diff options
author | Kai Li <kaili_kloud@163.com> | 2014-02-26 05:34:23 +0800 |
---|---|---|
committer | Kai Li <kaili_kloud@163.com> | 2014-03-19 23:04:42 +0800 |
commit | 23eecde6b7a0b5cdfbce640b1c76c39ac9bd5573 (patch) | |
tree | 25a81e9104d0a37da6b6cb40b73d5383bb39c435 /examples | |
parent | cfb2f915b9efdab3d8a484ed767a0c2ecfd2af7b (diff) | |
download | caffe-23eecde6b7a0b5cdfbce640b1c76c39ac9bd5573.tar.gz caffe-23eecde6b7a0b5cdfbce640b1c76c39ac9bd5573.tar.bz2 caffe-23eecde6b7a0b5cdfbce640b1c76c39ac9bd5573.zip |
Fix bugs in the image retrieval example
Diffstat (limited to 'examples')
-rw-r--r-- | examples/demo_retrieve_images.cpp | 120 |
1 files changed, 36 insertions, 84 deletions
diff --git a/examples/demo_retrieve_images.cpp b/examples/demo_retrieve_images.cpp index e12ad369..2c16824e 100644 --- a/examples/demo_retrieve_images.cpp +++ b/examples/demo_retrieve_images.cpp @@ -19,7 +19,7 @@ template<typename Dtype> void similarity_search( const vector<shared_ptr<Blob<Dtype> > >& sample_binary_feature_blobs, const shared_ptr<Blob<Dtype> > query_binary_feature, - const int top_k_results, shared_ptr<Blob<Dtype> > retrieval_results); + const int top_k_results, vector<vector<Dtype> >* retrieval_results); template<typename Dtype> int image_retrieval_pipeline(int argc, char** argv); @@ -35,7 +35,7 @@ int image_retrieval_pipeline(int argc, char** argv) { if (argc < num_required_args) { LOG(ERROR)<< "This program takes in binarized features of query images and sample images" - " extracted by Caffe to retrieve similar images." + " extracted by Caffe to retrieve similar images.\n" "Usage: demo_retrieve_images sample_binary_features_binaryproto_file" " query_binary_features_binaryproto_file save_retrieval_result_filename" " [top_k_results=1] [CPU/GPU] [DEVICE_ID=0]"; @@ -67,10 +67,9 @@ int image_retrieval_pipeline(int argc, char** argv) { } Caffe::set_phase(Caffe::TEST); - NetParameter pretrained_net_param; - arg_pos = 0; // the name of the executable + LOG(ERROR)<< "Loading sample binary features"; string sample_binary_features_binaryproto_file(argv[++arg_pos]); BlobProtoVector sample_binary_features; ReadProtoFromBinaryFile(sample_binary_features_binaryproto_file, @@ -87,92 +86,47 @@ int image_retrieval_pipeline(int argc, char** argv) { top_k_results = num_samples; } + LOG(ERROR)<< "Loading query binary features"; string query_images_feature_blob_binaryproto(argv[++arg_pos]); BlobProtoVector query_images_features; ReadProtoFromBinaryFile(query_images_feature_blob_binaryproto, &query_images_features); vector<shared_ptr<Blob<Dtype> > > query_binary_feature_blobs; - for (int i = 0; i < sample_binary_features.blobs_size(); ++i) { + for (int i = 0; i < query_images_features.blobs_size(); ++i) { shared_ptr<Blob<Dtype> > blob(new Blob<Dtype>()); blob->FromProto(query_images_features.blobs(i)); query_binary_feature_blobs.push_back(blob); } string save_retrieval_result_filename(argv[++arg_pos]); + LOG(ERROR)<< "Opening result file " << save_retrieval_result_filename; std::ofstream retrieval_result_ofs(save_retrieval_result_filename.c_str(), std::ofstream::out); LOG(ERROR)<< "Retrieving images"; - shared_ptr<Blob<Dtype> > retrieval_results; + vector<vector<Dtype> > retrieval_results; int query_image_index = 0; - int num_bytes_of_binary_code = sizeof(Dtype); int num_query_batches = query_binary_feature_blobs.size(); for (int batch_index = 0; batch_index < num_query_batches; ++batch_index) { - LOG(ERROR)<< "Batch " << batch_index << " image retrieval"; similarity_search<Dtype>(sample_binary_feature_blobs, - query_binary_feature_blobs[batch_index], - top_k_results, retrieval_results); - - LOG(ERROR) << "Batch " << batch_index << " save image retrieval results"; - int num_results = retrieval_results->num(); - const Dtype* retrieval_results_data = retrieval_results->cpu_data(); + query_binary_feature_blobs[batch_index], + top_k_results, &retrieval_results); + int num_results = retrieval_results.size(); for (int i = 0; i < num_results; ++i) { - retrieval_result_ofs << ++query_image_index; - retrieval_results_data += retrieval_results->offset(i); - for (int j = 0; j < top_k_results; ++j) { - retrieval_result_ofs << " " << retrieval_results_data[j]; + retrieval_result_ofs << query_image_index++; + for (int j = 0; j < retrieval_results[i].size(); ++j) { + retrieval_result_ofs << " " << retrieval_results[i][j]; } retrieval_result_ofs << "\n"; } } // for (int batch_index = 0; batch_index < num_query_batches; ++batch_index) { retrieval_result_ofs.close(); - LOG(ERROR)<< "Successfully ended!"; + LOG(ERROR)<< "Successfully retrieved similar images for " << query_image_index << " queries!"; return 0; } -template<typename Dtype> -void binarize(const int n, const Dtype* real_valued_feature, - Dtype* binary_codes) { - // TODO: more advanced binarization algorithm such as bilinear projection - // Yunchao Gong, Sanjiv Kumar, Henry A. Rowley, and Svetlana Lazebnik. - // Learning Binary Codes for High-Dimensional Data Using Bilinear Projections. - // In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013. - // http://www.unc.edu/~yunchao/bpbc.htm - int size_of_code = sizeof(Dtype) * 8; - CHECK_EQ(n % size_of_code, 0); - int num_binary_codes = n / size_of_code; - uint64_t code; - int offset; - for (int i = 0; i < num_binary_codes; ++i) { - code = 0; - offset = i * size_of_code; - for (int j = 0; j < size_of_code; ++j) { - code |= sign(real_valued_feature[offset + j]); - code << 1; - } - binary_codes[i] = static_cast<Dtype>(code); - } -} - -template<typename Dtype> -void binarize(const shared_ptr<Blob<Dtype> > real_valued_features, - shared_ptr<Blob<Dtype> > binary_codes) { - int num = real_valued_features->num(); - int dim = real_valued_features->count() / num; - int size_of_code = sizeof(Dtype) * 8; - CHECK_EQ(dim % size_of_code, 0); - binary_codes->Reshape(num, dim / size_of_code, 1, 1); - const Dtype* real_valued_features_data = real_valued_features->cpu_data(); - Dtype* binary_codes_data = binary_codes->mutable_cpu_data(); - for (int n = 0; n < num; ++n) { - binarize<Dtype>(dim, - real_valued_features_data + real_valued_features->offset(n), - binary_codes_data + binary_codes->offset(n)); - } -} - class MinHeapComparison { public: bool operator()(const std::pair<int, int>& lhs, @@ -185,39 +139,37 @@ template<typename Dtype> void similarity_search( const vector<shared_ptr<Blob<Dtype> > >& sample_images_feature_blobs, const shared_ptr<Blob<Dtype> > query_image_feature, const int top_k_results, - shared_ptr<Blob<Dtype> > retrieval_results) { + vector<vector<Dtype> >* retrieval_results) { int num_queries = query_image_feature->num(); int dim = query_image_feature->count() / num_queries; int hamming_dist; - retrieval_results->Reshape(num_queries, top_k_results, 1, 1); - Dtype* retrieval_results_data = retrieval_results->mutable_cpu_data(); + retrieval_results->resize(num_queries); + std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int> >, + MinHeapComparison> results; for (int i = 0; i < num_queries; ++i) { - std::priority_queue<std::pair<int, int>, - std::vector<std::pair<int, int> >, MinHeapComparison> results; - for (int num_sample_blob; - num_sample_blob < sample_images_feature_blobs.size(); - ++num_sample_blob) { - shared_ptr<Blob<Dtype> > sample_images_feature = - sample_images_feature_blobs[num_sample_blob]; - int num_samples = sample_images_feature->num(); - for (int j = 0; j < num_samples; ++j) { + while (!results.empty()) { + results.pop(); + } + for (int j = 0; j < sample_images_feature_blobs.size(); ++j) { + int num_samples = sample_images_feature_blobs[j]->num(); + for (int k = 0; k < num_samples; ++k) { hamming_dist = caffe_hamming_distance( dim, query_image_feature->cpu_data() + query_image_feature->offset(i), - sample_images_feature->cpu_data() - + sample_images_feature->offset(j)); + sample_images_feature_blobs[j]->cpu_data() + + sample_images_feature_blobs[j]->offset(k)); if (results.size() < top_k_results) { - results.push(std::make_pair(-hamming_dist, j)); + results.push(std::make_pair(-hamming_dist, k)); } else if (-hamming_dist > results.top().first) { // smaller hamming dist results.pop(); - results.push(std::make_pair(-hamming_dist, j)); + results.push(std::make_pair(-hamming_dist, k)); } - } // for (int j = 0; j < num_samples; ++j) { - retrieval_results_data += retrieval_results->offset(i); - for (int k = 0; k < results.size(); ++k) { - retrieval_results_data[k] = results.top().second; - results.pop(); - } - } // for(...; sample_images_feature_blobs.size(); ...) - } // for (int i = 0; i < num_queries; ++i) { + } // for (int k = 0; k < num_samples; ++k) { + } // for (int j = 0; j < sample_images_feature_blobs.size(); ++j) + retrieval_results->at(i).resize(results.size()); + for (int k = results.size() - 1; k >= 0; --k) { + retrieval_results->at(i)[k] = results.top().second; + results.pop(); + } + } // for (int i = 0; i < num_queries; ++i) { } |