summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJeff Donahue <jeff.donahue@gmail.com>2015-09-19 01:13:05 (GMT)
committerJeff Donahue <jeff.donahue@gmail.com>2015-09-19 01:13:05 (GMT)
commit2e1c1cb7788eff438dba6ea77e100e1b3af51104 (patch)
tree17792d68fb3af49b1526b178277add368a735acf
parent3d12b5d9cb014d2e0df4db1b10250ef298e549b9 (diff)
parent9d8206e0f906069e7c04f08dfddefa1357f3915c (diff)
downloadcaffeonacl-2e1c1cb7788eff438dba6ea77e100e1b3af51104.zip
caffeonacl-2e1c1cb7788eff438dba6ea77e100e1b3af51104.tar.gz
caffeonacl-2e1c1cb7788eff438dba6ea77e100e1b3af51104.tar.bz2
Merge pull request #2049 from jeffdonahue/nd-convolution
ND convolution with im2col
-rw-r--r--include/caffe/blob.hpp2
-rw-r--r--include/caffe/util/im2col.hpp24
-rw-r--r--include/caffe/vision_layers.hpp108
-rw-r--r--src/caffe/blob.cpp11
-rw-r--r--src/caffe/layers/base_conv_layer.cpp241
-rw-r--r--src/caffe/layers/conv_layer.cpp32
-rw-r--r--src/caffe/layers/conv_layer.cu16
-rw-r--r--src/caffe/layers/cudnn_conv_layer.cpp46
-rw-r--r--src/caffe/layers/cudnn_conv_layer.cu18
-rw-r--r--src/caffe/layers/deconv_layer.cpp32
-rw-r--r--src/caffe/layers/deconv_layer.cu16
-rw-r--r--src/caffe/layers/im2col_layer.cpp171
-rw-r--r--src/caffe/layers/im2col_layer.cu41
-rw-r--r--src/caffe/proto/caffe.proto44
-rw-r--r--src/caffe/test/test_convolution_layer.cpp409
-rw-r--r--src/caffe/test/test_deconvolution_layer.cpp159
-rw-r--r--src/caffe/test/test_im2col_kernel.cu87
-rw-r--r--src/caffe/test/test_im2col_layer.cpp30
-rw-r--r--src/caffe/util/im2col.cpp116
-rw-r--r--src/caffe/util/im2col.cu306
-rw-r--r--src/caffe/util/upgrade_proto.cpp6
21 files changed, 1594 insertions, 321 deletions
diff --git a/include/caffe/blob.hpp b/include/caffe/blob.hpp
index dda7b1f..fea5117 100644
--- a/include/caffe/blob.hpp
+++ b/include/caffe/blob.hpp
@@ -219,6 +219,7 @@ class Blob {
const Dtype* cpu_data() const;
void set_cpu_data(Dtype* data);
+ const int* gpu_shape() const;
const Dtype* gpu_data() const;
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
@@ -268,6 +269,7 @@ class Blob {
protected:
shared_ptr<SyncedMemory> data_;
shared_ptr<SyncedMemory> diff_;
+ shared_ptr<SyncedMemory> shape_data_;
vector<int> shape_;
int count_;
int capacity_;
diff --git a/include/caffe/util/im2col.hpp b/include/caffe/util/im2col.hpp
index 0051e2f..531fd29 100644
--- a/include/caffe/util/im2col.hpp
+++ b/include/caffe/util/im2col.hpp
@@ -4,24 +4,48 @@
namespace caffe {
template <typename Dtype>
+void im2col_nd_cpu(const Dtype* data_im, const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col);
+
+template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w, const int stride_h,
const int stride_w, Dtype* data_col);
template <typename Dtype>
+void col2im_nd_cpu(const Dtype* data_col, const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_im);
+
+template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,
const int height, const int width, const int patch_h, const int patch_w,
const int pad_h, const int pad_w, const int stride_h,
const int stride_w, Dtype* data_im);
template <typename Dtype>
+void im2col_nd_gpu(const Dtype* data_im, const int num_spatial_axes,
+ const int col_size, const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col);
+
+template <typename Dtype>
void im2col_gpu(const Dtype* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w, const int stride_h,
const int stride_w, Dtype* data_col);
template <typename Dtype>
+void col2im_nd_gpu(const Dtype* data_col, const int num_spatial_axes,
+ const int im_size, const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_im);
+
+template <typename Dtype>
void col2im_gpu(const Dtype* data_col, const int channels,
const int height, const int width, const int patch_h, const int patch_w,
const int pad_h, const int pad_w, const int stride_h,
diff --git a/include/caffe/vision_layers.hpp b/include/caffe/vision_layers.hpp
index 211e3d9..eae6582 100644
--- a/include/caffe/vision_layers.hpp
+++ b/include/caffe/vision_layers.hpp
@@ -64,46 +64,101 @@ class BaseConvolutionLayer : public Layer<Dtype> {
// Compute height_out_ and width_out_ from other parameters.
virtual void compute_output_shape() = 0;
- int kernel_h_, kernel_w_;
- int stride_h_, stride_w_;
+ /// @brief The spatial dimensions of a filter kernel.
+ Blob<int> kernel_shape_;
+ /// @brief The spatial dimensions of the stride.
+ Blob<int> stride_;
+ /// @brief The spatial dimensions of the padding.
+ Blob<int> pad_;
+ /// @brief The spatial dimensions of the convolution input.
+ Blob<int> conv_input_shape_;
+ /// @brief The spatial dimensions of the input.
+ Blob<int> input_shape_;
+ /// @brief The spatial dimensions of the col_buffer.
+ vector<int> col_buffer_shape_;
+ /// @brief The spatial dimensions of the output.
+ vector<int> output_shape_;
+
+ int num_spatial_axes_;
+ int bottom_dim_;
+ int top_dim_;
+
+ int channel_axis_;
int num_;
int channels_;
- int pad_h_, pad_w_;
- int height_, width_;
int group_;
+ int out_spatial_dim_;
+ int weight_offset_;
int num_output_;
- int height_out_, width_out_;
bool bias_term_;
bool is_1x1_;
+ bool force_nd_im2col_;
private:
// wrap im2col/col2im so we don't have to remember the (long) argument lists
inline void conv_im2col_cpu(const Dtype* data, Dtype* col_buff) {
- im2col_cpu(data, conv_in_channels_, conv_in_height_, conv_in_width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff);
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ im2col_cpu(data, conv_in_channels_,
+ conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2],
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1], col_buff);
+ } else {
+ im2col_nd_cpu(data, num_spatial_axes_, conv_input_shape_.cpu_data(),
+ col_buffer_shape_.data(), kernel_shape_.cpu_data(),
+ pad_.cpu_data(), stride_.cpu_data(), col_buff);
+ }
}
inline void conv_col2im_cpu(const Dtype* col_buff, Dtype* data) {
- col2im_cpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data);
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ col2im_cpu(col_buff, conv_in_channels_,
+ conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2],
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1], data);
+ } else {
+ col2im_nd_cpu(col_buff, num_spatial_axes_, conv_input_shape_.cpu_data(),
+ col_buffer_shape_.data(), kernel_shape_.cpu_data(),
+ pad_.cpu_data(), stride_.cpu_data(), data);
+ }
}
#ifndef CPU_ONLY
inline void conv_im2col_gpu(const Dtype* data, Dtype* col_buff) {
- im2col_gpu(data, conv_in_channels_, conv_in_height_, conv_in_width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff);
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ im2col_gpu(data, conv_in_channels_,
+ conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2],
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1], col_buff);
+ } else {
+ im2col_nd_gpu(data, num_spatial_axes_, num_kernels_im2col_,
+ conv_input_shape_.gpu_data(), col_buffer_.gpu_shape(),
+ kernel_shape_.gpu_data(), pad_.gpu_data(),
+ stride_.gpu_data(), col_buff);
+ }
}
inline void conv_col2im_gpu(const Dtype* col_buff, Dtype* data) {
- col2im_gpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data);
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ col2im_gpu(col_buff, conv_in_channels_,
+ conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2],
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1], data);
+ } else {
+ col2im_nd_gpu(col_buff, num_spatial_axes_, num_kernels_col2im_,
+ conv_input_shape_.gpu_data(), col_buffer_.gpu_shape(),
+ kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(),
+ data);
+ }
}
#endif
+ int num_kernels_im2col_;
+ int num_kernels_col2im_;
int conv_out_channels_;
int conv_in_channels_;
int conv_out_spatial_dim_;
- int conv_in_height_;
- int conv_in_width_;
int kernel_dim_;
- int weight_offset_;
int col_offset_;
int output_offset_;
@@ -250,7 +305,7 @@ class CuDNNConvolutionLayer : public ConvolutionLayer<Dtype> {
cudnnTensorDescriptor_t bias_desc_;
cudnnFilterDescriptor_t filter_desc_;
vector<cudnnConvolutionDescriptor_t> conv_descs_;
- int bottom_offset_, top_offset_, weight_offset_, bias_offset_;
+ int bottom_offset_, top_offset_, bias_offset_;
size_t workspaceSizeInBytes;
void *workspace;
};
@@ -287,11 +342,22 @@ class Im2colLayer : public Layer<Dtype> {
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
- int kernel_h_, kernel_w_;
- int stride_h_, stride_w_;
+ /// @brief The spatial dimensions of a filter kernel.
+ Blob<int> kernel_shape_;
+ /// @brief The spatial dimensions of the stride.
+ Blob<int> stride_;
+ /// @brief The spatial dimensions of the padding.
+ Blob<int> pad_;
+
+ int num_spatial_axes_;
+ int bottom_dim_;
+ int top_dim_;
+
+ int channel_axis_;
+ int num_;
int channels_;
- int height_, width_;
- int pad_h_, pad_w_;
+
+ bool force_nd_im2col_;
};
// Forward declare PoolingLayer and SplitLayer for use in LRNLayer.
diff --git a/src/caffe/blob.cpp b/src/caffe/blob.cpp
index 8450aa1..c86fd5d 100644
--- a/src/caffe/blob.cpp
+++ b/src/caffe/blob.cpp
@@ -24,11 +24,16 @@ void Blob<Dtype>::Reshape(const vector<int>& shape) {
CHECK_LE(shape.size(), kMaxBlobAxes);
count_ = 1;
shape_.resize(shape.size());
+ if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
+ shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
+ }
+ int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
for (int i = 0; i < shape.size(); ++i) {
CHECK_GE(shape[i], 0);
CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
count_ *= shape[i];
shape_[i] = shape[i];
+ shape_data[i] = shape[i];
}
if (count_ > capacity_) {
capacity_ = count_;
@@ -68,6 +73,12 @@ Blob<Dtype>::Blob(const vector<int>& shape)
}
template <typename Dtype>
+const int* Blob<Dtype>::gpu_shape() const {
+ CHECK(shape_data_);
+ return (const int*)shape_data_->gpu_data();
+}
+
+template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
CHECK(data_);
return (const Dtype*)data_->cpu_data();
diff --git a/src/caffe/layers/base_conv_layer.cpp b/src/caffe/layers/base_conv_layer.cpp
index ccb3adc..a5b90a5 100644
--- a/src/caffe/layers/base_conv_layer.cpp
+++ b/src/caffe/layers/base_conv_layer.cpp
@@ -1,3 +1,4 @@
+#include <algorithm>
#include <vector>
#include "caffe/filler.hpp"
@@ -11,50 +12,103 @@ namespace caffe {
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
- CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
- << "corresponding to (num, channels, height, width)";
// Configure the kernel size, padding, stride, and inputs.
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
- CHECK(!conv_param.has_kernel_size() !=
- !(conv_param.has_kernel_h() && conv_param.has_kernel_w()))
- << "Filter size is kernel_size OR kernel_h and kernel_w; not both";
- CHECK(conv_param.has_kernel_size() ||
- (conv_param.has_kernel_h() && conv_param.has_kernel_w()))
- << "For non-square filters both kernel_h and kernel_w are required.";
- CHECK((!conv_param.has_pad() && conv_param.has_pad_h()
- && conv_param.has_pad_w())
- || (!conv_param.has_pad_h() && !conv_param.has_pad_w()))
- << "pad is pad OR pad_h and pad_w are required.";
- CHECK((!conv_param.has_stride() && conv_param.has_stride_h()
- && conv_param.has_stride_w())
- || (!conv_param.has_stride_h() && !conv_param.has_stride_w()))
- << "Stride is stride OR stride_h and stride_w are required.";
- if (conv_param.has_kernel_size()) {
- kernel_h_ = kernel_w_ = conv_param.kernel_size();
+ force_nd_im2col_ = conv_param.force_nd_im2col();
+ channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
+ const int first_spatial_axis = channel_axis_ + 1;
+ const int num_axes = bottom[0]->num_axes();
+ num_spatial_axes_ = num_axes - first_spatial_axis;
+ CHECK_GE(num_spatial_axes_, 0);
+ // Setup input dimensions (input_shape_).
+ vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
+ input_shape_.Reshape(bottom_dim_blob_shape);
+ int* input_shape_data = input_shape_.mutable_cpu_data();
+ for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
+ input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
+ }
+ vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
+ // Setup filter kernel dimensions (kernel_shape_).
+ kernel_shape_.Reshape(spatial_dim_blob_shape);
+ int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
+ if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "kernel_h & kernel_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.kernel_size_size())
+ << "Either kernel_size or kernel_h/w should be specified; not both.";
+ kernel_shape_data[0] = conv_param.kernel_h();
+ kernel_shape_data[1] = conv_param.kernel_w();
} else {
- kernel_h_ = conv_param.kernel_h();
- kernel_w_ = conv_param.kernel_w();
+ const int num_kernel_dims = conv_param.kernel_size_size();
+ CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_)
+ << "kernel_size must be specified once, or once per spatial dimension "
+ << "(kernel_size specified " << num_kernel_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ kernel_shape_data[i] =
+ conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i);
+ }
+ }
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero.";
}
- CHECK_GT(kernel_h_, 0) << "Filter dimensions cannot be zero.";
- CHECK_GT(kernel_w_, 0) << "Filter dimensions cannot be zero.";
- if (!conv_param.has_pad_h()) {
- pad_h_ = pad_w_ = conv_param.pad();
+ // Setup stride dimensions (stride_).
+ stride_.Reshape(spatial_dim_blob_shape);
+ int* stride_data = stride_.mutable_cpu_data();
+ if (conv_param.has_stride_h() || conv_param.has_stride_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "stride_h & stride_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.stride_size())
+ << "Either stride or stride_h/w should be specified; not both.";
+ stride_data[0] = conv_param.stride_h();
+ stride_data[1] = conv_param.stride_w();
} else {
- pad_h_ = conv_param.pad_h();
- pad_w_ = conv_param.pad_w();
+ const int num_stride_dims = conv_param.stride_size();
+ CHECK(num_stride_dims == 0 || num_stride_dims == 1 ||
+ num_stride_dims == num_spatial_axes_)
+ << "stride must be specified once, or once per spatial dimension "
+ << "(stride specified " << num_stride_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ const int kDefaultStride = 1;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ stride_data[i] = (num_stride_dims == 0) ? kDefaultStride :
+ conv_param.stride((num_stride_dims == 1) ? 0 : i);
+ CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero.";
+ }
}
- if (!conv_param.has_stride_h()) {
- stride_h_ = stride_w_ = conv_param.stride();
+ // Setup pad dimensions (pad_).
+ pad_.Reshape(spatial_dim_blob_shape);
+ int* pad_data = pad_.mutable_cpu_data();
+ if (conv_param.has_pad_h() || conv_param.has_pad_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "pad_h & pad_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.pad_size())
+ << "Either pad or pad_h/w should be specified; not both.";
+ pad_data[0] = conv_param.pad_h();
+ pad_data[1] = conv_param.pad_w();
} else {
- stride_h_ = conv_param.stride_h();
- stride_w_ = conv_param.stride_w();
+ const int num_pad_dims = conv_param.pad_size();
+ CHECK(num_pad_dims == 0 || num_pad_dims == 1 ||
+ num_pad_dims == num_spatial_axes_)
+ << "pad must be specified once, or once per spatial dimension "
+ << "(pad specified " << num_pad_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ const int kDefaultPad = 0;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ pad_data[i] = (num_pad_dims == 0) ? kDefaultPad :
+ conv_param.pad((num_pad_dims == 1) ? 0 : i);
+ }
}
// Special case: im2col is the identity for 1x1 convolution with stride 1
// and no padding, so flag for skipping the buffer and transformation.
- is_1x1_ = kernel_w_ == 1 && kernel_h_ == 1
- && stride_h_ == 1 && stride_w_ == 1 && pad_h_ == 0 && pad_w_ == 0;
+ is_1x1_ = true;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ is_1x1_ &=
+ kernel_shape_data[i] == 1 && stride_data[i] == 1 && pad_data[i] == 0;
+ if (!is_1x1_) { break; }
+ }
// Configure output channels and groups.
- channels_ = bottom[0]->channels();
+ channels_ = bottom[0]->shape(channel_axis_);
num_output_ = this->layer_param_.convolution_param().num_output();
CHECK_GT(num_output_, 0);
group_ = this->layer_param_.convolution_param().group();
@@ -71,8 +125,29 @@ void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
// Handle the parameters: weights and biases.
// - blobs_[0] holds the filter weights
// - blobs_[1] holds the biases (optional)
+ vector<int> weight_shape(2);
+ weight_shape[0] = conv_out_channels_;
+ weight_shape[1] = conv_in_channels_ / group_;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ weight_shape.push_back(kernel_shape_data[i]);
+ }
bias_term_ = this->layer_param_.convolution_param().bias_term();
+ vector<int> bias_shape(bias_term_, num_output_);
if (this->blobs_.size() > 0) {
+ CHECK_EQ(1 + bias_term_, this->blobs_.size())
+ << "Incorrect number of weight blobs.";
+ if (weight_shape != this->blobs_[0]->shape()) {
+ Blob<Dtype> weight_shaped_blob(weight_shape);
+ LOG(FATAL) << "Incorrect weight shape: expected shape "
+ << weight_shaped_blob.shape_string() << "; instead, shape was "
+ << this->blobs_[0]->shape_string();
+ }
+ if (bias_term_ && bias_shape != this->blobs_[1]->shape()) {
+ Blob<Dtype> bias_shaped_blob(bias_shape);
+ LOG(FATAL) << "Incorrect bias shape: expected shape "
+ << bias_shaped_blob.shape_string() << "; instead, shape was "
+ << this->blobs_[1]->shape_string();
+ }
LOG(INFO) << "Skipping parameter initialization";
} else {
if (bias_term_) {
@@ -82,20 +157,20 @@ void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
}
// Initialize and fill the weights:
// output channels x input channels per-group x kernel height x kernel width
- this->blobs_[0].reset(new Blob<Dtype>(
- conv_out_channels_, conv_in_channels_ / group_, kernel_h_, kernel_w_));
+ this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
// If necessary, initialize and fill the biases.
if (bias_term_) {
- vector<int> bias_shape(1, num_output_);
this->blobs_[1].reset(new Blob<Dtype>(bias_shape));
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().bias_filler()));
bias_filler->Fill(this->blobs_[1].get());
}
}
+ kernel_dim_ = this->blobs_[0]->count(1);
+ weight_offset_ = conv_out_channels_ * kernel_dim_ / group_;
// Propagate gradients to the parameters (as directed by backward pass).
this->param_propagate_down_.resize(this->blobs_.size(), true);
}
@@ -103,52 +178,68 @@ void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
- CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
- << "corresponding to (num, channels, height, width)";
- num_ = bottom[0]->num();
- height_ = bottom[0]->height();
- width_ = bottom[0]->width();
- CHECK_EQ(bottom[0]->channels(), channels_) << "Input size incompatible with"
- " convolution kernel.";
+ const int first_spatial_axis = channel_axis_ + 1;
+ CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_)
+ << "bottom num_axes may not change.";
+ num_ = bottom[0]->count(0, channel_axis_);
+ CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
+ << "Input size incompatible with convolution kernel.";
// TODO: generalize to handle inputs of different shapes.
for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
- CHECK_EQ(num_, bottom[bottom_id]->num()) << "Inputs must have same num.";
- CHECK_EQ(channels_, bottom[bottom_id]->channels())
- << "Inputs must have same channels.";
- CHECK_EQ(height_, bottom[bottom_id]->height())
- << "Inputs must have same height.";
- CHECK_EQ(width_, bottom[bottom_id]->width())
- << "Inputs must have same width.";
+ CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
+ << "All inputs must have the same shape.";
}
// Shape the tops.
compute_output_shape();
+ vector<int> top_shape(bottom[0]->shape().begin(),
+ bottom[0]->shape().begin() + channel_axis_);
+ top_shape.push_back(num_output_);
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ top_shape.push_back(output_shape_[i]);
+ }
for (int top_id = 0; top_id < top.size(); ++top_id) {
- top[top_id]->Reshape(num_, num_output_, height_out_, width_out_);
+ top[top_id]->Reshape(top_shape);
}
if (reverse_dimensions()) {
- conv_in_height_ = height_out_;
- conv_in_width_ = width_out_;
- conv_out_spatial_dim_ = height_ * width_;
+ conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
} else {
- conv_in_height_ = height_;
- conv_in_width_ = width_;
- conv_out_spatial_dim_ = height_out_ * width_out_;
+ conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
}
- kernel_dim_ = conv_in_channels_ * kernel_h_ * kernel_w_;
- weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_;
- col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_;
+ col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
+ // Setup input dimensions (conv_input_shape_).
+ vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
+ conv_input_shape_.Reshape(bottom_dim_blob_shape);
+ int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
+ for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
+ if (reverse_dimensions()) {
+ conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
+ } else {
+ conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
+ }
+ }
// The im2col result buffer will only hold one image at a time to avoid
// overly large memory usage. In the special case of 1x1 convolution
// it goes lazily unused to save memory.
- if (reverse_dimensions()) {
- col_buffer_.Reshape(1, kernel_dim_, height_, width_);
- } else {
- col_buffer_.Reshape(1, kernel_dim_, height_out_, width_out_);
+ col_buffer_shape_.clear();
+ col_buffer_shape_.push_back(kernel_dim_ * group_);
+ const int* input_shape_data = input_shape_.cpu_data() + 1;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ if (reverse_dimensions()) {
+ col_buffer_shape_.push_back(input_shape_data[i]);
+ } else {
+ col_buffer_shape_.push_back(output_shape_[i]);
+ }
}
+ col_buffer_.Reshape(col_buffer_shape_);
+ bottom_dim_ = bottom[0]->count(channel_axis_);
+ top_dim_ = top[0]->count(channel_axis_);
+ num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
+ num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
// Set up the all ones "bias multiplier" for adding biases by BLAS
+ out_spatial_dim_ = top[0]->count(first_spatial_axis);
if (bias_term_) {
- vector<int> bias_multiplier_shape(1, height_out_ * width_out_);
+ vector<int> bias_multiplier_shape(1, out_spatial_dim_);
bias_multiplier_.Reshape(bias_multiplier_shape);
caffe_set(bias_multiplier_.count(), Dtype(1),
bias_multiplier_.mutable_cpu_data());
@@ -167,7 +258,7 @@ void BaseConvolutionLayer<Dtype>::forward_cpu_gemm(const Dtype* input,
}
for (int g = 0; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ /
- group_, conv_out_spatial_dim_, kernel_dim_ / group_,
+ group_, conv_out_spatial_dim_, kernel_dim_,
(Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g,
(Dtype)0., output + output_offset_ * g);
}
@@ -177,7 +268,7 @@ template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_cpu_bias(Dtype* output,
const Dtype* bias) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
- height_out_ * width_out_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(),
+ out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(),
(Dtype)1., output);
}
@@ -189,7 +280,7 @@ void BaseConvolutionLayer<Dtype>::backward_cpu_gemm(const Dtype* output,
col_buff = input;
}
for (int g = 0; g < group_; ++g) {
- caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_ / group_,
+ caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_,
conv_out_spatial_dim_, conv_out_channels_ / group_,
(Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g,
(Dtype)0., col_buff + col_offset_ * g);
@@ -209,7 +300,7 @@ void BaseConvolutionLayer<Dtype>::weight_cpu_gemm(const Dtype* input,
}
for (int g = 0; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channels_ / group_,
- kernel_dim_ / group_, conv_out_spatial_dim_,
+ kernel_dim_, conv_out_spatial_dim_,
(Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g,
(Dtype)1., weights + weight_offset_ * g);
}
@@ -218,7 +309,7 @@ void BaseConvolutionLayer<Dtype>::weight_cpu_gemm(const Dtype* input,
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_cpu_bias(Dtype* bias,
const Dtype* input) {
- caffe_cpu_gemv<Dtype>(CblasNoTrans, num_output_, height_out_ * width_out_, 1.,
+ caffe_cpu_gemv<Dtype>(CblasNoTrans, num_output_, out_spatial_dim_, 1.,
input, bias_multiplier_.cpu_data(), 1., bias);
}
@@ -236,7 +327,7 @@ void BaseConvolutionLayer<Dtype>::forward_gpu_gemm(const Dtype* input,
}
for (int g = 0; g < group_; ++g) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ /
- group_, conv_out_spatial_dim_, kernel_dim_ / group_,
+ group_, conv_out_spatial_dim_, kernel_dim_,
(Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g,
(Dtype)0., output + output_offset_ * g);
}
@@ -246,7 +337,7 @@ template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_gpu_bias(Dtype* output,
const Dtype* bias) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
- height_out_ * width_out_, 1, (Dtype)1., bias, bias_multiplier_.gpu_data(),
+ out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.gpu_data(),
(Dtype)1., output);
}
@@ -258,7 +349,7 @@ void BaseConvolutionLayer<Dtype>::backward_gpu_gemm(const Dtype* output,
col_buff = input;
}
for (int g = 0; g < group_; ++g) {
- caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_ / group_,
+ caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_,
conv_out_spatial_dim_, conv_out_channels_ / group_,
(Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g,
(Dtype)0., col_buff + col_offset_ * g);
@@ -278,7 +369,7 @@ void BaseConvolutionLayer<Dtype>::weight_gpu_gemm(const Dtype* input,
}
for (int g = 0; g < group_; ++g) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channels_ / group_,
- kernel_dim_ / group_, conv_out_spatial_dim_,
+ kernel_dim_, conv_out_spatial_dim_,
(Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g,
(Dtype)1., weights + weight_offset_ * g);
}
@@ -287,7 +378,7 @@ void BaseConvolutionLayer<Dtype>::weight_gpu_gemm(const Dtype* input,
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_gpu_bias(Dtype* bias,
const Dtype* input) {
- caffe_gpu_gemv<Dtype>(CblasNoTrans, num_output_, height_out_ * width_out_, 1.,
+ caffe_gpu_gemv<Dtype>(CblasNoTrans, num_output_, out_spatial_dim_, 1.,
input, bias_multiplier_.gpu_data(), 1., bias);
}
diff --git a/src/caffe/layers/conv_layer.cpp b/src/caffe/layers/conv_layer.cpp
index 928ef5e..5cf2697 100644
--- a/src/caffe/layers/conv_layer.cpp
+++ b/src/caffe/layers/conv_layer.cpp
@@ -10,10 +10,18 @@ namespace caffe {
template <typename Dtype>
void ConvolutionLayer<Dtype>::compute_output_shape() {
- this->height_out_ = (this->height_ + 2 * this->pad_h_ - this->kernel_h_)
- / this->stride_h_ + 1;
- this->width_out_ = (this->width_ + 2 * this->pad_w_ - this->kernel_w_)
- / this->stride_w_ + 1;
+ // input_shape_ + 1 to skip channel axis
+ const int* input_shape_data = this->input_shape_.cpu_data() + 1;
+ const int* kernel_shape_data = this->kernel_shape_.cpu_data();
+ const int* stride_data = this->stride_.cpu_data();
+ const int* pad_data = this->pad_.cpu_data();
+ this->output_shape_.clear();
+ for (int i = 0; i < this->num_spatial_axes_; ++i) {
+ const int input_dim = input_shape_data[i];
+ const int output_dim = (input_dim + 2 * pad_data[i] - kernel_shape_data[i])
+ / stride_data[i] + 1;
+ this->output_shape_.push_back(output_dim);
+ }
}
template <typename Dtype>
@@ -24,11 +32,11 @@ void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
- this->forward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight,
- top_data + top[i]->offset(n));
+ this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
+ top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
- this->forward_cpu_bias(top_data + top[i]->offset(n), bias);
+ this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
@@ -47,20 +55,20 @@ void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
- this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n));
+ this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
- this->weight_cpu_gemm(bottom_data + bottom[i]->offset(n),
- top_diff + top[i]->offset(n), weight_diff);
+ this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
+ top_diff + n * this->top_dim_, weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
- this->backward_cpu_gemm(top_diff + top[i]->offset(n), weight,
- bottom_diff + bottom[i]->offset(n));
+ this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
+ bottom_diff + n * this->bottom_dim_);
}
}
}
diff --git a/src/caffe/layers/conv_layer.cu b/src/caffe/layers/conv_layer.cu
index b8a98ff..b429d2b 100644
--- a/src/caffe/layers/conv_layer.cu
+++ b/src/caffe/layers/conv_layer.cu
@@ -16,11 +16,11 @@ void ConvolutionLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const Dtype* bottom_data = bottom[i]->gpu_data();
Dtype* top_data = top[i]->mutable_gpu_data();
for (int n = 0; n < this->num_; ++n) {
- this->forward_gpu_gemm(bottom_data + bottom[i]->offset(n), weight,
- top_data + top[i]->offset(n));
+ this->forward_gpu_gemm(bottom_data + n * this->bottom_dim_, weight,
+ top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->gpu_data();
- this->forward_gpu_bias(top_data + top[i]->offset(n), bias);
+ this->forward_gpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
@@ -37,7 +37,7 @@ void ConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff();
for (int n = 0; n < this->num_; ++n) {
- this->backward_gpu_bias(bias_diff, top_diff + top[i]->offset(n));
+ this->backward_gpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
@@ -46,13 +46,13 @@ void ConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
for (int n = 0; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
- this->weight_gpu_gemm(bottom_data + bottom[i]->offset(n),
- top_diff + top[i]->offset(n), weight_diff);
+ this->weight_gpu_gemm(bottom_data + n * this->bottom_dim_,
+ top_diff + n * this->top_dim_, weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
- this->backward_gpu_gemm(top_diff + top[i]->offset(n), weight,
- bottom_diff + bottom[i]->offset(n));
+ this->backward_gpu_gemm(top_diff + n * this->top_dim_, weight,
+ bottom_diff + n * this->bottom_dim_);
}
}
}
diff --git a/src/caffe/layers/cudnn_conv_layer.cpp b/src/caffe/layers/cudnn_conv_layer.cpp
index 104d2b9..3514fe2 100644
--- a/src/caffe/layers/cudnn_conv_layer.cpp
+++ b/src/caffe/layers/cudnn_conv_layer.cpp
@@ -34,14 +34,15 @@ void CuDNNConvolutionLayer<Dtype>::LayerSetUp(
}
// Set the indexing parameters.
- weight_offset_ = (this->num_output_ / this->group_)
- * (this->channels_ / this->group_) * this->kernel_h_ * this->kernel_w_;
bias_offset_ = (this->num_output_ / this->group_);
// Create filter descriptor.
+ const int* kernel_shape_data = this->kernel_shape_.cpu_data();
+ const int kernel_h = kernel_shape_data[0];
+ const int kernel_w = kernel_shape_data[1];
cudnn::createFilterDesc<Dtype>(&filter_desc_,
this->num_output_ / this->group_, this->channels_ / this->group_,
- this->kernel_h_, this->kernel_w_);
+ kernel_h, kernel_w);
// Create tensor descriptor(s) for data and corresponding convolution(s).
for (int i = 0; i < bottom.size(); i++) {
@@ -68,29 +69,36 @@ template <typename Dtype>
void CuDNNConvolutionLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
ConvolutionLayer<Dtype>::Reshape(bottom, top);
- bottom_offset_ = (this->channels_ / this->group_)
- * this->height_ * this->width_;
- top_offset_ = (this->num_output_ / this->group_)
- * this->height_out_ * this->width_out_;
+ CHECK_EQ(2, this->num_spatial_axes_)
+ << "CuDNNConvolution input must have 2 spatial axes "
+ << "(e.g., height and width). "
+ << "Use 'engine: CAFFE' for general ND convolution.";
+ bottom_offset_ = this->bottom_dim_ / this->group_;
+ top_offset_ = this->top_dim_ / this->group_;
+ const int height = bottom[0]->shape(this->channel_axis_ + 1);
+ const int width = bottom[0]->shape(this->channel_axis_ + 2);
+ const int height_out = top[0]->shape(this->channel_axis_ + 1);
+ const int width_out = top[0]->shape(this->channel_axis_ + 2);
+ const int* pad_data = this->pad_.cpu_data();
+ const int pad_h = pad_data[0];
+ const int pad_w = pad_data[1];
+ const int* stride_data = this->stride_.cpu_data();
+ const int stride_h = stride_data[0];
+ const int stride_w = stride_data[1];
for (int i = 0; i < bottom.size(); i++) {
cudnn::setTensor4dDesc<Dtype>(&bottom_descs_[i],
this->num_,
- this->channels_ / this->group_,
- this->height_, this->width_,
- this->channels_ * this->height_ * this->width_,
- this->height_ * this->width_,
- this->width_, 1);
+ this->channels_ / this->group_, height, width,
+ this->channels_ * height * width,
+ height * width, width, 1);
cudnn::setTensor4dDesc<Dtype>(&top_descs_[i],
this->num_,
- this->num_output_ / this->group_,
- this->height_out_, this->width_out_,
- this->num_output_ * this->height_out_ * this->width_out_,
- this->height_out_ * this->width_out_,
- this->width_out_, 1);
+ this->num_output_ / this->group_, height_out, width_out,
+ this->num_output_ * this->out_spatial_dim_,
+ this->out_spatial_dim_, width_out, 1);
cudnn::setConvolutionDesc<Dtype>(&conv_descs_[i], bottom_descs_[i],
- filter_desc_, this->pad_h_, this->pad_w_,
- this->stride_h_, this->stride_w_);
+ filter_desc_, pad_h, pad_w, stride_h, stride_w);
}
// Tensor descriptor for bias.
diff --git a/src/caffe/layers/cudnn_conv_layer.cu b/src/caffe/layers/cudnn_conv_layer.cu
index b4e802e..6911520 100644
--- a/src/caffe/layers/cudnn_conv_layer.cu
+++ b/src/caffe/layers/cudnn_conv_layer.cu
@@ -14,15 +14,15 @@ __global__ void sync_conv_groups() { }
template <typename Dtype>
void CuDNNConvolutionLayer<Dtype>::Forward_gpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
+ const int* kernel_shape_data = this->kernel_shape_.cpu_data();
+ const int kernel_h = kernel_shape_data[0];
+ const int kernel_w = kernel_shape_data[1];
+ const size_t workspace_limit_bytes =
+ kernel_h * kernel_w * this->channels_ * sizeof(int) + 1;
+ const Dtype* weight = this->blobs_[0]->gpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->gpu_data();
Dtype* top_data = top[i]->mutable_gpu_data();
- const Dtype* weight = this->blobs_[0]->gpu_data();
-
- size_t workspace_limit_bytes = this->kernel_h_ *
- this->kernel_w_ *
- this->channels_ *
- sizeof(int) + 1;
// Forward through cuDNN in parallel over groups.
for (int g = 0; g < this->group_; g++) {
@@ -69,7 +69,7 @@ void CuDNNConvolutionLayer<Dtype>::Forward_gpu(
CUDNN_CHECK(cudnnConvolutionForward(handle_[g],
cudnn::dataType<Dtype>::one,
bottom_descs_[i], bottom_data + bottom_offset_ * g,
- filter_desc_, weight + weight_offset_ * g,
+ filter_desc_, weight + this->weight_offset_ * g,
conv_descs_[i],
algo, workspace, workspaceSizeInBytes,
cudnn::dataType<Dtype>::zero,
@@ -128,7 +128,7 @@ void CuDNNConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
top_descs_[i], top_diff + top_offset_ * g,
conv_descs_[i],
cudnn::dataType<Dtype>::one,
- filter_desc_, weight_diff + weight_offset_ * g));
+ filter_desc_, weight_diff + this->weight_offset_ * g));
}
// Gradient w.r.t. bottom data.
@@ -139,7 +139,7 @@ void CuDNNConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
Dtype* bottom_diff = bottom[i]->mutable_gpu_diff();
CUDNN_CHECK(cudnnConvolutionBackwardData(handle_[2*this->group_ + g],
cudnn::dataType<Dtype>::one,
- filter_desc_, weight + weight_offset_ * g,
+ filter_desc_, weight + this->weight_offset_ * g,
top_descs_[i], top_diff + top_offset_ * g,
conv_descs_[i],
cudnn::dataType<Dtype>::zero,
diff --git a/src/caffe/layers/deconv_layer.cpp b/src/caffe/layers/deconv_layer.cpp
index a461296..f1d1abf 100644
--- a/src/caffe/layers/deconv_layer.cpp
+++ b/src/caffe/layers/deconv_layer.cpp
@@ -10,10 +10,18 @@ namespace caffe {
template <typename Dtype>
void DeconvolutionLayer<Dtype>::compute_output_shape() {
- this->height_out_ = this->stride_h_ * (this->height_ - 1) + this->kernel_h_
- - 2 * this->pad_h_;
- this->width_out_ = this->stride_w_ * (this->width_ - 1) + this->kernel_w_
- - 2 * this->pad_w_;
+ // input_shape_ + 1 to skip channel axis
+ const int* input_shape_data = this->input_shape_.cpu_data() + 1;
+ const int* kernel_shape_data = this->kernel_shape_.cpu_data();
+ const int* stride_data = this->stride_.cpu_data();
+ const int* pad_data = this->pad_.cpu_data();
+ this->output_shape_.clear();
+ for (int i = 0; i < this->num_spatial_axes_; ++i) {
+ const int input_dim = input_shape_data[i];
+ const int output_dim = stride_data[i] * (input_dim - 1)
+ + kernel_shape_data[i] - 2 * pad_data[i];
+ this->output_shape_.push_back(output_dim);
+ }
}
template <typename Dtype>
@@ -24,11 +32,11 @@ void DeconvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
- this->backward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight,
- top_data + top[i]->offset(n));
+ this->backward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
+ top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
- this->forward_cpu_bias(top_data + top[i]->offset(n), bias);
+ this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
@@ -47,21 +55,21 @@ void DeconvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
- this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n));
+ this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// Gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
- this->weight_cpu_gemm(top_diff + top[i]->offset(n),
- bottom_data + bottom[i]->offset(n), weight_diff);
+ this->weight_cpu_gemm(top_diff + n * this->top_dim_,
+ bottom_data + n * this->bottom_dim_, weight_diff);
}
// Gradient w.r.t. bottom data, if necessary, reusing the column buffer
// we might have just computed above.
if (propagate_down[i]) {
- this->forward_cpu_gemm(top_diff + top[i]->offset(n), weight,
- bottom_diff + bottom[i]->offset(n),
+ this->forward_cpu_gemm(top_diff + n * this->top_dim_, weight,
+ bottom_diff + n * this->bottom_dim_,
this->param_propagate_down_[0]);
}
}
diff --git a/src/caffe/layers/deconv_layer.cu b/src/caffe/layers/deconv_layer.cu
index 8a1eed8..ea83f56 100644
--- a/src/caffe/layers/deconv_layer.cu
+++ b/src/caffe/layers/deconv_layer.cu
@@ -16,11 +16,11 @@ void DeconvolutionLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const Dtype* bottom_data = bottom[i]->gpu_data();
Dtype* top_data = top[i]->mutable_gpu_data();
for (int n = 0; n < this->num_; ++n) {
- this->backward_gpu_gemm(bottom_data + bottom[i]->offset(n), weight,
- top_data + top[i]->offset(n));
+ this->backward_gpu_gemm(bottom_data + n * this->bottom_dim_, weight,
+ top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->gpu_data();
- this->forward_gpu_bias(top_data + top[i]->offset(n), bias);
+ this->forward_gpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
@@ -39,20 +39,20 @@ void DeconvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff();
for (int n = 0; n < this->num_; ++n) {
- this->backward_gpu_bias(bias_diff, top_diff + top[i]->offset(n));
+ this->backward_gpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
- this->weight_gpu_gemm(top_diff + top[i]->offset(n),
- bottom_data + bottom[i]->offset(n), weight_diff);
+ this->weight_gpu_gemm(top_diff + n * this->top_dim_,
+ bottom_data + n * this->bottom_dim_, weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
- this->forward_gpu_gemm(top_diff + top[i]->offset(n), weight,
- bottom_diff + bottom[i]->offset(n),
+ this->forward_gpu_gemm(top_diff + this->top_dim_, weight,
+ bottom_diff + n * this->bottom_dim_,
this->param_propagate_down_[0]);
}
}
diff --git a/src/caffe/layers/im2col_layer.cpp b/src/caffe/layers/im2col_layer.cpp
index 1c80271..595c9db 100644
--- a/src/caffe/layers/im2col_layer.cpp
+++ b/src/caffe/layers/im2col_layer.cpp
@@ -11,54 +11,106 @@ template <typename Dtype>
void Im2colLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
- CHECK(!conv_param.has_kernel_size() !=
- !(conv_param.has_kernel_h() && conv_param.has_kernel_w()))
- << "Filter size is kernel_size OR kernel_h and kernel_w; not both";
- CHECK(conv_param.has_kernel_size() ||
- (conv_param.has_kernel_h() && conv_param.has_kernel_w()))
- << "For non-square filters both kernel_h and kernel_w are required.";
- CHECK((!conv_param.has_pad() && conv_param.has_pad_h()
- && conv_param.has_pad_w())
- || (!conv_param.has_pad_h() && !conv_param.has_pad_w()))
- << "pad is pad OR pad_h and pad_w are required.";
- CHECK((!conv_param.has_stride() && conv_param.has_stride_h()
- && conv_param.has_stride_w())
- || (!conv_param.has_stride_h() && !conv_param.has_stride_w()))
- << "Stride is stride OR stride_h and stride_w are required.";
- if (conv_param.has_kernel_size()) {
- kernel_h_ = kernel_w_ = conv_param.kernel_size();
+ force_nd_im2col_ = conv_param.force_nd_im2col();
+ const int input_num_dims = bottom[0]->shape().size();
+ channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
+ const int first_spatial_dim = channel_axis_ + 1;
+ num_spatial_axes_ = input_num_dims - first_spatial_dim;
+ CHECK_GE(num_spatial_axes_, 1);
+ vector<int> dim_blob_shape(1, num_spatial_axes_);
+ // Setup filter kernel dimensions (kernel_shape_).
+ kernel_shape_.Reshape(dim_blob_shape);
+ int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
+ if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "kernel_h & kernel_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.kernel_size_size())
+ << "Either kernel_size or kernel_h/w should be specified; not both.";
+ kernel_shape_data[0] = conv_param.kernel_h();
+ kernel_shape_data[1] = conv_param.kernel_w();
} else {
- kernel_h_ = conv_param.kernel_h();
- kernel_w_ = conv_param.kernel_w();
+ const int num_kernel_dims = conv_param.kernel_size_size();
+ CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_)
+ << "kernel_size must be specified once, or once per spatial dimension "
+ << "(kernel_size specified " << num_kernel_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ kernel_shape_data[i] =
+ conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i);
+ }
}
- CHECK_GT(kernel_h_, 0) << "Filter dimensions cannot be zero.";
- CHECK_GT(kernel_w_, 0) << "Filter dimensions cannot be zero.";
- if (!conv_param.has_pad_h()) {
- pad_h_ = pad_w_ = conv_param.pad();
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero.";
+ }
+ // Setup stride dimensions (stride_).
+ stride_.Reshape(dim_blob_shape);
+ int* stride_data = stride_.mutable_cpu_data();
+ if (conv_param.has_stride_h() || conv_param.has_stride_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "stride_h & stride_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.stride_size())
+ << "Either stride or stride_h/w should be specified; not both.";
+ stride_data[0] = conv_param.stride_h();
+ stride_data[1] = conv_param.stride_w();
} else {
- pad_h_ = conv_param.pad_h();
- pad_w_ = conv_param.pad_w();
+ const int num_stride_dims = conv_param.stride_size();
+ CHECK(num_stride_dims == 0 || num_stride_dims == 1 ||
+ num_stride_dims == num_spatial_axes_)
+ << "stride must be specified once, or once per spatial dimension "
+ << "(stride specified " << num_stride_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ const int kDefaultStride = 1;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ stride_data[i] = (num_stride_dims == 0) ? kDefaultStride :
+ conv_param.stride((num_stride_dims == 1) ? 0 : i);
+ CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero.";
+ }
}
- if (!conv_param.has_stride_h()) {
- stride_h_ = stride_w_ = conv_param.stride();
+ // Setup pad dimensions (pad_).
+ pad_.Reshape(dim_blob_shape);
+ int* pad_data = pad_.mutable_cpu_data();
+ if (conv_param.has_pad_h() || conv_param.has_pad_w()) {
+ CHECK_EQ(num_spatial_axes_, 2)
+ << "pad_h & pad_w can only be used for 2D convolution.";
+ CHECK_EQ(0, conv_param.pad_size())
+ << "Either pad or pad_h/w should be specified; not both.";
+ pad_data[0] = conv_param.pad_h();
+ pad_data[1] = conv_param.pad_w();
} else {
- stride_h_ = conv_param.stride_h();
- stride_w_ = conv_param.stride_w();
+ const int num_pad_dims = conv_param.pad_size();
+ CHECK(num_pad_dims == 0 || num_pad_dims == 1 ||
+ num_pad_dims == num_spatial_axes_)
+ << "pad must be specified once, or once per spatial dimension "
+ << "(pad specified " << num_pad_dims << " times; "
+ << num_spatial_axes_ << " spatial dims);";
+ const int kDefaultPad = 0;
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ pad_data[i] = (num_pad_dims == 0) ? kDefaultPad :
+ conv_param.pad((num_pad_dims == 1) ? 0 : i);
+ }
}
}
template <typename Dtype>
void Im2colLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
- CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
- << "corresponding to (num, channels, height, width)";
- channels_ = bottom[0]->channels();
- height_ = bottom[0]->height();
- width_ = bottom[0]->width();
- top[0]->Reshape(
- bottom[0]->num(), channels_ * kernel_h_ * kernel_w_,
- (height_ + 2 * pad_h_ - kernel_h_) / stride_h_ + 1,
- (width_ + 2 * pad_w_ - kernel_w_) / stride_w_ + 1);
+ vector<int> top_shape = bottom[0]->shape();
+ const int* kernel_shape_data = kernel_shape_.cpu_data();
+ const int* stride_data = stride_.cpu_data();
+ const int* pad_data = pad_.cpu_data();
+ for (int i = 0; i < num_spatial_axes_; ++i) {
+ top_shape[channel_axis_] *= kernel_shape_data[i];
+ const int input_dim = bottom[0]->shape(channel_axis_ + i + 1);
+ const int output_dim = (input_dim + 2 * pad_data[i] - kernel_shape_data[i])
+ / stride_data[i] + 1;
+ top_shape[channel_axis_ + i + 1] = output_dim;
+ }
+ top[0]->Reshape(top_shape);
+ num_ = bottom[0]->count(0, channel_axis_);
+ bottom_dim_ = bottom[0]->count(channel_axis_);
+ top_dim_ = top[0]->count(channel_axis_);
+
+ channels_ = bottom[0]->shape(channel_axis_);
}
template <typename Dtype>
@@ -66,10 +118,27 @@ void Im2colLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
- for (int n = 0; n < bottom[0]->num(); ++n) {
- im2col_cpu(bottom_data + bottom[0]->offset(n), channels_, height_,
- width_, kernel_h_, kernel_w_, pad_h_, pad_w_,
- stride_h_, stride_w_, top_data + top[0]->offset(n));
+ for (int n = 0; n < num_; ++n) {
+ DCHECK_EQ(bottom[0]->shape().size() - channel_axis_, num_spatial_axes_ + 1);
+ DCHECK_EQ(top[0]->shape().size() - channel_axis_, num_spatial_axes_ + 1);
+ DCHECK_EQ(kernel_shape_.count(), num_spatial_axes_);
+ DCHECK_EQ(pad_.count(), num_spatial_axes_);
+ DCHECK_EQ(stride_.count(), num_spatial_axes_);
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ im2col_cpu(bottom_data + n * bottom_dim_, channels_,
+ bottom[0]->shape(channel_axis_ + 1),
+ bottom[0]->shape(channel_axis_ + 2),
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1],
+ top_data + n * top_dim_);
+ } else {
+ im2col_nd_cpu(bottom_data + n * bottom_dim_, num_spatial_axes_,
+ bottom[0]->shape().data() + channel_axis_,
+ top[0]->shape().data() + channel_axis_,
+ kernel_shape_.cpu_data(), pad_.cpu_data(), stride_.cpu_data(),
+ top_data + n * top_dim_);
+ }
}
}
@@ -78,10 +147,22 @@ void Im2colLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
- for (int n = 0; n < top[0]->num(); ++n) {
- col2im_cpu(top_diff + top[0]->offset(n), channels_, height_, width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_,
- stride_h_, stride_w_, bottom_diff + bottom[0]->offset(n));
+ for (int n = 0; n < num_; ++n) {
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ col2im_cpu(top_diff + n * top_dim_, channels_,
+ bottom[0]->shape(channel_axis_ + 1),
+ bottom[0]->shape(channel_axis_ + 2),
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1],
+ bottom_diff + n * bottom_dim_);
+ } else {
+ col2im_nd_cpu(top_diff + n * top_dim_, num_spatial_axes_,
+ bottom[0]->shape().data() + channel_axis_,
+ top[0]->shape().data() + channel_axis_,
+ kernel_shape_.cpu_data(), pad_.cpu_data(), stride_.cpu_data(),
+ bottom_diff + n * bottom_dim_);
+ }
}
}
diff --git a/src/caffe/layers/im2col_layer.cu b/src/caffe/layers/im2col_layer.cu
index 9c338b1..cd50762 100644
--- a/src/caffe/layers/im2col_layer.cu
+++ b/src/caffe/layers/im2col_layer.cu
@@ -12,10 +12,23 @@ void Im2colLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
- for (int n = 0; n < bottom[0]->num(); ++n) {
- im2col_gpu(bottom_data + bottom[0]->offset(n), channels_, height_,
- width_, kernel_h_, kernel_w_, pad_h_, pad_w_,
- stride_h_, stride_w_, top_data + top[0]->offset(n));
+ const int num_kernels = channels_ * top[0]->count(channel_axis_ + 1);
+ for (int n = 0; n < num_; ++n) {
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ im2col_gpu(bottom_data + n * bottom_dim_, channels_,
+ bottom[0]->shape(channel_axis_ + 1),
+ bottom[0]->shape(channel_axis_ + 2),
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1],
+ top_data + n * top_dim_);
+ } else {
+ im2col_nd_gpu(bottom_data + n * bottom_dim_, num_spatial_axes_,
+ num_kernels, bottom[0]->gpu_shape() + channel_axis_,
+ top[0]->gpu_shape() + channel_axis_,
+ kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(),
+ top_data + n * top_dim_);
+ }
}
}
@@ -24,10 +37,22 @@ void Im2colLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
- for (int n = 0; n < top[0]->num(); ++n) {
- col2im_gpu(top_diff + top[0]->offset(n), channels_, height_, width_,
- kernel_h_, kernel_w_, pad_h_, pad_w_,
- stride_h_, stride_w_, bottom_diff + bottom[0]->offset(n));
+ for (int n = 0; n < num_; ++n) {
+ if (!force_nd_im2col_ && num_spatial_axes_ == 2) {
+ col2im_gpu(top_diff + n * top_dim_, channels_,
+ bottom[0]->shape(channel_axis_ + 1),
+ bottom[0]->shape(channel_axis_ + 2),
+ kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],
+ pad_.cpu_data()[0], pad_.cpu_data()[1],
+ stride_.cpu_data()[0], stride_.cpu_data()[1],
+ bottom_diff + n * bottom_dim_);
+ } else {
+ col2im_nd_gpu(top_diff + n * top_dim_, num_spatial_axes_, bottom_dim_,
+ bottom[0]->gpu_shape() + channel_axis_,
+ top[0]->gpu_shape() + channel_axis_,
+ kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(),
+ bottom_diff + n * bottom_dim_);
+ }
}
}
diff --git a/src/caffe/proto/caffe.proto b/src/caffe/proto/caffe.proto
index aa299f8..f52c941 100644
--- a/src/caffe/proto/caffe.proto
+++ b/src/caffe/proto/caffe.proto
@@ -471,18 +471,24 @@ message ContrastiveLossParameter {
message ConvolutionParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
+
// Pad, kernel size, and stride are all given as a single value for equal
- // dimensions in height and width or as Y, X pairs.
- optional uint32 pad = 3 [default = 0]; // The padding size (equal in Y, X)
- optional uint32 pad_h = 9 [default = 0]; // The padding height
- optional uint32 pad_w = 10 [default = 0]; // The padding width
- optional uint32 kernel_size = 4; // The kernel size (square)
- optional uint32 kernel_h = 11; // The kernel height
- optional uint32 kernel_w = 12; // The kernel width
+ // dimensions in all spatial dimensions, or once per spatial dimension.
+ repeated uint32 pad = 3; // The padding size; defaults to 0
+ repeated uint32 kernel_size = 4; // The kernel size
+ repeated uint32 stride = 6; // The stride; defaults to 1
+
+ // For 2D convolution only, the *_h and *_w versions may also be used to
+ // specify both spatial dimensions.
+ optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
+ optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
+ optional uint32 kernel_h = 11; // The kernel height (2D only)
+ optional uint32 kernel_w = 12; // The kernel width (2D only)
+ optional uint32 stride_h = 13; // The stride height (2D only)
+ optional uint32 stride_w = 14; // The stride width (2D only)
+
optional uint32 group = 5 [default = 1]; // The group size for group conv
- optional uint32 stride = 6 [default = 1]; // The stride (equal in Y, X)
- optional uint32 stride_h = 13; // The stride height
- optional uint32 stride_w = 14; // The stride width
+
optional FillerParameter weight_filler = 7; // The filler for the weight
optional FillerParameter bias_filler = 8; // The filler for the bias
enum Engine {
@@ -491,6 +497,24 @@ message ConvolutionParameter {
CUDNN = 2;
}
optional Engine engine = 15 [default = DEFAULT];
+
+ // The axis to interpret as "channels" when performing convolution.
+ // Preceding dimensions are treated as independent inputs;
+ // succeeding dimensions are treated as "spatial".
+ // With (N, C, H, W) inputs, and axis == 1 (the default), we perform
+ // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
+ // groups g>1) filters across the spatial axes (H, W) of the input.
+ // With (N, C, D, H, W) inputs, and axis == 1, we perform
+ // N independent 3D convolutions, sliding (C/g)-channels
+ // filters across the spatial axes (D, H, W) of the input.
+ optional int32 axis = 16 [default = 1];
+
+ // Whether to force use of the general ND convolution, even if a specific
+ // implementation for blobs of the appropriate number of spatial dimensions
+ // is available. (Currently, there is only a 2D-specific convolution
+ // implementation; for input blobs with num_axes != 2, this option is
+ // ignored and the ND implementation will be used.)
+ optional bool force_nd_im2col = 17 [default = false];
}
message DataParameter {
diff --git a/src/caffe/test/test_convolution_layer.cpp b/src/caffe/test/test_convolution_layer.cpp
index 67d41ff..9df979a 100644
--- a/src/caffe/test/test_convolution_layer.cpp
+++ b/src/caffe/test/test_convolution_layer.cpp
@@ -19,54 +19,87 @@ template <typename Dtype>
void caffe_conv(const Blob<Dtype>* in, ConvolutionParameter* conv_param,
const vector<shared_ptr<Blob<Dtype> > >& weights,
Blob<Dtype>* out) {
+ const bool has_depth = (out->num_axes() == 5);
+ if (!has_depth) { CHECK_EQ(4, out->num_axes()); }
// Kernel size, stride, and pad
int kernel_h, kernel_w;
- if (conv_param->has_kernel_size()) {
- kernel_h = kernel_w = conv_param->kernel_size();
- } else {
+ if (conv_param->has_kernel_h() || conv_param->has_kernel_w()) {
kernel_h = conv_param->kernel_h();
kernel_w = conv_param->kernel_w();
+ } else {
+ kernel_h = kernel_w = conv_param->kernel_size(0);
}
int pad_h, pad_w;
- if (!conv_param->has_pad_h()) {
- pad_h = pad_w = conv_param->pad();
- } else {
+ if (conv_param->has_pad_h() || conv_param->has_pad_w()) {
pad_h = conv_param->pad_h();
pad_w = conv_param->pad_w();
+ } else {
+ pad_h = pad_w = conv_param->pad_size() ? conv_param->pad(0) : 0;
}
int stride_h, stride_w;
- if (!conv_param->has_stride_h()) {
- stride_h = stride_w = conv_param->stride();
- } else {
+ if (conv_param->has_stride_h() || conv_param->has_stride_w()) {
stride_h = conv_param->stride_h();
stride_w = conv_param->stride_w();
+ } else {
+ stride_h = stride_w = conv_param->stride_size() ? conv_param->stride(0) : 1;
+ }
+ int kernel_d, pad_d, stride_d;
+ if (has_depth) {
+ kernel_d = kernel_h;
+ stride_d = stride_h;
+ pad_d = pad_h;
+ } else {
+ kernel_d = stride_d = 1;
+ pad_d = 0;
}
// Groups
int groups = conv_param->group();
- int o_g = out->channels() / groups;
- int k_g = in->channels() / groups;
+ int o_g = out->shape(1) / groups;
+ int k_g = in->shape(1) / groups;
int o_head, k_head;
// Convolution
- const Dtype* in_data = in->cpu_data();
- const Dtype* weight_data = weights[0]->cpu_data();
+ vector<int> weight_offset(4 + has_depth);
+ vector<int> in_offset(4 + has_depth);
+ vector<int> out_offset(4 + has_depth);
Dtype* out_data = out->mutable_cpu_data();
- for (int n = 0; n < out->num(); n++) {
+ for (int n = 0; n < out->shape(0); n++) {
for (int g = 0; g < groups; g++) {
o_head = o_g * g;
k_head = k_g * g;
for (int o = 0; o < o_g; o++) {
for (int k = 0; k < k_g; k++) {
- for (int y = 0; y < out->height(); y++) {
- for (int x = 0; x < out->width(); x++) {
- for (int p = 0; p < kernel_h; p++) {
- for (int q = 0; q < kernel_w; q++) {
- int in_y = y * stride_h - pad_h + p;
- int in_x = x * stride_w - pad_w + q;
- if (in_y >= 0 && in_y < in->height()
- && in_x >= 0 && in_x < in->width()) {
- out_data[out->offset(n, o + o_head, y, x)] +=
- in_data[in->offset(n, k + k_head, in_y, in_x)]
- * weight_data[weights[0]->offset(o + o_head, k, p, q)];
+ for (int z = 0; z < (has_depth ? out->shape(2) : 1); z++) {
+ for (int y = 0; y < out->shape(2 + has_depth); y++) {
+ for (int x = 0; x < out->shape(3 + has_depth); x++) {
+ for (int r = 0; r < kernel_d; r++) {
+ for (int p = 0; p < kernel_h; p++) {
+ for (int q = 0; q < kernel_w; q++) {
+ int in_z = z * stride_d - pad_d + r;
+ int in_y = y * stride_h - pad_h + p;
+ int in_x = x * stride_w - pad_w + q;
+ if (in_z >= 0 && in_z < (has_depth ? in->shape(2) : 1)
+ && in_y >= 0 && in_y < in->shape(2 + has_depth)
+ && in_x >= 0 && in_x < in->shape(3 + has_depth)) {
+ weight_offset[0] = o + o_head;
+ weight_offset[1] = k;
+ if (has_depth) { weight_offset[2] = r; }
+ weight_offset[2 + has_depth] = p;
+ weight_offset[3 + has_depth] = q;
+ in_offset[0] = n;
+ in_offset[1] = k + k_head;
+ if (has_depth) { in_offset[2] = in_z; }
+ in_offset[2 + has_depth] = in_y;
+ in_offset[3 + has_depth] = in_x;
+ out_offset[0] = n;
+ out_offset[1] = o + o_head;
+ if (has_depth) { out_offset[2] = z; }
+ out_offset[2 + has_depth] = y;
+ out_offset[3 + has_depth] = x;
+ out_data[out->offset(out_offset)] +=
+ in->data_at(in_offset)
+ * weights[0]->data_at(weight_offset);
+ }
+ }
}
}
}
@@ -79,11 +112,18 @@ void caffe_conv(const Blob<Dtype>* in, ConvolutionParameter* conv_param,
// Bias
if (conv_param->bias_term()) {
const Dtype* bias_data = weights[1]->cpu_data();
- for (int n = 0; n < out->num(); n++) {
- for (int o = 0; o < out->channels(); o++) {
- for (int y = 0; y < out->height(); y++) {
- for (int x = 0; x < out->width(); x++) {
- out_data[out->offset(n, o, y, x)] += bias_data[o];
+ for (int n = 0; n < out->shape(0); n++) {
+ for (int o = 0; o < out->shape(1); o++) {
+ for (int z = 0; z < (has_depth ? out->shape(2) : 1); z++) {
+ for (int y = 0; y < out->shape(2 + has_depth); y++) {
+ for (int x = 0; x < out->shape(3 + has_depth); x++) {
+ out_offset[0] = n;
+ out_offset[1] = o;
+ if (has_depth) { out_offset[2] = z; }
+ out_offset[2 + has_depth] = y;
+ out_offset[3 + has_depth] = x;
+ out_data[out->offset(out_offset)] += bias_data[o];
+ }
}
}
}
@@ -150,8 +190,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSetup) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
@@ -188,8 +228,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolution) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("constant");
@@ -217,13 +257,98 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolution) {
}
}
+TYPED_TEST(ConvolutionLayerTest, Test0DConvolution) {
+ typedef typename TypeParam::Dtype Dtype;
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ const int kNumOutput = 3;
+ convolution_param->set_num_output(kNumOutput);
+ convolution_param->set_axis(3);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ convolution_param->mutable_bias_filler()->set_type("gaussian");
+ shared_ptr<Layer<Dtype> > layer(
+ new ConvolutionLayer<Dtype>(layer_param));
+ vector<int> top_shape = this->blob_bottom_->shape();
+ top_shape[3] = kNumOutput;
+ layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ EXPECT_EQ(top_shape, this->blob_top_->shape());
+ layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ // Check against reference convolution.
+ vector<int> weight_offset(2);
+ const Blob<Dtype>* weight = layer->blobs()[0].get();
+ const Blob<Dtype>* bias = layer->blobs()[1].get();
+ const int num = this->blob_top_->count(3);
+ const int dim = this->blob_top_->shape(3);
+ const int bottom_dim = this->blob_bottom_->shape(3);
+ for (int n = 0; n < num; ++n) {
+ for (int d = 0; d < dim; ++d) {
+ weight_offset[0] = d;
+ Dtype value = bias->cpu_data()[d];
+ for (int bottom_d = 0; bottom_d < bottom_dim; ++bottom_d) {
+ weight_offset[1] = bottom_d;
+ value += weight->data_at(weight_offset) *
+ this->blob_bottom_->cpu_data()[n * bottom_dim + bottom_d];
+ }
+ EXPECT_NEAR(value, this->blob_top_->cpu_data()[n * dim + d], 1e-4);
+ }
+ }
+}
+
+TYPED_TEST(ConvolutionLayerTest, TestSimple3DConvolution) {
+ typedef typename TypeParam::Dtype Dtype;
+ this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
+ this->blob_top_vec_.push_back(this->blob_top_2_);
+ vector<int> bottom_shape(5);
+ bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0);
+ bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1);
+ bottom_shape[2] = 5;
+ bottom_shape[3] = this->blob_bottom_vec_[0]->shape(2);
+ bottom_shape[4] = this->blob_bottom_vec_[0]->shape(3);
+ FillerParameter filler_param;
+ GaussianFiller<Dtype> filler(filler_param);
+ for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) {
+ this->blob_bottom_vec_[i]->Reshape(bottom_shape);
+ filler.Fill(this->blob_bottom_vec_[i]);
+ }
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
+ convolution_param->set_num_output(4);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ convolution_param->mutable_bias_filler()->set_type("gaussian");
+ shared_ptr<Layer<Dtype> > layer(
+ new ConvolutionLayer<Dtype>(layer_param));
+ layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ // Check against reference convolution.
+ const Dtype* top_data;
+ const Dtype* ref_top_data;
+ caffe_conv(this->blob_bottom_, convolution_param, layer->blobs(),
+ this->MakeReferenceTop(this->blob_top_));
+ top_data = this->blob_top_->cpu_data();
+ ref_top_data = this->ref_blob_top_->cpu_data();
+ for (int i = 0; i < this->blob_top_->count(); ++i) {
+ EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4);
+ }
+ caffe_conv(this->blob_bottom_2_, convolution_param, layer->blobs(),
+ this->MakeReferenceTop(this->blob_top_2_));
+ top_data = this->blob_top_2_->cpu_data();
+ ref_top_data = this->ref_blob_top_->cpu_data();
+ for (int i = 0; i < this->blob_top_->count(); ++i) {
+ EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4);
+ }
+}
+
TYPED_TEST(ConvolutionLayerTest, Test1x1Convolution) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(1);
- convolution_param->set_stride(1);
+ convolution_param->add_kernel_size(1);
+ convolution_param->add_stride(1);
convolution_param->set_num_output(4);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("constant");
@@ -249,8 +374,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolutionGroup) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(3);
convolution_param->set_group(3);
convolution_param->mutable_weight_filler()->set_type("gaussian");
@@ -288,8 +413,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(1);
convolution_param->set_bias_term(false);
shared_ptr<Layer<Dtype> > layer(
@@ -350,14 +475,11 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) {
convolution_param->set_bias_term(false);
layer.reset(new ConvolutionLayer<Dtype>(layer_param));
layer->blobs().resize(1);
- layer->blobs()[0].reset(new Blob<Dtype>(1, 3, 1, 3));
+ layer->blobs()[0].reset(new Blob<Dtype>(1, 1, 1, 3));
Dtype* weights_2 = layer->blobs()[0]->mutable_cpu_data();
- for (int c = 0; c < 3; ++c) {
- int i = c * 3; // 1 x 3 filter
- weights_2[i + 0] = -1;
- weights_2[i + 1] = 0;
- weights_2[i + 2] = 1;
- }
+ weights_2[0] = -1;
+ weights_2[1] = 0;
+ weights_2[2] = 1;
layer->SetUp(sep_blob_bottom_vec, sep_blob_top_vec);
layer->Forward(sep_blob_bottom_vec, sep_blob_top_vec);
// Test equivalence of full and separable filters.
@@ -368,6 +490,124 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) {
}
}
+TYPED_TEST(ConvolutionLayerTest, TestNDAgainst2D) {
+ typedef typename TypeParam::Dtype Dtype;
+ const int kernel_h = 11;
+ const int kernel_w = 13;
+ vector<int> bottom_shape(4);
+ bottom_shape[0] = 15;
+ bottom_shape[1] = 18;
+ bottom_shape[2] = kernel_h * 2;
+ bottom_shape[3] = kernel_w * 2;
+ FillerParameter filler_param;
+ GaussianFiller<Dtype> filler(filler_param);
+ for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) {
+ this->blob_bottom_vec_[i]->Reshape(bottom_shape);
+ filler.Fill(this->blob_bottom_vec_[i]);
+ }
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ convolution_param->set_num_output(12);
+ convolution_param->set_bias_term(false);
+ convolution_param->set_group(6);
+ convolution_param->set_kernel_h(kernel_h);
+ convolution_param->set_kernel_w(kernel_w);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ Blob<Dtype> weights;
+ Blob<Dtype> top_diff;
+ // Shape and fill weights and top_diff.
+ bool copy_diff;
+ bool reshape;
+ {
+ ConvolutionLayer<Dtype> layer(layer_param);
+ layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ top_diff.ReshapeLike(*this->blob_top_);
+ filler.Fill(&top_diff);
+ ASSERT_EQ(1, layer.blobs().size());
+ copy_diff = false; reshape = true;
+ weights.CopyFrom(*layer.blobs()[0], copy_diff, reshape);
+ }
+ vector<bool> propagate_down(1, true);
+ Blob<Dtype> result_2d;
+ Blob<Dtype> backward_result_2d;
+ Blob<Dtype> backward_weight_result_2d;
+ // Test with 2D im2col
+ {
+ caffe_set(this->blob_top_->count(), Dtype(0),
+ this->blob_top_->mutable_cpu_data());
+ caffe_set(this->blob_bottom_->count(), Dtype(0),
+ this->blob_bottom_->mutable_cpu_diff());
+ caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff());
+ // Do SetUp and Forward; save Forward result in result_2d.
+ convolution_param->set_force_nd_im2col(false);
+ ConvolutionLayer<Dtype> layer_2d(layer_param);
+ layer_2d.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ ASSERT_EQ(1, layer_2d.blobs().size());
+ copy_diff = false; reshape = false;
+ layer_2d.blobs()[0]->CopyFrom(weights, copy_diff, reshape);
+ layer_2d.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ copy_diff = false; reshape = true;
+ result_2d.CopyFrom(*this->blob_top_, copy_diff, reshape);
+ // Copy pre-generated top diff into actual top diff;
+ // do Backward and save result in backward_result_2d.
+ ASSERT_EQ(this->blob_top_->shape(), top_diff.shape());
+ caffe_copy(top_diff.count(), top_diff.cpu_data(),
+ this->blob_top_->mutable_cpu_diff());
+ layer_2d.Backward(this->blob_top_vec_, propagate_down,
+ this->blob_bottom_vec_);
+ copy_diff = true; reshape = true;
+ backward_result_2d.CopyFrom(*this->blob_bottom_, copy_diff, reshape);
+ backward_weight_result_2d.CopyFrom(weights, copy_diff, reshape);
+ }
+ Blob<Dtype> result_nd;
+ Blob<Dtype> backward_result_nd;
+ Blob<Dtype> backward_weight_result_nd;
+ // Test with ND im2col
+ {
+ caffe_set(this->blob_top_->count(), Dtype(0),
+ this->blob_top_->mutable_cpu_data());
+ caffe_set(this->blob_bottom_->count(), Dtype(0),
+ this->blob_bottom_->mutable_cpu_diff());
+ caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff());
+ // Do SetUp and Forward; save Forward result in result_nd.
+ convolution_param->set_force_nd_im2col(true);
+ ConvolutionLayer<Dtype> layer_nd(layer_param);
+ layer_nd.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ ASSERT_EQ(1, layer_nd.blobs().size());
+ copy_diff = false; reshape = false;
+ layer_nd.blobs()[0]->CopyFrom(weights, copy_diff, reshape);
+ layer_nd.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ copy_diff = false; reshape = true;
+ result_nd.CopyFrom(*this->blob_top_, copy_diff, reshape);
+ // Copy pre-generated top diff into actual top diff;
+ // do Backward and save result in backward_result_nd.
+ ASSERT_EQ(this->blob_top_->shape(), top_diff.shape());
+ caffe_copy(top_diff.count(), top_diff.cpu_data(),
+ this->blob_top_->mutable_cpu_diff());
+ layer_nd.Backward(this->blob_top_vec_, propagate_down,
+ this->blob_bottom_vec_);
+ copy_diff = true; reshape = true;
+ backward_result_nd.CopyFrom(*this->blob_bottom_, copy_diff, reshape);
+ backward_weight_result_nd.CopyFrom(weights, copy_diff, reshape);
+ }
+ ASSERT_EQ(result_nd.count(), result_2d.count());
+ for (int i = 0; i < result_2d.count(); ++i) {
+ EXPECT_EQ(result_2d.cpu_data()[i], result_nd.cpu_data()[i]);
+ }
+ ASSERT_EQ(backward_result_nd.count(), backward_result_2d.count());
+ for (int i = 0; i < backward_result_2d.count(); ++i) {
+ EXPECT_EQ(backward_result_2d.cpu_diff()[i],
+ backward_result_nd.cpu_diff()[i]);
+ }
+ ASSERT_EQ(backward_weight_result_nd.count(),
+ backward_weight_result_2d.count());
+ for (int i = 0; i < backward_weight_result_2d.count(); ++i) {
+ EXPECT_EQ(backward_weight_result_2d.cpu_diff()[i],
+ backward_weight_result_nd.cpu_diff()[i]);
+ }
+}
+
TYPED_TEST(ConvolutionLayerTest, TestGradient) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
@@ -375,8 +615,36 @@ TYPED_TEST(ConvolutionLayerTest, TestGradient) {
layer_param.mutable_convolution_param();
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
+ convolution_param->set_num_output(2);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ convolution_param->mutable_bias_filler()->set_type("gaussian");
+ ConvolutionLayer<Dtype> layer(layer_param);
+ GradientChecker<Dtype> checker(1e-2, 1e-3);
+ checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
+ this->blob_top_vec_);
+}
+
+TYPED_TEST(ConvolutionLayerTest, TestGradient3D) {
+ typedef typename TypeParam::Dtype Dtype;
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ vector<int> bottom_shape(5);
+ bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0);
+ bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1);
+ bottom_shape[2] = 5;
+ bottom_shape[3] = this->blob_bottom_vec_[0]->shape(2);
+ bottom_shape[4] = this->blob_bottom_vec_[0]->shape(3);
+ FillerParameter filler_param;
+ GaussianFiller<Dtype> filler(filler_param);
+ for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) {
+ this->blob_bottom_vec_[i]->Reshape(bottom_shape);
+ filler.Fill(this->blob_bottom_vec_[i]);
+ }
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(2);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("gaussian");
@@ -393,8 +661,8 @@ TYPED_TEST(ConvolutionLayerTest, Test1x1Gradient) {
layer_param.mutable_convolution_param();
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
- convolution_param->set_kernel_size(1);
- convolution_param->set_stride(1);
+ convolution_param->add_kernel_size(1);
+ convolution_param->add_stride(1);
convolution_param->set_num_output(2);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("gaussian");
@@ -409,8 +677,8 @@ TYPED_TEST(ConvolutionLayerTest, TestGradientGroup) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(3);
convolution_param->set_group(3);
convolution_param->mutable_weight_filler()->set_type("gaussian");
@@ -472,8 +740,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSetupCuDNN) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
@@ -509,8 +777,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSimpleConvolutionCuDNN) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("constant");
@@ -542,8 +810,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSimpleConvolutionGroupCuDNN) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(3);
convolution_param->set_group(3);
convolution_param->mutable_weight_filler()->set_type("gaussian");
@@ -581,8 +849,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSobelConvolutionCuDNN) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(1);
convolution_param->set_bias_term(false);
shared_ptr<Layer<TypeParam> > layer(
@@ -643,14 +911,11 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSobelConvolutionCuDNN) {
convolution_param->set_bias_term(false);
layer.reset(new CuDNNConvolutionLayer<TypeParam>(layer_param));
layer->blobs().resize(1);
- layer->blobs()[0].reset(new Blob<TypeParam>(1, 3, 1, 3));
+ layer->blobs()[0].reset(new Blob<TypeParam>(1, 1, 1, 3));
TypeParam* weights_2 = layer->blobs()[0]->mutable_cpu_data();
- for (int c = 0; c < 3; ++c) {
- int i = c * 3; // 1 x 3 filter
- weights_2[i + 0] = -1;
- weights_2[i + 1] = 0;
- weights_2[i + 2] = 1;
- }
+ weights_2[0] = -1;
+ weights_2[1] = 0;
+ weights_2[2] = 1;
layer->SetUp(sep_blob_bottom_vec, sep_blob_top_vec);
layer->Forward(sep_blob_bottom_vec, sep_blob_top_vec);
// Test equivalence of full and separable filters.
@@ -667,8 +932,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestGradientCuDNN) {
layer_param.mutable_convolution_param();
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(2);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("gaussian");
@@ -682,8 +947,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestGradientGroupCuDNN) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(3);
convolution_param->set_group(3);
convolution_param->mutable_weight_filler()->set_type("gaussian");
diff --git a/src/caffe/test/test_deconvolution_layer.cpp b/src/caffe/test/test_deconvolution_layer.cpp
index fc63d5e..770e7b2 100644
--- a/src/caffe/test/test_deconvolution_layer.cpp
+++ b/src/caffe/test/test_deconvolution_layer.cpp
@@ -58,8 +58,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestSetup) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
@@ -96,8 +96,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestSimpleDeconvolution) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
convolution_param->set_num_output(4);
convolution_param->mutable_weight_filler()->set_type("constant");
convolution_param->mutable_weight_filler()->set_value(1);
@@ -144,8 +144,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestGradient) {
layer_param.mutable_convolution_param();
this->blob_bottom_vec_.push_back(this->blob_bottom_2_);
this->blob_top_vec_.push_back(this->blob_top_2_);
- convolution_param->set_kernel_size(2);
- convolution_param->set_stride(1);
+ convolution_param->add_kernel_size(2);
+ convolution_param->add_stride(1);
convolution_param->set_num_output(1);
convolution_param->mutable_weight_filler()->set_type("gaussian");
convolution_param->mutable_bias_filler()->set_type("gaussian");
@@ -155,4 +155,151 @@ TYPED_TEST(DeconvolutionLayerTest, TestGradient) {
this->blob_top_vec_);
}
+TYPED_TEST(DeconvolutionLayerTest, TestNDAgainst2D) {
+ typedef typename TypeParam::Dtype Dtype;
+ const int kernel_h = 11;
+ const int kernel_w = 13;
+ vector<int> bottom_shape(4);
+ bottom_shape[0] = 15;
+ bottom_shape[1] = 12;
+ bottom_shape[2] = kernel_h * 2;
+ bottom_shape[3] = kernel_w * 2;
+ FillerParameter filler_param;
+ GaussianFiller<Dtype> filler(filler_param);
+ for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) {
+ this->blob_bottom_vec_[i]->Reshape(bottom_shape);
+ filler.Fill(this->blob_bottom_vec_[i]);
+ }
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ convolution_param->set_num_output(18);
+ convolution_param->set_bias_term(false);
+ convolution_param->set_group(6);
+ convolution_param->set_kernel_h(kernel_h);
+ convolution_param->set_kernel_w(kernel_w);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ Blob<Dtype> weights;
+ Blob<Dtype> top_diff;
+ // Shape and fill weights and top_diff.
+ bool copy_diff;
+ bool reshape;
+ {
+ DeconvolutionLayer<Dtype> layer(layer_param);
+ layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ top_diff.ReshapeLike(*this->blob_top_);
+ filler.Fill(&top_diff);
+ ASSERT_EQ(1, layer.blobs().size());
+ copy_diff = false; reshape = true;
+ weights.CopyFrom(*layer.blobs()[0], copy_diff, reshape);
+ }
+ vector<bool> propagate_down(1, true);
+ Blob<Dtype> result_2d;
+ Blob<Dtype> backward_result_2d;
+ Blob<Dtype> backward_weight_result_2d;
+ // Test with 2D im2col
+ {
+ caffe_set(this->blob_top_->count(), Dtype(0),
+ this->blob_top_->mutable_cpu_data());
+ caffe_set(this->blob_bottom_->count(), Dtype(0),
+ this->blob_bottom_->mutable_cpu_diff());
+ caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff());
+ // Do SetUp and Forward; save Forward result in result_2d.
+ convolution_param->set_force_nd_im2col(false);
+ DeconvolutionLayer<Dtype> layer_2d(layer_param);
+ layer_2d.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ ASSERT_EQ(1, layer_2d.blobs().size());
+ copy_diff = false; reshape = false;
+ layer_2d.blobs()[0]->CopyFrom(weights, copy_diff, reshape);
+ layer_2d.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ copy_diff = false; reshape = true;
+ result_2d.CopyFrom(*this->blob_top_, copy_diff, reshape);
+ // Copy pre-generated top diff into actual top diff;
+ // do Backward and save result in backward_result_2d.
+ ASSERT_EQ(this->blob_top_->shape(), top_diff.shape());
+ caffe_copy(top_diff.count(), top_diff.cpu_data(),
+ this->blob_top_->mutable_cpu_diff());
+ layer_2d.Backward(this->blob_top_vec_, propagate_down,
+ this->blob_bottom_vec_);
+ copy_diff = true; reshape = true;
+ backward_result_2d.CopyFrom(*this->blob_bottom_, copy_diff, reshape);
+ backward_weight_result_2d.CopyFrom(weights, copy_diff, reshape);
+ }
+ Blob<Dtype> result_nd;
+ Blob<Dtype> backward_result_nd;
+ Blob<Dtype> backward_weight_result_nd;
+ // Test with ND im2col
+ {
+ caffe_set(this->blob_top_->count(), Dtype(0),
+ this->blob_top_->mutable_cpu_data());
+ caffe_set(this->blob_bottom_->count(), Dtype(0),
+ this->blob_bottom_->mutable_cpu_diff());
+ caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff());
+ // Do SetUp and Forward; save Forward result in result_nd.
+ convolution_param->set_force_nd_im2col(true);
+ DeconvolutionLayer<Dtype> layer_nd(layer_param);
+ layer_nd.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
+ ASSERT_EQ(1, layer_nd.blobs().size());
+ copy_diff = false; reshape = false;
+ layer_nd.blobs()[0]->CopyFrom(weights, copy_diff, reshape);
+ layer_nd.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
+ copy_diff = false; reshape = true;
+ result_nd.CopyFrom(*this->blob_top_, copy_diff, reshape);
+ // Copy pre-generated top diff into actual top diff;
+ // do Backward and save result in backward_result_nd.
+ ASSERT_EQ(this->blob_top_->shape(), top_diff.shape());
+ caffe_copy(top_diff.count(), top_diff.cpu_data(),
+ this->blob_top_->mutable_cpu_diff());
+ layer_nd.Backward(this->blob_top_vec_, propagate_down,
+ this->blob_bottom_vec_);
+ copy_diff = true; reshape = true;
+ backward_result_nd.CopyFrom(*this->blob_bottom_, copy_diff, reshape);
+ backward_weight_result_nd.CopyFrom(weights, copy_diff, reshape);
+ }
+ ASSERT_EQ(result_nd.count(), result_2d.count());
+ for (int i = 0; i < result_2d.count(); ++i) {
+ EXPECT_EQ(result_2d.cpu_data()[i], result_nd.cpu_data()[i]);
+ }
+ ASSERT_EQ(backward_result_nd.count(), backward_result_2d.count());
+ for (int i = 0; i < backward_result_2d.count(); ++i) {
+ EXPECT_EQ(backward_result_2d.cpu_diff()[i],
+ backward_result_nd.cpu_diff()[i]);
+ }
+ ASSERT_EQ(backward_weight_result_nd.count(),
+ backward_weight_result_2d.count());
+ for (int i = 0; i < backward_weight_result_2d.count(); ++i) {
+ EXPECT_EQ(backward_weight_result_2d.cpu_diff()[i],
+ backward_weight_result_nd.cpu_diff()[i]);
+ }
+}
+
+TYPED_TEST(DeconvolutionLayerTest, TestGradient3D) {
+ typedef typename TypeParam::Dtype Dtype;
+ vector<int> bottom_shape(5);
+ bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0);
+ bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1);
+ bottom_shape[2] = 2;
+ bottom_shape[3] = 3;
+ bottom_shape[4] = 2;
+ FillerParameter filler_param;
+ GaussianFiller<Dtype> filler(filler_param);
+ for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) {
+ this->blob_bottom_vec_[i]->Reshape(bottom_shape);
+ filler.Fill(this->blob_bottom_vec_[i]);
+ }
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ convolution_param->add_kernel_size(2);
+ convolution_param->add_stride(2);
+ convolution_param->add_pad(1);
+ convolution_param->set_num_output(2);
+ convolution_param->mutable_weight_filler()->set_type("gaussian");
+ convolution_param->mutable_bias_filler()->set_type("gaussian");
+ DeconvolutionLayer<Dtype> layer(layer_param);
+ GradientChecker<Dtype> checker(1e-2, 1e-3);
+ checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
+ this->blob_top_vec_);
+}
+
} // namespace caffe
diff --git a/src/caffe/test/test_im2col_kernel.cu b/src/caffe/test/test_im2col_kernel.cu
index 0017ac2..f0b75fc 100644
--- a/src/caffe/test/test_im2col_kernel.cu
+++ b/src/caffe/test/test_im2col_kernel.cu
@@ -22,6 +22,12 @@ __global__ void im2col_gpu_kernel(const int n, const Dtype* data_im,
const int height_col, const int width_col,
Dtype* data_col);
+template <typename Dtype, int num_axes>
+__global__ void im2col_nd_gpu_kernel(const int n, const Dtype* data_im,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col);
+
extern cudaDeviceProp CAFFE_TEST_CUDA_PROP;
template <typename Dtype>
@@ -30,11 +36,18 @@ class Im2colKernelTest : public GPUDeviceTest<Dtype> {
Im2colKernelTest()
// big so launches > 1024 threads
: blob_bottom_(new Blob<Dtype>(5, 500, 10, 10)),
+ blob_kernel_shape_(new Blob<int>()),
+ blob_stride_(new Blob<int>()),
+ blob_pad_(new Blob<int>()),
blob_top_(new Blob<Dtype>()),
blob_top_cpu_(new Blob<Dtype>()) {
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(this->blob_bottom_);
+ vector<int> dim_blob_shape(1, 2);
+ blob_kernel_shape_->Reshape(dim_blob_shape);
+ blob_stride_->Reshape(dim_blob_shape);
+ blob_pad_->Reshape(dim_blob_shape);
height_ = blob_bottom_->height();
width_ = blob_bottom_->width();
@@ -44,14 +57,26 @@ class Im2colKernelTest : public GPUDeviceTest<Dtype> {
kernel_size_ = 3;
height_col_ = (height_ + 2 * pad_ - kernel_size_) / stride_ + 1;
width_col_ = (width_ + 2 * pad_ - kernel_size_) / stride_ + 1;
+
+ for (int i = 0; i < 2; ++i) {
+ blob_kernel_shape_->mutable_cpu_data()[i] = kernel_size_;
+ blob_stride_->mutable_cpu_data()[i] = stride_;
+ blob_pad_->mutable_cpu_data()[i] = pad_;
+ }
}
virtual ~Im2colKernelTest() {
- delete blob_bottom_;
- delete blob_top_;
- delete blob_top_cpu_;
+ delete blob_bottom_;
+ delete blob_top_;
+ delete blob_top_cpu_;
+ delete blob_kernel_shape_;
+ delete blob_stride_;
+ delete blob_pad_;
}
+ Blob<int>* const blob_kernel_shape_;
+ Blob<int>* const blob_stride_;
+ Blob<int>* const blob_pad_;
Blob<Dtype>* const blob_bottom_;
Blob<Dtype>* const blob_top_;
Blob<Dtype>* const blob_top_cpu_;
@@ -67,7 +92,7 @@ class Im2colKernelTest : public GPUDeviceTest<Dtype> {
TYPED_TEST_CASE(Im2colKernelTest, TestDtypes);
-TYPED_TEST(Im2colKernelTest, TestGPU) {
+TYPED_TEST(Im2colKernelTest, Test2D) {
// Reshape the blobs to correct size for im2col output
this->blob_top_->Reshape(this->blob_bottom_->num(),
this->channels_ * this->kernel_size_ * this->kernel_size_,
@@ -122,4 +147,58 @@ TYPED_TEST(Im2colKernelTest, TestGPU) {
}
}
+TYPED_TEST(Im2colKernelTest, TestND) {
+ // Reshape the blobs to correct size for im2col output
+ this->blob_top_->Reshape(this->blob_bottom_->num(),
+ this->channels_ * this->kernel_size_ * this->kernel_size_,
+ this->height_col_,
+ this->width_col_);
+
+ this->blob_top_cpu_->ReshapeLike(*this->blob_top_);
+
+ const TypeParam* bottom_data_cpu = this->blob_bottom_->cpu_data();
+ TypeParam* top_data_cpu = this->blob_top_cpu_->mutable_cpu_data();
+
+ // CPU Version
+ for (int n = 0; n < this->blob_bottom_->num(); ++n) {
+ im2col_nd_cpu(bottom_data_cpu + this->blob_bottom_->offset(n), 2,
+ this->blob_bottom_->shape().data() + 1,
+ this->blob_top_cpu_->shape().data() + 1,
+ this->blob_kernel_shape_->cpu_data(),
+ this->blob_pad_->cpu_data(), this->blob_stride_->cpu_data(),
+ top_data_cpu + this->blob_top_cpu_->offset(n));
+ }
+
+ // GPU version
+ int num_kernels = this->channels_ * this->height_col_ * this->width_col_;
+ int default_grid_dim = CAFFE_GET_BLOCKS(num_kernels);
+ const TypeParam* bottom_data_gpu = this->blob_bottom_->gpu_data();
+
+ // Launch with different grid sizes
+ for (int grid_div = 2; grid_div <= 8; grid_div++) {
+ for (int n = 0; n < this->blob_bottom_->num(); ++n) {
+ const int grid_dim = default_grid_dim / grid_div;
+ TypeParam* top_data_gpu = this->blob_top_->mutable_gpu_data();
+ // NOLINT_NEXT_LINE(whitespace/operators)
+ im2col_nd_gpu_kernel<TypeParam, 2><<<grid_dim, CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, bottom_data_gpu + this->blob_bottom_->offset(n),
+ this->blob_bottom_->gpu_shape() + 1, this->blob_top_->gpu_shape() + 1,
+ this->blob_kernel_shape_->gpu_data(), this->blob_pad_->gpu_data(),
+ this->blob_stride_->gpu_data(),
+ top_data_gpu + this->blob_top_->offset(n));
+ CUDA_POST_KERNEL_CHECK;
+ }
+
+ // Compare results against CPU version
+ for (int i = 0; i < this->blob_top_->count(); ++i) {
+ TypeParam cpuval = top_data_cpu[i];
+ TypeParam gpuval = this->blob_top_->cpu_data()[i];
+ EXPECT_EQ(cpuval, gpuval);
+ if (cpuval != gpuval) {
+ break;
+ }
+ }
+ }
+}
+
} // namespace caffe
diff --git a/src/caffe/test/test_im2col_layer.cpp b/src/caffe/test/test_im2col_layer.cpp
index f50abe1..293aa26 100644
--- a/src/caffe/test/test_im2col_layer.cpp
+++ b/src/caffe/test/test_im2col_layer.cpp
@@ -21,6 +21,7 @@ class Im2colLayerTest : public MultiDeviceTest<TypeParam> {
: blob_bottom_(new Blob<Dtype>(2, 3, 6, 5)),
blob_top_(new Blob<Dtype>()) {
// fill the values
+ Caffe::set_random_seed(1701);
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(this->blob_bottom_);
@@ -41,8 +42,8 @@ TYPED_TEST(Im2colLayerTest, TestSetup) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
Im2colLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
EXPECT_EQ(this->blob_top_->num(), 2);
@@ -56,8 +57,8 @@ TYPED_TEST(Im2colLayerTest, TestForward) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
Im2colLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
@@ -73,14 +74,27 @@ TYPED_TEST(Im2colLayerTest, TestGradient) {
LayerParameter layer_param;
ConvolutionParameter* convolution_param =
layer_param.mutable_convolution_param();
- convolution_param->set_kernel_size(3);
- convolution_param->set_stride(2);
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
Im2colLayer<Dtype> layer(layer_param);
GradientChecker<Dtype> checker(1e-2, 1e-2);
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
this->blob_top_vec_);
}
+TYPED_TEST(Im2colLayerTest, TestGradientForceND) {
+ typedef typename TypeParam::Dtype Dtype;
+ LayerParameter layer_param;
+ ConvolutionParameter* convolution_param =
+ layer_param.mutable_convolution_param();
+ convolution_param->add_kernel_size(3);
+ convolution_param->add_stride(2);
+ convolution_param->set_force_nd_im2col(true);
+ Im2colLayer<Dtype> layer(layer_param);
+ GradientChecker<Dtype> checker(1e-2, 1e-2);
+ checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
+ this->blob_top_vec_);
+}
TYPED_TEST(Im2colLayerTest, TestRect) {
typedef typename TypeParam::Dtype Dtype;
@@ -89,7 +103,7 @@ TYPED_TEST(Im2colLayerTest, TestRect) {
layer_param.mutable_convolution_param();
convolution_param->set_kernel_h(5);
convolution_param->set_kernel_w(3);
- convolution_param->set_stride(2);
+ convolution_param->add_stride(2);
Im2colLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
@@ -108,7 +122,7 @@ TYPED_TEST(Im2colLayerTest, TestRectGradient) {
layer_param.mutable_convolution_param();
convolution_param->set_kernel_h(5);
convolution_param->set_kernel_w(3);
- convolution_param->set_stride(2);
+ convolution_param->add_stride(2);
Im2colLayer<Dtype> layer(layer_param);
GradientChecker<Dtype> checker(1e-2, 1e-2);
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
diff --git a/src/caffe/util/im2col.cpp b/src/caffe/util/im2col.cpp
index c48f31f..b0a7be5 100644
--- a/src/caffe/util/im2col.cpp
+++ b/src/caffe/util/im2col.cpp
@@ -1,6 +1,7 @@
#include <cmath>
#include <cstdlib>
#include <cstring>
+#include <vector>
#include "caffe/util/im2col.hpp"
#include "caffe/util/math_functions.hpp"
@@ -45,6 +46,98 @@ template void im2col_cpu<double>(const double* data_im, const int channels,
const int stride_w, double* data_col);
template <typename Dtype>
+inline void im2col_nd_core_cpu(const Dtype* data_input, const bool im2col,
+ const int num_spatial_axes, const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_output) {
+ if (!im2col) {
+ int im_size = im_shape[0];
+ for (int i = 0; i < num_spatial_axes; ++i) {
+ im_size *= im_shape[1 + i];
+ }
+ caffe_set(im_size, Dtype(0), data_output);
+ }
+ int kernel_size = 1;
+ for (int i = 0; i < num_spatial_axes; ++i) {
+ kernel_size *= kernel_shape[i];
+ }
+ const int channels_col = col_shape[0];
+ vector<int> d_offset(num_spatial_axes, 0);
+ vector<int> d_iter(num_spatial_axes, 0);
+ for (int c = 0; c < channels_col; ++c) {
+ // Loop over spatial axes in reverse order to compute a per-axis offset.
+ int offset = c;
+ for (int d_i = num_spatial_axes - 1; d_i >= 0; --d_i) {
+ if (d_i < num_spatial_axes - 1) {
+ offset /= kernel_shape[d_i + 1];
+ }
+ d_offset[d_i] = offset % kernel_shape[d_i];
+ }
+ for (bool incremented = true; incremented; ) {
+ // Loop over spatial axes in forward order to compute the indices in the
+ // image and column, and whether the index lies in the padding.
+ int index_col = c;
+ int index_im = c / kernel_size;
+ bool is_padding = false;
+ for (int d_i = 0; d_i < num_spatial_axes; ++d_i) {
+ const int d = d_iter[d_i];
+ const int d_pad = d * stride[d_i] - pad[d_i] + d_offset[d_i];
+ is_padding |= d_pad < 0 || d_pad >= im_shape[d_i + 1];
+ index_col *= col_shape[d_i + 1];
+ index_col += d;
+ index_im *= im_shape[d_i + 1];
+ index_im += d_pad;
+ }
+ if (im2col) {
+ if (is_padding) {
+ data_output[index_col] = 0;
+ } else {
+ data_output[index_col] = data_input[index_im];
+ }
+ } else if (!is_padding) { // col2im
+ data_output[index_im] += data_input[index_col];
+ }
+ // Loop over spatial axes in reverse order to choose an index,
+ // like counting.
+ incremented = false;
+ for (int d_i = num_spatial_axes - 1; d_i >= 0; --d_i) {
+ const int d_max = col_shape[d_i + 1];
+ DCHECK_LT(d_iter[d_i], d_max);
+ if (d_iter[d_i] == d_max - 1) {
+ d_iter[d_i] = 0;
+ } else { // d_iter[d_i] < d_max - 1
+ ++d_iter[d_i];
+ incremented = true;
+ break;
+ }
+ }
+ } // while(incremented) {
+ } // for (int c = 0; c < channels_col; ++c) {
+}
+
+template <typename Dtype>
+void im2col_nd_cpu(const Dtype* data_im, const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col) {
+ const bool kIm2Col = true;
+ im2col_nd_core_cpu(data_im, kIm2Col, num_spatial_axes, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+}
+
+// Explicit instantiation
+template void im2col_nd_cpu<float>(const float* data_im,
+ const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ float* data_col);
+template void im2col_nd_cpu<double>(const double* data_im,
+ const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ double* data_col);
+
+template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,
const int height, const int width, const int patch_h, const int patch_w,
const int pad_h, const int pad_w,
@@ -80,4 +173,27 @@ template void col2im_cpu<double>(const double* data_col, const int channels,
const int pad_h, const int pad_w, const int stride_h,
const int stride_w, double* data_im);
+template <typename Dtype>
+void col2im_nd_cpu(const Dtype* data_col, const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_im) {
+ const bool kIm2Col = false;
+ im2col_nd_core_cpu(data_col, kIm2Col, num_spatial_axes, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+}
+
+// Explicit instantiation
+template void col2im_nd_cpu<float>(const float* data_col,
+ const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ float* data_im);
+template void col2im_nd_cpu<double>(const double* data_col,
+ const int num_spatial_axes,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ double* data_im);
+
+
} // namespace caffe
diff --git a/src/caffe/util/im2col.cu b/src/caffe/util/im2col.cu
index c90f93e..5a478ba 100644
--- a/src/caffe/util/im2col.cu
+++ b/src/caffe/util/im2col.cu
@@ -59,7 +59,6 @@ void im2col_gpu(const Dtype* data_im, const int channels,
CUDA_POST_KERNEL_CHECK;
}
-
// Explicit instantiation
template void im2col_gpu<float>(const float* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
@@ -70,6 +69,156 @@ template void im2col_gpu<double>(const double* data_im, const int channels,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
double* data_col);
+template <typename Dtype, int num_axes>
+__global__ void im2col_nd_gpu_kernel(const int n, const Dtype* data_im,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col) {
+ int d_temp[num_axes]; // NOLINT(runtime/arrays)
+ int d_iter[num_axes]; // NOLINT(runtime/arrays)
+ int i;
+ CUDA_KERNEL_LOOP(index, n) {
+ // Initialize channel_in, computed in the loop below, with intermediate
+ // computations used to compute the spatial indices.
+ int channel_in = index;
+ int channel_out = 1;
+ for (i = num_axes - 1; i >= 0; --i) {
+ d_temp[i] = channel_in % col_shape[i + 1];
+ channel_in /= col_shape[i + 1];
+ channel_out *= kernel_shape[i];
+ }
+ channel_out *= channel_in;
+ int data_col_inc = 1;
+ for (i = 0; i < num_axes; ++i) {
+ channel_out *= col_shape[i + 1];
+ channel_out += d_temp[i];
+ d_temp[i] = d_temp[i] * stride[i] - pad[i];
+ channel_in *= im_shape[i + 1];
+ channel_in += d_temp[i];
+ data_col_inc *= col_shape[i + 1];
+ d_iter[i] = 0;
+ }
+ Dtype* data_col_ptr = data_col + channel_out;
+ const Dtype* data_im_ptr = data_im + channel_in;
+ bool incremented;
+ do {
+ bool in_range = true;
+ for (i = 0; i < num_axes; ++i) {
+ const int d_iter_im = d_iter[i] + d_temp[i];
+ in_range &= d_iter_im >= 0 && d_iter_im < im_shape[i + 1];
+ if (!in_range) { break; }
+ }
+ if (in_range) {
+ int data_im_offset = d_iter[0];
+ for (i = 1; i < num_axes; ++i) {
+ data_im_offset *= im_shape[i + 1];
+ data_im_offset += d_iter[i];
+ }
+ *data_col_ptr = data_im_ptr[data_im_offset];
+ } else {
+ *data_col_ptr = 0;
+ }
+ data_col_ptr += data_col_inc;
+ incremented = false;
+ for (i = num_axes - 1; i >= 0; --i) {
+ const int d_max = kernel_shape[i];
+ if (d_iter[i] == d_max - 1) {
+ d_iter[i] = 0;
+ } else { // d_iter[i] < d_max - 1
+ ++d_iter[i];
+ incremented = true;
+ break;
+ }
+ } // for (int i = num_axes - 1; i >= 0; --i)
+ } while (incremented); // do
+ } // CUDA_KERNEL_LOOP(index, n)
+}
+
+template <typename Dtype>
+void im2col_nd_gpu(const Dtype* data_im, const int num_spatial_axes,
+ const int num_kernels, const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_col) {
+ switch (num_spatial_axes) {
+ case 1:
+ im2col_nd_gpu_kernel<Dtype, 1> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 2:
+ im2col_nd_gpu_kernel<Dtype, 2> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 3:
+ im2col_nd_gpu_kernel<Dtype, 3> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 4:
+ im2col_nd_gpu_kernel<Dtype, 4> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 5:
+ im2col_nd_gpu_kernel<Dtype, 5> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 6:
+ im2col_nd_gpu_kernel<Dtype, 6> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 7:
+ im2col_nd_gpu_kernel<Dtype, 7> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 8:
+ im2col_nd_gpu_kernel<Dtype, 8> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 9:
+ im2col_nd_gpu_kernel<Dtype, 9> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ case 10:
+ im2col_nd_gpu_kernel<Dtype, 10> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(num_kernels), CAFFE_CUDA_NUM_THREADS>>>(
+ num_kernels, data_im, im_shape, col_shape,
+ kernel_shape, pad, stride, data_col);
+ break;
+ default:
+ LOG(FATAL) << "im2col_nd_gpu does not support computation with "
+ << num_spatial_axes << " spatial axes";
+ }
+ CUDA_POST_KERNEL_CHECK;
+}
+
+// Explicit instantiation
+template void im2col_nd_gpu<float>(const float* data_im,
+ const int num_spatial_axes, const int col_size,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ float* data_col);
+template void im2col_nd_gpu<double>(const double* data_im,
+ const int num_spatial_axes, const int col_size,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ double* data_col);
+
template <typename Dtype>
__global__ void col2im_gpu_kernel(const int n, const Dtype* data_col,
const int height, const int width, const int channels,
@@ -141,4 +290,159 @@ template void col2im_gpu<double>(const double* data_col, const int channels,
const int pad_h, const int pad_w, const int stride_h,
const int stride_w, double* data_im);
+template <typename Dtype, int num_axes>
+__global__ void col2im_nd_gpu_kernel(const int n, const Dtype* data_col,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_im) {
+ int d_im[num_axes]; // NOLINT(runtime/arrays)
+ int d_col_iter[num_axes]; // NOLINT(runtime/arrays)
+ int d_col_start[num_axes]; // NOLINT(runtime/arrays)
+ int d_col_end[num_axes]; // NOLINT(runtime/arrays)
+ CUDA_KERNEL_LOOP(index, n) {
+ // Initialize channel_in, computed in the loop below, with intermediate
+ // computations used to compute the spatial indices.
+ int channel_im = index;
+ // Calculate d_im (image dimensions).
+ for (int i = num_axes - 1; i >= 0; --i) {
+ d_im[i] = channel_im % im_shape[i + 1] + pad[i];
+ channel_im /= im_shape[i + 1];
+ }
+ // Calculate col start/end indices.
+ bool done = false;
+ for (int i = 0; i < num_axes; ++i) {
+ d_col_start[i] = d_col_iter[i] =
+ (d_im[i] < kernel_shape[i]) ?
+ 0 : (d_im[i] - kernel_shape[i]) / stride[i] + 1;
+ d_col_end[i] = min(d_im[i] / stride[i] + 1, col_shape[i + 1]);
+ if (d_col_start[i] >= d_col_end[i]) {
+ // Skip computation if the dimension is 0 at any spatial axis --
+ // final val will be 0.
+ data_im[index] = 0;
+ done = true;
+ break; // for (int i = 0; i < num_axes; ++i)
+ }
+ }
+ if (done) {
+ continue; // CUDA_KERNEL_LOOP(index, n)
+ }
+ // Loop over the col to compute the output val.
+ Dtype val = 0;
+ bool incremented = true;
+ do {
+ // Compute the final offset.
+ int final_offset = 0;
+ int kernel_shape_prod = 1;
+ for (int i = num_axes - 1; i >= 0; --i) {
+ final_offset +=
+ (d_im[i] - d_col_iter[i] * stride[i]) * kernel_shape_prod;
+ kernel_shape_prod *= kernel_shape[i];
+ }
+ final_offset += kernel_shape_prod * channel_im;
+ for (int i = 0; i < num_axes; ++i) {
+ final_offset *= col_shape[i + 1];
+ final_offset += d_col_iter[i];
+ }
+ val += data_col[final_offset];
+ incremented = false;
+ for (int i = num_axes - 1; i >= 0; --i) {
+ const int d_max = d_col_end[i];
+ if (d_col_iter[i] == d_max - 1) {
+ d_col_iter[i] = d_col_start[i];
+ } else { // d_col_iter[i] < d_max - 1
+ ++d_col_iter[i];
+ incremented = true;
+ break; // for (int i = num_axes - 1; i >= 0; --i)
+ }
+ } // for (int i = num_axes - 1; i >= 0; --i)
+ } while (incremented);
+ data_im[index] = val;
+ } // CUDA_KERNEL_LOOP(index, n)
+}
+
+template <typename Dtype>
+void col2im_nd_gpu(const Dtype* data_col, const int num_spatial_axes,
+ const int im_size, const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ Dtype* data_im) {
+ switch (num_spatial_axes) {
+ case 1:
+ col2im_nd_gpu_kernel<Dtype, 1> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 2:
+ col2im_nd_gpu_kernel<Dtype, 2> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 3:
+ col2im_nd_gpu_kernel<Dtype, 3> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 4:
+ col2im_nd_gpu_kernel<Dtype, 4> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 5:
+ col2im_nd_gpu_kernel<Dtype, 5> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 6:
+ col2im_nd_gpu_kernel<Dtype, 6> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 7:
+ col2im_nd_gpu_kernel<Dtype, 7> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 8:
+ col2im_nd_gpu_kernel<Dtype, 8> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 9:
+ col2im_nd_gpu_kernel<Dtype, 9> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ case 10:
+ col2im_nd_gpu_kernel<Dtype, 10> // NOLINT_NEXT_LINE(whitespace/operators)
+ <<<CAFFE_GET_BLOCKS(im_size), CAFFE_CUDA_NUM_THREADS>>>(
+ im_size, data_col, im_shape, col_shape,
+ kernel_shape, pad, stride, data_im);
+ break;
+ default:
+ LOG(FATAL) << "col2im_nd_gpu does not support computation with "
+ << num_spatial_axes << " spatial axes";
+ }
+ CUDA_POST_KERNEL_CHECK;
+}
+
+// Explicit instantiation
+template void col2im_nd_gpu<float>(const float* data_col,
+ const int num_spatial_axes, const int im_size,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ float* data_im);
+template void col2im_nd_gpu<double>(const double* data_col,
+ const int num_spatial_axes, const int im_size,
+ const int* im_shape, const int* col_shape,
+ const int* kernel_shape, const int* pad, const int* stride,
+ double* data_im);
+
} // namespace caffe
diff --git a/src/caffe/util/upgrade_proto.cpp b/src/caffe/util/upgrade_proto.cpp
index 92e5cf5..ac379e5 100644
--- a/src/caffe/util/upgrade_proto.cpp
+++ b/src/caffe/util/upgrade_proto.cpp
@@ -193,7 +193,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
}
if (v0_layer_param.has_pad()) {
if (type == "conv") {
- layer_param->mutable_convolution_param()->set_pad(v0_layer_param.pad());
+ layer_param->mutable_convolution_param()->add_pad(v0_layer_param.pad());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_pad(v0_layer_param.pad());
} else {
@@ -203,7 +203,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
}
if (v0_layer_param.has_kernelsize()) {
if (type == "conv") {
- layer_param->mutable_convolution_param()->set_kernel_size(
+ layer_param->mutable_convolution_param()->add_kernel_size(
v0_layer_param.kernelsize());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_kernel_size(
@@ -224,7 +224,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
}
if (v0_layer_param.has_stride()) {
if (type == "conv") {
- layer_param->mutable_convolution_param()->set_stride(
+ layer_param->mutable_convolution_param()->add_stride(
v0_layer_param.stride());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_stride(