe/test/test_coord_map.py | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/python/caffe/test/test_coord_map.py b/python/caffe/test/test_coord_map.py new file mode 100644 index 00000000..613260e2 --- /dev/null +++ b/python/caffe/test/test_coord_map.py @@ -0,0 +1,192 @@ +import unittest + +import numpy as np +import random + +import caffe +from caffe import layers as L +from caffe import params as P +from caffe.coord_map import coord_map_from_to, crop + + +def coord_net_spec(ks=3, stride=1, pad=0, pool=2, dstride=2, dpad=0): + """ + Define net spec for simple conv-pool-deconv pattern common to all + coordinate mapping tests. + """ + n = caffe.NetSpec() + n.data = L.Input(shape=dict(dim=[2, 1, 100, 100])) + n.aux = L.Input(shape=dict(dim=[2, 1, 20, 20])) + n.conv = L.Convolution( + n.data, num_output=10, kernel_size=ks, stride=stride, pad=pad) + n.pool = L.Pooling( + n.conv, pool=P.Pooling.MAX, kernel_size=pool, stride=pool, pad=0) + # for upsampling kernel size is 2x stride + try: + deconv_ks = [s*2 for s in dstride] + except: + deconv_ks = dstride*2 + n.deconv = L.Deconvolution( + n.pool, num_output=10, kernel_size=deconv_ks, stride=dstride, pad=dpad) + return n + + +class TestCoordMap(unittest.TestCase): + def setUp(self): + pass + + def test_conv_pool_deconv(self): + """ + Map through conv, pool, and deconv. + """ + n = coord_net_spec() + # identity for 2x pool, 2x deconv + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertEquals(a, 1) + self.assertEquals(b, 0) + # shift-by-one for 4x pool, 4x deconv + n = coord_net_spec(pool=4, dstride=4) + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertEquals(a, 1) + self.assertEquals(b, -1) + + def test_pass(self): + """ + A pass-through layer (ReLU) and conv (1x1, stride 1, pad 0) + both do identity mapping. + """ + n = coord_net_spec() + ax, a, b = coord_map_from_to(n.deconv, n.data) + n.relu = L.ReLU(n.deconv) + n.conv1x1 = L.Convolution( + n.relu, num_output=10, kernel_size=1, stride=1, pad=0) + for top in [n.relu, n.conv1x1]: + ax_pass, a_pass, b_pass = coord_map_from_to(top, n.data) + self.assertEquals(ax, ax_pass) + self.assertEquals(a, a_pass) + self.assertEquals(b, b_pass) + + def test_padding(self): + """ + Padding conv adds offset while padding deconv subtracts offset. + """ + n = coord_net_spec() + ax, a, b = coord_map_from_to(n.deconv, n.data) + pad = random.randint(0, 10) + # conv padding + n = coord_net_spec(pad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b - pad, b_pad) + # deconv padding + n = coord_net_spec(dpad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b + pad, b_pad) + # pad both to cancel out + n = coord_net_spec(pad=pad, dpad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b, b_pad) + + def test_multi_conv(self): + """ + Multiple bottoms/tops of a layer are identically mapped. + """ + n = coord_net_spec() + # multi bottom/top + n.conv_data, n.conv_aux = L.Convolution( + n.data, n.aux, ntop=2, num_output=10, kernel_size=5, stride=2, + pad=0) + ax1, a1, b1 = coord_map_from_to(n.conv_data, n.data) + ax2, a2, b2 = coord_map_from_to(n.conv_aux, n.aux) + self.assertEquals(ax1, ax2) + self.assertEquals(a1, a2) + self.assertEquals(b1, b2) + + def test_rect(self): + """ + Anisotropic mapping is equivalent to its isotropic parts. + """ + n3x3 = coord_net_spec(ks=3, stride=1, pad=0) + n5x5 = coord_net_spec(ks=5, stride=2, pad=10) + n3x5 = coord_net_spec(ks=[3, 5], stride=[1, 2], pad=[0, 10]) + ax_3x3, a_3x3, b_3x3 = coord_map_from_to(n3x3.deconv, n3x3.data) + ax_5x5, a_5x5, b_5x5 = coord_map_from_to(n5x5.deconv, n5x5.data) + ax_3x5, a_3x5, b_3x5 = coord_map_from_to(n3x5.deconv, n3x5.data) + self.assertTrue(ax_3x3 == ax_5x5 == ax_3x5) + self.assertEquals(a_3x3, a_3x5[0]) + self.assertEquals(b_3x3, b_3x5[0]) + self.assertEquals(a_5x5, a_3x5[1]) + self.assertEquals(b_5x5, b_3x5[1]) + + def test_nd_conv(self): + """ + ND conv maps the same way in more dimensions. + """ + n = caffe.NetSpec() + # define data with 3 spatial dimensions, otherwise the same net + n.data = L.Input(shape=dict(dim=[2, 3, 100, 100, 100])) + n.conv = L.Convolution( + n.data, num_output=10, kernel_size=[3, 3, 3], stride=[1, 1, 1], + pad=[0, 1, 2]) + n.pool = L.Pooling( + n.conv, pool=P.Pooling.MAX, kernel_size=2, stride=2, pad=0) + n.deconv = L.Deconvolution( + n.pool, num_output=10, kernel_size=4, stride=2, pad=0) + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertTrue(len(a) == len(b)) + self.assertTrue(np.all(a == 1)) + self.assertEquals(b[0] - 1, b[1]) + self.assertEquals(b[1] - 1, b[2]) + + def test_crop_of_crop(self): + """ + Map coordinates through Crop layer: + crop an already-cropped output to the input and check change in offset. + """ + n = coord_net_spec() + offset = random.randint(0, 10) + ax, a, b = coord_map_from_to(n.deconv, n.data) + n.crop = L.Crop(n.deconv, n.data, axis=2, offset=offset) + ax_crop, a_crop, b_crop = coord_map_from_to(n.crop, n.data) + self.assertEquals(ax, ax_crop) + self.assertEquals(a, a_crop) + self.assertEquals(b + offset, b_crop) + + def test_crop_helper(self): + """ + Define Crop layer by crop(). + """ + n = coord_net_spec() + crop(n.deconv, n.data) + + def test_catch_unconnected(self): + """ + Catch mapping spatially unconnected tops. + """ + n = coord_net_spec() + n.ip = L.InnerProduct(n.deconv, num_output=10) + with self.assertRaises(RuntimeError): + coord_map_from_to(n.ip, n.data) + + def test_catch_scale_mismatch(self): + """ + Catch incompatible scales, such as when the top to be cropped + is mapped to a differently strided reference top. + """ + n = coord_net_spec(pool=3, dstride=2) # pool 3x but deconv 2x + with self.assertRaises(AssertionError): + crop(n.deconv, n.data) + + def test_catch_negative_crop(self): + """ + Catch impossible offsets, such as when the top to be cropped + is mapped to a larger reference top. + """ + n = coord_net_spec(dpad=10) # make output smaller than input + with self.assertRaises(AssertionError): + crop(n.deconv, n.data) |