diff options
author | Ross Girshick <rbg@eecs.berkeley.edu> | 2013-11-22 13:16:23 -0800 |
---|---|---|
committer | Ross Girshick <rbg@eecs.berkeley.edu> | 2013-11-22 13:16:23 -0800 |
commit | 89dedbaf32f9522eeaa55a18b5174ee7497a755a (patch) | |
tree | 01e73cf784a634d843ae8ef9b1d8e2513add8b43 /matlab | |
parent | bcba5961a119f0ddfd87f7f81677752dd9bff13b (diff) | |
download | caffe-89dedbaf32f9522eeaa55a18b5174ee7497a755a.tar.gz caffe-89dedbaf32f9522eeaa55a18b5174ee7497a755a.tar.bz2 caffe-89dedbaf32f9522eeaa55a18b5174ee7497a755a.zip |
first pass at matlab wrapper (somewhat messy still)
Diffstat (limited to 'matlab')
-rw-r--r-- | matlab/caffe/matcaffe.cpp | 182 | ||||
-rw-r--r-- | matlab/caffe/matcaffe_demo.m | 59 |
2 files changed, 241 insertions, 0 deletions
diff --git a/matlab/caffe/matcaffe.cpp b/matlab/caffe/matcaffe.cpp new file mode 100644 index 00000000..1f11a2bc --- /dev/null +++ b/matlab/caffe/matcaffe.cpp @@ -0,0 +1,182 @@ +// Copyright Ross Girshick and Yangqing Jia 2013 +// +// matcaffe.cpp provides a wrapper of the caffe::Net class as well as some +// caffe::Caffe functions so that one could easily call it from matlab. +// Note that for matlab, we will simply use float as the data type. + +#include "mex.h" +#include "caffe/caffe.hpp" + +#define MEX_ARGS int nlhs, mxArray **plhs, int nrhs, const mxArray **prhs + +using namespace caffe; + +// A simple wrapper over CaffeNet that runs the forward process. +struct CaffeNet +{ + // The pointer to the internal caffe::Net instance + shared_ptr<Net<float> > net_; + + CaffeNet() {} + + void init(string param_file, string pretrained_param_file) { + net_.reset(new Net<float>(param_file)); + net_->CopyTrainedLayersFrom(pretrained_param_file); + } + + virtual ~CaffeNet() {} + + /* + inline void check_array_against_blob( + PyArrayObject* arr, Blob<float>* blob) { + CHECK(PyArray_FLAGS(arr) & NPY_ARRAY_C_CONTIGUOUS); + CHECK_EQ(PyArray_NDIM(arr), 4); + CHECK_EQ(PyArray_ITEMSIZE(arr), 4); + npy_intp* dims = PyArray_DIMS(arr); + CHECK_EQ(dims[0], blob->num()); + CHECK_EQ(dims[1], blob->channels()); + CHECK_EQ(dims[2], blob->height()); + CHECK_EQ(dims[3], blob->width()); + } + */ + + // Data needs to be [images, channels, height, width] where width is the fastest dimension + // + // In matlab, reading an image gives [height, width, channels] where height is the fastest dimension + // - want to have the order as [width, height, channels, images] + // (channels in BGR order) + // - + // + // The matlab model is: + // - bottom is a cell array of 4D tensors in the correct format + // - top is allocated in here as a cell array of outputs + // + // The actual forward function. It takes in a python list of numpy arrays as + // input and a python list of numpy arrays as output. The input and output + // should all have correct shapes, are single-precisionabcdnt- and c contiguous. + // + // + mxArray* Forward(const mxArray* const bottom) { + vector<Blob<float>*>& input_blobs = net_->input_blobs(); + CHECK_EQ(static_cast<unsigned int>(mxGetDimensions(bottom)[0]), + input_blobs.size()); + for (unsigned int i = 0; i < input_blobs.size(); ++i) { + const mxArray* const elem = mxGetCell(bottom, i); + const float* const data_ptr = + reinterpret_cast<const float* const>(mxGetPr(elem)); + //check_array_against_blob(arr, input_blobs[i]); + switch (Caffe::mode()) { + case Caffe::CPU: + memcpy(input_blobs[i]->mutable_cpu_data(), data_ptr, + sizeof(float) * input_blobs[i]->count()); + break; + case Caffe::GPU: + cudaMemcpy(input_blobs[i]->mutable_gpu_data(), data_ptr, + sizeof(float) * input_blobs[i]->count(), cudaMemcpyHostToDevice); + break; + default: + LOG(FATAL) << "Unknown Caffe mode."; + } // switch (Caffe::mode()) + } + const vector<Blob<float>*>& output_blobs = net_->ForwardPrefilled(); + mxArray* mx_out = mxCreateCellMatrix(output_blobs.size(), 1); + for (unsigned int i = 0; i < output_blobs.size(); ++i) { + mxArray* mx_blob = mxCreateNumericMatrix(output_blobs[i]->count(), + 1, mxSINGLE_CLASS, mxREAL); + mxSetCell(mx_out, i, mx_blob); + float* data_ptr = reinterpret_cast<float*>(mxGetPr(mx_blob)); + //check_array_against_blob(arr, output_blobs[i]); + switch (Caffe::mode()) { + case Caffe::CPU: + memcpy(data_ptr, output_blobs[i]->cpu_data(), + sizeof(float) * output_blobs[i]->count()); + break; + case Caffe::GPU: + cudaMemcpy(data_ptr, output_blobs[i]->gpu_data(), + sizeof(float) * output_blobs[i]->count(), cudaMemcpyDeviceToHost); + break; + default: + LOG(FATAL) << "Unknown Caffe mode."; + } // switch (Caffe::mode()) + } + + return mx_out; + } + +}; + +// The caffe::Caffe utility functions. +static void set_mode_cpu(MEX_ARGS) { + Caffe::set_mode(Caffe::CPU); +} + +static void set_mode_gpu(MEX_ARGS) { + Caffe::set_mode(Caffe::GPU); +} + +static void set_phase_train(MEX_ARGS) { + Caffe::set_phase(Caffe::TRAIN); +} + +static void set_phase_test(MEX_ARGS) { + Caffe::set_phase(Caffe::TEST); +} + +static void set_device(MEX_ARGS) { + int device_id = static_cast<int>(mxGetScalar(prhs[0])); + Caffe::SetDevice(device_id); +} + +static CaffeNet net; + +static void net_init(MEX_ARGS) { + net.init("/home/rbg/working/caffe/examples/imagenet_deploy.prototxt", + "/home/rbg/working/caffe/examples/alexnet_train_iter_470000"); +} + +static void net_forward(MEX_ARGS) { + plhs[0] = net.Forward(prhs[0]); +} + +/** ----------------------------------------------------------------- + ** Available commands. + **/ +struct handler_registry { + string cmd; + void (*func)(MEX_ARGS); +}; + +static handler_registry handlers[] = { + // Public API functions + { "forward", net_forward }, + { "init", net_init }, + { "set_mode_cpu", set_mode_cpu }, + { "set_mode_gpu", set_mode_gpu }, + { "set_phase_train", set_phase_train }, + { "set_phase_test", set_phase_test }, + { "set_device", set_device }, + // The end. + { "END", NULL }, +}; + + +/** ----------------------------------------------------------------- + ** matlab entry point: caffe(api_command, arg1, arg2, ...) + **/ +void mexFunction(MEX_ARGS) { + // TODO: check args + { // Handle input command + char *cmd = mxArrayToString(prhs[0]); + //bool dispatched = false; + // Dispatch to cmd handler + for (int i = 0; handlers[i].func != NULL; i++) { + if (handlers[i].cmd.compare(cmd) == 0) { + handlers[i].func(nlhs, plhs, nrhs-1, prhs+1); + //dispatched = true; + break; + } + } + mxFree(cmd); + //checkM(dispatched, "Command not found!"); + } +} diff --git a/matlab/caffe/matcaffe_demo.m b/matlab/caffe/matcaffe_demo.m new file mode 100644 index 00000000..6b4ca2f7 --- /dev/null +++ b/matlab/caffe/matcaffe_demo.m @@ -0,0 +1,59 @@ +function res = matcaffe_demo(im, gpu) + +% load image net mean +% // In matlab, reading an image gives [height, width, channels] where height is the fastest dimension +% // - want to have the order as [width, height, channels, images] +% // (channels in BGR order) +% // - + +% 1: swap channel order to BGR +% 2: extract 5 crops and their flips +% 3: swap rows and columns and concat along 4th dim +% 4: wrap in cell aray + +caffe('init'); +if gpu + caffe('set_mode_gpu'); +else + caffe('set_mode_cpu'); +end +caffe('set_phase_test'); +tic; +blob = {prepare_image(im)}; +toc; +tic; +res = caffe('forward', blob); +toc; +res = reshape(res{1}, [1000 10]); +res = mean(res, 2); + + +function images = prepare_image(im) +d = load('ilsvrc_2012_mean'); +image_mean = d.image_mean; +IMAGE_DIM = 256; +CROPPED_DIM = 227; + +% resize to fixed input size +im = single(im); +im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); +% permute from RGB to BGR +im = im(:,:,[3 2 1]) - image_mean; + +% oversample +images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); +indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; +curr = 1; +for i = indices + for j = indices + images(:, :, :, curr) = ... + permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); + images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); + curr = curr + 1; + end +end +center = floor(indices(2) / 2)+1; +images(:,:,:,5) = ... + permute(im(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:), ... + [2 1 3]); +images(:,:,:,10) = images(end:-1:1, :, :, curr); |