summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorEvan Shelhamer <shelhamer@imaginarynumber.net>2014-04-03 01:48:45 (GMT)
committerEvan Shelhamer <shelhamer@imaginarynumber.net>2014-04-03 01:48:45 (GMT)
commit1406cc8eba3721328e8c0c62f91074b3a0db912d (patch)
tree445b7fd5f76e4fa29f5a1c2c11d927856106dbdb /README.md
parent8472041c0b9fde733b2a9ba4f1d407f2e7616559 (diff)
downloadcaffe-1406cc8eba3721328e8c0c62f91074b3a0db912d.zip
caffe-1406cc8eba3721328e8c0c62f91074b3a0db912d.tar.gz
caffe-1406cc8eba3721328e8c0c62f91074b3a0db912d.tar.bz2
Include k40 images per day benchmark
Diffstat (limited to 'README.md')
-rw-r--r--README.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/README.md b/README.md
index b971859..6b45624 100644
--- a/README.md
+++ b/README.md
@@ -12,8 +12,8 @@ parameters in the code. Python and Matlab wrappers are provided.
At the same time, Caffe fits industry needs, with blazing fast C++/Cuda code for
GPU computation. Caffe is currently the fastest GPU CNN implementation publicly
-available, and is able to process more than **20 million images per day** on a
-single Tesla K20 machine \*.
+available, and is able to process more than **40 million images per day** on a
+single NVIDIA K40 GPU (or 20 million per day on a K20)\*.
Caffe also provides **seamless switching between CPU and GPU**, which allows one
to train models with fast GPUs and then deploy them on non-GPU clusters with one