diff options
author | Evan Shelhamer <shelhamer@imaginarynumber.net> | 2014-05-14 14:37:33 -0700 |
---|---|---|
committer | Evan Shelhamer <shelhamer@imaginarynumber.net> | 2014-05-14 14:37:33 -0700 |
commit | ac5e6fa1ce11fb8e6c8577122d8a00194d6ef6fa (patch) | |
tree | 4764291ddb959e5ec67b48ef168add4ae074dbd3 /python | |
parent | 9d4324e5e7f0187027c4cf6634d8b00116ffb8ce (diff) | |
download | caffe-ac5e6fa1ce11fb8e6c8577122d8a00194d6ef6fa.tar.gz caffe-ac5e6fa1ce11fb8e6c8577122d8a00194d6ef6fa.tar.bz2 caffe-ac5e6fa1ce11fb8e6c8577122d8a00194d6ef6fa.zip |
python Net.backward() helper and Net.BackwardPrefilled()
Diffstat (limited to 'python')
-rw-r--r-- | python/caffe/_caffe.cpp | 5 | ||||
-rw-r--r-- | python/caffe/pycaffe.py | 37 |
2 files changed, 40 insertions, 2 deletions
diff --git a/python/caffe/_caffe.cpp b/python/caffe/_caffe.cpp index 18b96b92..c4460b92 100644 --- a/python/caffe/_caffe.cpp +++ b/python/caffe/_caffe.cpp @@ -293,6 +293,10 @@ struct CaffeNet { net_->ForwardPrefilled(); } + void BackwardPrefilled() { + net_->Backward(); + } + void set_input_arrays(object data_obj, object labels_obj) { // check that this network has an input MemoryDataLayer shared_ptr<MemoryDataLayer<float> > md_layer = @@ -411,6 +415,7 @@ BOOST_PYTHON_MODULE(_caffe) { .def("Forward", &CaffeNet::Forward) .def("ForwardPrefilled", &CaffeNet::ForwardPrefilled) .def("Backward", &CaffeNet::Backward) + .def("BackwardPrefilled", &CaffeNet::BackwardPrefilled) .def("set_mode_cpu", &CaffeNet::set_mode_cpu) .def("set_mode_gpu", &CaffeNet::set_mode_gpu) .def("set_phase_train", &CaffeNet::set_phase_train) diff --git a/python/caffe/pycaffe.py b/python/caffe/pycaffe.py index 40538154..101deabd 100644 --- a/python/caffe/pycaffe.py +++ b/python/caffe/pycaffe.py @@ -52,9 +52,8 @@ def _Net_forward(self, **kwargs): If None, input is taken from data layers by ForwardPrefilled(). Give - out: {output blob name: list of output blobs} dict. + outs: {output blob name: list of output blobs} dict. """ - outs = {} if not kwargs: # Carry out prefilled forward pass and unpack output. self.ForwardPrefilled() @@ -70,6 +69,7 @@ def _Net_forward(self, **kwargs): self.Forward(in_blobs, out_blobs) # Unpack output blobs + outs = {} for out, out_blob in zip(self.outputs, out_blobs): outs[out] = [out_blob[ix, :, :, :].squeeze() for ix in range(out_blob.shape[0])] @@ -78,6 +78,39 @@ def _Net_forward(self, **kwargs): Net.forward = _Net_forward +def _Net_backward(self, **kwargs): + """ + Backward pass: prepare diffs and run the net backward. + + Take + kwargs: Keys are output blob names and values are lists of diffs. + If None, input is taken from data layers by BackwardPrefilled(). + + Give + bottom_diffs: {input blob name: list of diffs} dict. + """ + if not kwargs: + self.BackwardPrefilled() + bottom_diffs = [self.blobs[in_].diff for in_ in self.inputs] + else: + # Create top and bottom diffs according to net defined shapes + # and make arrays single and C-contiguous as Caffe expects. + top_diffs = [np.ascontiguousarray(np.concatenate(kwargs[out]), + dtype=np.float32) for out in self.outputs] + bottom_diffs = [np.empty(self.blobs[bottom].data.shape, dtype=np.float32) + for bottom in self.inputs] + self.Backward(top_diffs, bottom_diffs) + + # Unpack bottom diffs + bottom_diffs = {} + for bottom, bottom_diff in zip(self.inputs, bottom_diffs): + bottom_diffs[bottom] = [bottom_diff[ix, :, :, :].squeeze() + for ix in range(bottom_diff.shape[0])] + return bottom_diffs + +Net.backward = _Net_backward + + def _Net_set_mean(self, input_, mean_f, mode='image'): """ Set the mean to subtract for data centering. |