diff options
author | Jonathan R. Williford <jonathan@neural.vision> | 2017-03-22 22:36:14 +0100 |
---|---|---|
committer | Jonathan R. Williford <jonathan@neural.vision> | 2017-03-22 22:36:14 +0100 |
commit | 11930f1416efb66795e1fabc5e362a568446d37d (patch) | |
tree | 6dce3b1cca62576c9f4107550e2326f0e82f08bb | |
parent | 367a6e2c7f6be1abbba6253f7e8da5bccaf51fc2 (diff) | |
download | caffeonacl-11930f1416efb66795e1fabc5e362a568446d37d.tar.gz caffeonacl-11930f1416efb66795e1fabc5e362a568446d37d.tar.bz2 caffeonacl-11930f1416efb66795e1fabc5e362a568446d37d.zip |
Clarify batch norm parameter documentation.
-rw-r--r-- | src/caffe/proto/caffe.proto | 18 |
1 files changed, 14 insertions, 4 deletions
diff --git a/src/caffe/proto/caffe.proto b/src/caffe/proto/caffe.proto index a145c541..02e0ddf5 100644 --- a/src/caffe/proto/caffe.proto +++ b/src/caffe/proto/caffe.proto @@ -502,11 +502,21 @@ message ConcatParameter { } message BatchNormParameter { - // If false, accumulate global mean/variance values via a moving average. If - // true, use those accumulated values instead of computing mean/variance - // across the batch. + // If false, normalization is performed over the current mini-batch + // and global statistics are accumulated (but not yet used) by a moving + // average. + // If true, those accumulated mean and variance values are used for the + // normalization. + // By default, it is set to false when the network is in the training + // phase and true when the network is in the testing phase. optional bool use_global_stats = 1; - // How much does the moving average decay each iteration? + // What fraction of the moving average remains each iteration? + // Smaller values make the moving average decay faster, giving more + // weight to the recent values. + // Each iteration updates the moving average @f$S_{t-1}@f$ with the + // current mean @f$ Y_t @f$ by + // @f$ S_t = (1-\beta)Y_t + \beta \cdot S_{t-1} @f$, where @f$ \beta @f$ + // is the moving_average_fraction parameter. optional float moving_average_fraction = 2 [default = .999]; // Small value to add to the variance estimate so that we don't divide by // zero. |