summaryrefslogtreecommitdiff
path: root/svg.c
diff options
context:
space:
mode:
Diffstat (limited to 'svg.c')
-rw-r--r--svg.c1121
1 files changed, 1121 insertions, 0 deletions
diff --git a/svg.c b/svg.c
new file mode 100644
index 0000000..3854a88
--- /dev/null
+++ b/svg.c
@@ -0,0 +1,1121 @@
+/*
+ * svg.c
+ *
+ * Copyright (c) 2009 Intel Coproration
+ * Authors:
+ * Auke Kok <auke-jan.h.kok@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+
+#include <stdio.h>
+#include <stdarg.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <limits.h>
+#include <unistd.h>
+#include <sys/utsname.h>
+
+#include "bootchart.h"
+
+
+#define time_to_graph(t) ((t) * scale_x)
+#define ps_to_graph(n) ((n) * scale_y)
+#define kb_to_graph(m) ((m) * scale_y * 0.0001)
+#define to_color(n) (192.0 - ((n) * 192.0))
+
+#define max(x, y) (((x) > (y)) ? (x) : (y))
+#define min(x, y) (((x) < (y)) ? (x) : (y))
+
+static char str[8092];
+
+#define svg(a...) do { snprintf(str, 8092, ## a); fputs(str, of); fflush(of); } while (0)
+
+static char *colorwheel[12] = {
+ "rgb(255,32,32)", // red
+ "rgb(32,192,192)", // cyan
+ "rgb(255,128,32)", // orange
+ "rgb(128,32,192)", // blue-violet
+ "rgb(255,255,32)", // yellow
+ "rgb(192,32,128)", // red-violet
+ "rgb(32,255,32)", // green
+ "rgb(255,64,32)", // red-orange
+ "rgb(32,32,255)", // blue
+ "rgb(255,192,32)", // yellow-orange
+ "rgb(192,32,192)", // violet
+ "rgb(32,192,32)" // yellow-green
+};
+
+static double idletime = -1.0;
+static int pfiltered = 0;
+static int pcount = 0;
+static int kcount = 0;
+static float psize = 0;
+static float ksize = 0;
+static float esize = 0;
+
+
+static void svg_header(void)
+{
+ float w;
+ float h;
+
+ /* min width is about 1600px due to the label */
+ w = 150.0 + 10.0 + time_to_graph(sampletime[samples-1] - graph_start);
+ w = ((w < 1600.0) ? 1600.0 : w);
+
+ /* height is variable based on pss, psize, ksize */
+ h = 400.0 + (scale_y * 30.0) /* base graphs and title */
+ + (pss ? (100.0 * scale_y) + (scale_y * 7.0) : 0.0) /* pss estimate */
+ + psize + ksize + esize;
+
+ svg("<?xml version=\"1.0\" standalone=\"no\"?>\n");
+ svg("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" ");
+ svg("\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n");
+
+ //svg("<g transform=\"translate(10,%d)\">\n", 1000 + 150 + (pcount * 20));
+ svg("<svg width=\"%.0fpx\" height=\"%.0fpx\" version=\"1.1\" ",
+ w, h);
+ svg("xmlns=\"http://www.w3.org/2000/svg\">\n\n");
+
+ /* write some basic info as a comment, including some help */
+ svg("<!-- This file is a bootchart SVG file. It is best rendered in a browser -->\n");
+ svg("<!-- such as Chrome/Chromium, firefox. Other applications that render -->\n");
+ svg("<!-- these files properly but much more slow are ImageMagick, gimp, -->\n");
+ svg("<!-- inkscape, etc.. To display the files on your system, just point -->\n");
+ svg("<!-- your browser to file:///var/log/ and click. This bootchart was -->\n\n");
+
+ svg("<!-- generated by bootchart version %s, running with options: -->\n", VERSION);
+ svg("<!-- hz=\"%f\" n=\"%d\" -->\n", hz, len);
+ svg("<!-- x=\"%f\" y=\"%f\" -->\n", scale_x, scale_y);
+ svg("<!-- rel=\"%d\" f=\"%d\" -->\n", relative, filter);
+ svg("<!-- p=\"%d\" e=\"%d\" -->\n", pss, entropy);
+ svg("<!-- o=\"%s\" i=\"%s\" -->\n\n", output_path, init_path);
+
+ /* style sheet */
+ svg("<defs>\n <style type=\"text/css\">\n <![CDATA[\n");
+
+ svg(" rect { stroke-width: 1; }\n");
+ svg(" rect.cpu { fill: rgb(64,64,240); stroke-width: 0; fill-opacity: 0.7; }\n");
+ svg(" rect.wait { fill: rgb(240,240,0); stroke-width: 0; fill-opacity: 0.7; }\n");
+ svg(" rect.bi { fill: rgb(240,128,128); stroke-width: 0; fill-opacity: 0.7; }\n");
+ svg(" rect.bo { fill: rgb(192,64,64); stroke-width: 0; fill-opacity: 0.7; }\n");
+ svg(" rect.ps { fill: rgb(192,192,192); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
+ svg(" rect.krnl { fill: rgb(240,240,0); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
+ svg(" rect.box { fill: rgb(240,240,240); stroke: rgb(192,192,192); }\n");
+ svg(" rect.clrw { stroke-width: 0; fill-opacity: 0.7;}\n");
+ svg(" line { stroke: rgb(64,64,64); stroke-width: 1; }\n");
+ svg("// line.sec1 { }\n");
+ svg(" line.sec5 { stroke-width: 2; }\n");
+ svg(" line.sec01 { stroke: rgb(224,224,224); stroke-width: 1; }\n");
+ svg(" line.dot { stroke-dasharray: 2 4; }\n");
+ svg(" line.idle { stroke: rgb(64,64,64); stroke-dasharray: 10 6; stroke-opacity: 0.7; }\n");
+
+ svg(" .run { font-size: 8; font-style: italic; }\n");
+ svg(" text { font-family: Verdana, Helvetica; font-size: 10; }\n");
+ svg(" text.sec { font-size: 8; }\n");
+ svg(" text.t1 { font-size: 24; }\n");
+ svg(" text.t2 { font-size: 12; }\n");
+ svg(" text.idle { font-size: 18; }\n");
+
+ svg(" ]]>\n </style>\n</defs>\n\n");
+
+}
+
+
+static void svg_title(void)
+{
+ char cmdline[256] = "";
+ char filename[PATH_MAX];
+ char buf[256];
+ char rootbdev[16] = "Unknown";
+ char model[256] = "Unknown";
+ char date[256] = "Unknown";
+ char cpu[256] = "Unknown";
+ char build[256] = "Unknown";
+ char *c;
+ FILE *f;
+ time_t t;
+ struct utsname uts;
+
+ /* grab /proc/cmdline */
+ f = fopen("/proc/cmdline", "r");
+ if (f) {
+ if (!fgets(cmdline, 255, f))
+ sprintf(cmdline, "Unknown");
+ fclose(f);
+ }
+
+ /* extract root fs so we can find disk model name in sysfs */
+ c = strstr(cmdline, "root=/dev/");
+ if (c) {
+ strncpy(rootbdev, &c[10], 3);
+ rootbdev[3] = '\0';
+ }
+ sprintf(filename, "/sys/block/%s/device/model", rootbdev);
+ f = fopen(filename, "r");
+ if (f) {
+ if (!fgets(model, 255, f))
+ fprintf(stderr, "Error reading disk model for %s\n", rootbdev);
+ fclose(f);
+ }
+
+ /* various utsname parameters */
+ if (uname(&uts))
+ fprintf(stderr, "Error getting uname info\n");
+
+ /* date */
+ t = time(NULL);
+ strftime(date, sizeof(date), "%a, %d %b %Y %H:%M:%S %z", localtime(&t));
+
+ /* CPU type */
+ f = fopen("/proc/cpuinfo", "r");
+ if (f) {
+ while (fgets(buf, 255, f)) {
+ if (strstr(buf, "model name")) {
+ strncpy(cpu, &buf[13], 255);
+ break;
+ }
+ }
+ fclose(f);
+ }
+
+ /* Build - 1st line from /etc/system-release */
+ f = fopen("/etc/system-release", "r");
+ if (f) {
+ if (fgets(buf, 255, f))
+ strncpy(build, buf, 255);
+ fclose(f);
+ }
+
+ svg("<text class=\"t1\" x=\"0\" y=\"30\">Bootchart for %s - %s</text>\n",
+ uts.nodename, date);
+ svg("<text class=\"t2\" x=\"20\" y=\"50\">System: %s %s %s %s</text>\n",
+ uts.sysname, uts.release, uts.version, uts.machine);
+ svg("<text class=\"t2\" x=\"20\" y=\"65\">CPU: %s</text>\n",
+ cpu);
+ svg("<text class=\"t2\" x=\"20\" y=\"80\">Disk: %s</text>\n",
+ model);
+ svg("<text class=\"t2\" x=\"20\" y=\"95\">Boot options: %s</text>\n",
+ cmdline);
+ svg("<text class=\"t2\" x=\"20\" y=\"110\">Build: %s</text>\n",
+ build);
+ svg("<text class=\"t2\" x=\"20\" y=\"125\">Log start time: %.03fs</text>\n", log_start);
+ svg("<text class=\"t2\" x=\"20\" y=\"140\">Idle time: ");
+
+ if (idletime >= 0.0)
+ svg("%.03fs", idletime);
+ else
+ svg("Not detected");
+ svg("</text>\n");
+ svg("<text class=\"sec\" x=\"20\" y=\"155\">Graph data: %.03f samples/sec, recorded %i total, dropped %i samples, %i processes, %i filtered</text>\n",
+ hz, len, overrun, pscount, pfiltered);
+}
+
+
+static void svg_graph_box(int height)
+{
+ double d = 0.0;
+ int i = 0;
+
+ /* outside box, fill */
+ svg("<rect class=\"box\" x=\"%.03f\" y=\"0\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(0.0),
+ time_to_graph(sampletime[samples-1] - graph_start),
+ ps_to_graph(height));
+
+ for (d = graph_start; d <= sampletime[samples-1];
+ d += (scale_x < 2.0 ? 60.0 : scale_x < 10.0 ? 1.0 : 0.1)) {
+ /* lines for each second */
+ if (i % 50 == 0)
+ svg(" <line class=\"sec5\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ time_to_graph(d - graph_start),
+ time_to_graph(d - graph_start),
+ ps_to_graph(height));
+ else if (i % 10 == 0)
+ svg(" <line class=\"sec1\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ time_to_graph(d - graph_start),
+ time_to_graph(d - graph_start),
+ ps_to_graph(height));
+ else
+ svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ time_to_graph(d - graph_start),
+ time_to_graph(d - graph_start),
+ ps_to_graph(height));
+
+ /* time label */
+ if (i % 10 == 0)
+ svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\" >%.01fs</text>\n",
+ time_to_graph(d - graph_start),
+ -5.0,
+ d - graph_start);
+
+ i++;
+ }
+}
+
+
+static void svg_pss_graph(void)
+{
+ struct ps_struct *ps;
+ int i;
+
+ svg("\n\n<!-- Pss memory size graph -->\n");
+
+ svg("\n <text class=\"t2\" x=\"5\" y=\"-15\">Memory allocation - Pss</text>\n");
+
+ /* vsize 1000 == 1000mb */
+ svg_graph_box(100);
+ /* draw some hlines for usable memory sizes */
+ for (i = 100000; i < 1000000; i += 100000) {
+ svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"%.0f\" x2=\"%.03f\" y2=\"%.0f\"/>\n",
+ time_to_graph(.0),
+ kb_to_graph(i),
+ time_to_graph(sampletime[samples-1] - graph_start),
+ kb_to_graph(i));
+ svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.0f\">%dM</text>\n",
+ time_to_graph(sampletime[samples-1] - graph_start) + 5,
+ kb_to_graph(i), (1000000 - i) / 1000);
+ }
+ svg("\n");
+
+ /* now plot the graph itself */
+ for (i = 1; i < samples ; i++) {
+ int bottom;
+ int top;
+
+ bottom = 0;
+ top = 0;
+
+ /* put all the small pss blocks into the bottom */
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (!ps)
+ continue;
+ if (ps->sample[i].pss <= (100 * scale_y))
+ top += ps->sample[i].pss;
+ };
+ svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ "rgb(64,64,64)",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ kb_to_graph(1000000.0 - top),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ kb_to_graph(top - bottom));
+
+ bottom = top;
+
+ /* now plot the ones that are of significant size */
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (!ps)
+ continue;
+ /* don't draw anything smaller than 2mb */
+ if (ps->sample[i].pss > (100 * scale_y)) {
+ top = bottom + ps->sample[i].pss;
+ svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ colorwheel[ps->pid % 12],
+ time_to_graph(sampletime[i - 1] - graph_start),
+ kb_to_graph(1000000.0 - top),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ kb_to_graph(top - bottom));
+ bottom = top;
+ }
+ }
+ }
+
+ /* overlay all the text labels */
+ for (i = 1; i < samples ; i++) {
+ int bottom;
+ int top;
+
+ bottom = 0;
+ top = 0;
+
+ /* put all the small pss blocks into the bottom */
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (!ps)
+ continue;
+ if (ps->sample[i].pss <= (100 * scale_y))
+ top += ps->sample[i].pss;
+ };
+
+ bottom = top;
+
+ /* now plot the ones that are of significant size */
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (!ps)
+ continue;
+ /* don't draw anything smaller than 2mb */
+ if (ps->sample[i].pss > (100 * scale_y)) {
+ top = bottom + ps->sample[i].pss;
+ /* draw a label with the process / PID */
+ if ((i == 1) || (ps->sample[i - 1].pss <= (100 * scale_y)))
+ svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i]</text>\n",
+ time_to_graph(sampletime[i] - graph_start),
+ kb_to_graph(1000000.0 - bottom - ((top - bottom) / 2)),
+ ps->name,
+ ps->pid);
+ bottom = top;
+ }
+ }
+ }
+
+ /* debug output - full data dump */
+ svg("\n\n<!-- PSS map - csv format -->\n");
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (!ps)
+ continue;
+ svg("<!-- %s [%d] pss=", ps->name, ps->pid);
+ for (i = 0; i < samples ; i++) {
+ svg("%d," , ps->sample[i].pss);
+ }
+ svg(" -->\n");
+ }
+
+}
+
+static void svg_io_bi_bar(void)
+{
+ double max = 0.0;
+ double range;
+ int max_here = 0;
+ int i;
+
+ svg("<!-- IO utilization graph - In -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - read</text>\n");
+
+ /*
+ * calculate rounding range
+ *
+ * We need to round IO data since IO block data is not updated on
+ * each poll. Applying a smoothing function loses some burst data,
+ * so keep the smoothing range short.
+ */
+ range = 0.25 / (1.0 / hz);
+ if (range < 2.0)
+ range = 2.0; /* no smoothing */
+
+ /* surrounding box */
+ svg_graph_box(5);
+
+ /* find the max IO first */
+ for (i = 1; i < samples; i++) {
+ int start;
+ int stop;
+ double tot;
+
+ start = max(i - ((range / 2) - 1), 0);
+ stop = min(i + (range / 2), samples - 1);
+
+ tot = (double)(blockstat[stop].bi - blockstat[start].bi)
+ / (stop - start);
+ if (tot > max) {
+ max = tot;
+ max_here = i;
+ }
+ tot = (double)(blockstat[stop].bo - blockstat[start].bo)
+ / (stop - start);
+ if (tot > max)
+ max = tot;
+ }
+
+ /* plot bi */
+ for (i = 1; i < samples; i++) {
+ int start;
+ int stop;
+ double tot;
+ double pbi;
+
+ start = max(i - ((range / 2) - 1), 0);
+ stop = min(i + (range / 2), samples);
+
+ tot = (double)(blockstat[stop].bi - blockstat[start].bi)
+ / (stop - start);
+ pbi = tot / max;
+
+ if (pbi > 0.001)
+ svg("<rect class=\"bi\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ (scale_y * 5) - (pbi * (scale_y * 5)),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ pbi * (scale_y * 5));
+
+ /* labels around highest value */
+ if (i == max_here) {
+ svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
+ time_to_graph(sampletime[i] - graph_start) + 5,
+ ((scale_y * 5) - (pbi * (scale_y * 5))) + 15,
+ max / 1024.0 / (interval / 1000000000.0));
+ }
+ }
+}
+
+static void svg_io_bo_bar(void)
+{
+ double max = 0.0;
+ double range;
+ int max_here = 0;
+ int i;
+
+ svg("<!-- IO utilization graph - out -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - write</text>\n");
+
+ /*
+ * calculate rounding range
+ *
+ * We need to round IO data since IO block data is not updated on
+ * each poll. Applying a smoothing function loses some burst data,
+ * so keep the smoothing range short.
+ */
+ range = 0.25 / (1.0 / hz);
+ if (range < 2.0)
+ range = 2.0; /* no smoothing */
+
+ /* surrounding box */
+ svg_graph_box(5);
+
+ /* find the max IO first */
+ for (i = 1; i < samples; i++) {
+ int start;
+ int stop;
+ double tot;
+
+ start = max(i - ((range / 2) - 1), 0);
+ stop = min(i + (range / 2), samples - 1);
+
+ tot = (double)(blockstat[stop].bi - blockstat[start].bi)
+ / (stop - start);
+ if (tot > max)
+ max = tot;
+ tot = (double)(blockstat[stop].bo - blockstat[start].bo)
+ / (stop - start);
+ if (tot > max) {
+ max = tot;
+ max_here = i;
+ }
+ }
+
+ /* plot bo */
+ for (i = 1; i < samples; i++) {
+ int start;
+ int stop;
+ double tot;
+ double pbo;
+
+ start = max(i - ((range / 2) - 1), 0);
+ stop = min(i + (range / 2), samples);
+
+ tot = (double)(blockstat[stop].bo - blockstat[start].bo)
+ / (stop - start);
+ pbo = tot / max;
+
+ if (pbo > 0.001)
+ svg("<rect class=\"bo\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ (scale_y * 5) - (pbo * (scale_y * 5)),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ pbo * (scale_y * 5));
+
+ /* labels around highest bo value */
+ if (i == max_here) {
+ svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
+ time_to_graph(sampletime[i] - graph_start) + 5,
+ ((scale_y * 5) - (pbo * (scale_y * 5))),
+ max / 1024.0 / (interval / 1000000000.0));
+ }
+ }
+}
+
+
+static void svg_cpu_bar(void)
+{
+ int i;
+
+ svg("<!-- CPU utilization graph -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU utilization</text>\n");
+ /* surrounding box */
+ svg_graph_box(5);
+
+ /* bars for each sample, proportional to the CPU util. */
+ for (i = 1; i < samples; i++) {
+ int c;
+ double trt;
+ double ptrt;
+
+ ptrt = trt = 0.0;
+
+ for (c = 0; c < cpus; c++)
+ trt += cpustat[c].sample[i].runtime - cpustat[c].sample[i - 1].runtime;
+
+ trt = trt / 1000000000.0;
+
+ trt = trt / (double)cpus;
+
+ if (trt > 0.0)
+ ptrt = trt / (sampletime[i] - sampletime[i - 1]);
+
+ if (ptrt > 1.0)
+ ptrt = 1.0;
+
+ if (ptrt > 0.001) {
+ svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ (scale_y * 5) - (ptrt * (scale_y * 5)),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ ptrt * (scale_y * 5));
+ }
+ }
+}
+
+static void svg_wait_bar(void)
+{
+ int i;
+
+ svg("<!-- Wait time aggregation box -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU wait</text>\n");
+
+ /* surrounding box */
+ svg_graph_box(5);
+
+ /* bars for each sample, proportional to the CPU util. */
+ for (i = 1; i < samples; i++) {
+ int c;
+ double twt;
+ double ptwt;
+
+ ptwt = twt = 0.0;
+
+ for (c = 0; c < cpus; c++)
+ twt += cpustat[c].sample[i].waittime - cpustat[c].sample[i - 1].waittime;
+
+ twt = twt / 1000000000.0;
+
+ twt = twt / (double)cpus;
+
+ if (twt > 0.0)
+ ptwt = twt / (sampletime[i] - sampletime[i - 1]);
+
+ if (ptwt > 1.0)
+ ptwt = 1.0;
+
+ if (ptwt > 0.001) {
+ svg("<rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ ((scale_y * 5) - (ptwt * (scale_y * 5))),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ ptwt * (scale_y * 5));
+ }
+ }
+}
+
+
+static void svg_entropy_bar(void)
+{
+ int i;
+
+ svg("<!-- entropy pool graph -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">Entropy pool size</text>\n");
+ /* surrounding box */
+ svg_graph_box(5);
+
+ /* bars for each sample, scale 0-4096 */
+ for (i = 1; i < samples; i++) {
+ /* svg("<!-- entropy %.03f %i -->\n", sampletime[i], entropy_avail[i]); */
+ svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[i - 1] - graph_start),
+ ((scale_y * 5) - ((entropy_avail[i] / 4096.) * (scale_y * 5))),
+ time_to_graph(sampletime[i] - sampletime[i - 1]),
+ (entropy_avail[i] / 4096.) * (scale_y * 5));
+ }
+}
+
+
+static struct ps_struct *get_next_ps(struct ps_struct *ps)
+{
+ /*
+ * walk the list of processes and return the next one to be
+ * painted
+ */
+ if (ps == ps_first)
+ return ps->next_ps;
+
+ /* go deep */
+ if (ps->children)
+ return ps->children;
+
+ /* find siblings */
+ if (ps->next)
+ return ps->next;
+
+ /* go back for parent siblings */
+ while (1) {
+ if (ps->parent)
+ if (ps->parent->next)
+ return ps->parent->next;
+ ps = ps->parent;
+ if (!ps)
+ return ps;
+ }
+
+ return NULL;
+}
+
+
+static int ps_filter(struct ps_struct *ps)
+{
+ if (!filter)
+ return 0;
+
+ /* can't draw data when there is only 1 sample (need start + stop) */
+ if (ps->first == ps->last)
+ return -1;
+
+ /* don't filter kthreadd */
+ if (ps->pid == 2)
+ return 0;
+
+ /* drop stuff that doesn't use any real CPU time */
+ if (ps->total <= 0.001)
+ return -1;
+
+ return 0;
+}
+
+
+static void svg_do_initcall(int count_only)
+{
+ FILE *f;
+ double t;
+ char func[256];
+ int ret;
+ int usecs;
+
+ /* can't plot initcall when disabled or in relative mode */
+ if (!initcall || relative) {
+ kcount = 0;
+ return;
+ }
+
+ if (!count_only) {
+ svg("<!-- initcall -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">Kernel init threads</text>\n");
+ /* surrounding box */
+ svg_graph_box(kcount);
+ }
+
+ kcount = 0;
+
+ /*
+ * Initcall graphing - parses dmesg buffer and displays kernel threads
+ * This somewhat uses the same methods and scaling to show processes
+ * but looks a lot simpler. It's overlaid entirely onto the PS graph
+ * when appropriate.
+ */
+
+ f = popen("dmesg", "r");
+ if (!f)
+ return;
+
+ while (!feof(f)) {
+ int c;
+ int z = 0;
+ char l[256];
+
+ if (fgets(l, sizeof(l) - 1, f) == NULL)
+ continue;
+
+ c = sscanf(l, "[%lf] initcall %s %*s %d %*s %d %*s",
+ &t, func, &ret, &usecs);
+ if (c != 4) {
+ /* also parse initcalls done by module loading */
+ c = sscanf(l, "[%lf] initcall %s %*s %*s %d %*s %d %*s",
+ &t, func, &ret, &usecs);
+ if (c != 4)
+ continue;
+ }
+
+ /* chop the +0xXX/0xXX stuff */
+ while(func[z] != '+')
+ z++;
+ func[z] = 0;
+
+ if (count_only) {
+ /* filter out irrelevant stuff */
+ if (usecs >= 1000)
+ kcount++;
+ continue;
+ }
+
+ svg("<!-- thread=\"%s\" time=\"%.3f\" elapsed=\"%d\" result=\"%d\" -->\n",
+ func, t, usecs, ret);
+
+ if (usecs < 1000)
+ continue;
+
+ /* rect */
+ svg(" <rect class=\"krnl\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(t - (usecs / 1000000.0)),
+ ps_to_graph(kcount),
+ time_to_graph(usecs / 1000000.0),
+ ps_to_graph(1));
+
+ /* label */
+ svg(" <text x=\"%.03f\" y=\"%.03f\">%s <tspan class=\"run\">%.03fs</tspan></text>\n",
+ time_to_graph(t - (usecs / 1000000.0)) + 5,
+ ps_to_graph(kcount) + 15,
+ func,
+ usecs / 1000000.0);
+
+ kcount++;
+ }
+
+ fclose(f);
+}
+
+
+static void svg_ps_bars(void)
+{
+ struct ps_struct *ps;
+ int i = 0;
+ int j = 0;
+ int wt;
+ int pid;
+
+ svg("<!-- Process graph -->\n");
+
+ svg("<text class=\"t2\" x=\"5\" y=\"-15\">Processes</text>\n");
+
+ /* surrounding box */
+ svg_graph_box(pcount);
+
+ /* pass 2 - ps boxes */
+ ps = ps_first;
+ while ((ps = get_next_ps(ps))) {
+ double starttime;
+ int t;
+
+ if (!ps)
+ continue;
+
+ /* leave some trace of what we actually filtered etc. */
+ svg("<!-- %s [%i] ppid=%i runtime=%.03fs -->\n", ps->name, ps->pid,
+ ps->ppid, ps->total);
+
+ /* it would be nice if we could use exec_start from /proc/pid/sched,
+ * but it's unreliable and gives bogus numbers */
+ starttime = sampletime[ps->first];
+
+ if (!ps_filter(ps)) {
+ /* remember where _to_ our children need to draw a line */
+ ps->pos_x = time_to_graph(starttime - graph_start);
+ ps->pos_y = ps_to_graph(j+1); /* bottom left corner */
+ } else {
+ /* hook children to our parent coords instead */
+ ps->pos_x = ps->parent->pos_x;
+ ps->pos_y = ps->parent->pos_y;
+
+ /* if this is the last child, we might still need to draw a connecting line */
+ if ((!ps->next) && (ps->parent))
+ svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ ps->parent->pos_x,
+ ps_to_graph(j-1) + 10.0, /* whee, use the last value here */
+ ps->parent->pos_x,
+ ps->parent->pos_y);
+ continue;
+ }
+
+ svg(" <rect class=\"ps\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(starttime - graph_start),
+ ps_to_graph(j),
+ time_to_graph(sampletime[ps->last] - starttime),
+ ps_to_graph(1));
+
+ /* paint cpu load over these */
+ for (t = ps->first + 1; t < ps->last; t++) {
+ double rt, prt;
+ double wt, wrt;
+
+ /* calculate over interval */
+ rt = ps->sample[t].runtime - ps->sample[t-1].runtime;
+ wt = ps->sample[t].waittime - ps->sample[t-1].waittime;
+
+ prt = (rt / 1000000000) / (sampletime[t] - sampletime[t-1]);
+ wrt = (wt / 1000000000) / (sampletime[t] - sampletime[t-1]);
+
+ /* this can happen if timekeeping isn't accurate enough */
+ if (prt > 1.0)
+ prt = 1.0;
+ if (wrt > 1.0)
+ wrt = 1.0;
+
+ if ((prt < 0.1) && (wrt < 0.1)) /* =~ 26 (color threshold) */
+ continue;
+
+ svg(" <rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[t - 1] - graph_start),
+ ps_to_graph(j),
+ time_to_graph(sampletime[t] - sampletime[t - 1]),
+ ps_to_graph(wrt));
+
+ /* draw cpu over wait - TODO figure out how/why run + wait > interval */
+ svg(" <rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
+ time_to_graph(sampletime[t - 1] - graph_start),
+ ps_to_graph(j + (1.0 - prt)),
+ time_to_graph(sampletime[t] - sampletime[t - 1]),
+ ps_to_graph(prt));
+ }
+
+ /* determine where to display the process name */
+ if (sampletime[ps->last] - sampletime[ps->first] < 1.5)
+ /* too small to fit label inside the box */
+ wt = ps->last;
+ else
+ wt = ps->first;
+
+ /* text label of process name */
+ svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i] <tspan class=\"run\">%.03fs</tspan></text>\n",
+ time_to_graph(sampletime[wt] - graph_start) + 5.0,
+ ps_to_graph(j) + 14.0,
+ ps->name,
+ ps->pid,
+ (ps->sample[ps->last].runtime - ps->sample[ps->first].runtime) / 1000000000.0);
+ /* paint lines to the parent process */
+ if (ps->parent) {
+ /* horizontal part */
+ svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ time_to_graph(starttime - graph_start),
+ ps_to_graph(j) + 10.0,
+ ps->parent->pos_x,
+ ps_to_graph(j) + 10.0);
+
+ /* one vertical line connecting all the horizontal ones up */
+ if (!ps->next)
+ svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ ps->parent->pos_x,
+ ps_to_graph(j) + 10.0,
+ ps->parent->pos_x,
+ ps->parent->pos_y);
+ }
+
+ j++; /* count boxes */
+
+ svg("\n");
+ }
+
+ /* last pass - determine when idle */
+ pid = getpid();
+ /* make sure we start counting from the point where we actually have
+ * data: assume that bootchart's first sample is when data started
+ */
+ ps = ps_first;
+ while (ps->next_ps) {
+ ps = ps->next_ps;
+ if (ps->pid == pid)
+ break;
+ }
+
+ for (i = ps->first; i < samples - (hz / 2); i++) {
+ double crt;
+ double brt;
+ int c;
+
+ /* subtract bootchart cpu utilization from total */
+ crt = 0.0;
+ for (c = 0; c < cpus; c++)
+ crt += cpustat[c].sample[i + ((int)hz / 2)].runtime - cpustat[c].sample[i].runtime;
+ brt = ps->sample[i + ((int)hz / 2)].runtime - ps->sample[i].runtime;
+
+ /*
+ * our definition of "idle":
+ *
+ * if for (hz / 2) we've used less CPU than (interval / 2) ...
+ * defaults to 4.0%, which experimentally, is where atom idles
+ */
+ if ((crt - brt) < (interval / 2.0)) {
+ idletime = sampletime[i] - graph_start;
+ svg("\n<!-- idle detected at %.03f seconds -->\n",
+ idletime);
+ svg("<line class=\"idle\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
+ time_to_graph(idletime),
+ -scale_y,
+ time_to_graph(idletime),
+ ps_to_graph(pcount) + scale_y);
+ svg("<text class=\"idle\" x=\"%.03f\" y=\"%.03f\">%.01fs</text>\n",
+ time_to_graph(idletime) + 5.0,
+ ps_to_graph(pcount) + scale_y,
+ idletime);
+ break;
+ }
+ }
+}
+
+
+static void svg_top_ten_cpu(void)
+{
+ struct ps_struct *top[10];
+ struct ps_struct emptyps;
+ struct ps_struct *ps;
+ int n, m;
+
+ memset(&emptyps, 0, sizeof(struct ps_struct));
+ for (n=0; n < 10; n++)
+ top[n] = &emptyps;
+
+ /* walk all ps's and setup ptrs */
+ ps = ps_first;
+ while ((ps = get_next_ps(ps))) {
+ for (n = 0; n < 10; n++) {
+ if (ps->total <= top[n]->total)
+ continue;
+ /* cascade insert */
+ for (m = 9; m > n; m--)
+ top[m] = top[m-1];
+ top[n] = ps;
+ break;
+ }
+ }
+
+ svg("<text class=\"t2\" x=\"20\" y=\"0\">Top CPU consumers:</text>\n");
+ for (n = 0; n < 10; n++)
+ svg("<text class=\"t3\" x=\"20\" y=\"%d\">%3.03fs - %s[%d]</text>\n",
+ 20 + (n * 13),
+ top[n]->total,
+ top[n]->name,
+ top[n]->pid);
+}
+
+
+static void svg_top_ten_pss(void)
+{
+ struct ps_struct *top[10];
+ struct ps_struct emptyps;
+ struct ps_struct *ps;
+ int n, m;
+
+ memset(&emptyps, 0, sizeof(struct ps_struct));
+ for (n=0; n < 10; n++)
+ top[n] = &emptyps;
+
+ /* walk all ps's and setup ptrs */
+ ps = ps_first;
+ while ((ps = get_next_ps(ps))) {
+ for (n = 0; n < 10; n++) {
+ if (ps->pss_max <= top[n]->pss_max)
+ continue;
+ /* cascade insert */
+ for (m = 9; m > n; m--)
+ top[m] = top[m-1];
+ top[n] = ps;
+ break;
+ }
+ }
+
+ svg("<text class=\"t2\" x=\"20\" y=\"0\">Top PSS consumers:</text>\n");
+ for (n = 0; n < 10; n++)
+ svg("<text class=\"t3\" x=\"20\" y=\"%d\">%dK - %s[%d]</text>\n",
+ 20 + (n * 13),
+ top[n]->pss_max,
+ top[n]->name,
+ top[n]->pid);
+}
+
+
+void svg_do(void)
+{
+ struct ps_struct *ps;
+
+ memset(&str, 0, sizeof(str));
+
+ ps = ps_first;
+
+ /* count initcall thread count first */
+ svg_do_initcall(1);
+ ksize = (kcount ? ps_to_graph(kcount) + (scale_y * 2) : 0);
+
+ /* then count processes */
+ while ((ps = get_next_ps(ps))) {
+ if (!ps_filter(ps))
+ pcount++;
+ else
+ pfiltered++;
+ }
+ psize = ps_to_graph(pcount) + (scale_y * 2);
+
+ esize = (entropy ? scale_y * 7 : 0);
+
+ /* after this, we can draw the header with proper sizing */
+ svg_header();
+
+ svg("<g transform=\"translate(10,400)\">\n");
+ svg_io_bi_bar();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 7.0));
+ svg_io_bo_bar();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 14.0));
+ svg_cpu_bar();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 21.0));
+ svg_wait_bar();
+ svg("</g>\n\n");
+
+ if (kcount) {
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0));
+ svg_do_initcall(0);
+ svg("</g>\n\n");
+ }
+
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize);
+ svg_ps_bars();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(10, 0)\">\n");
+ svg_title();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(10,200)\">\n");
+ svg_top_ten_cpu();
+ svg("</g>\n\n");
+
+ if (entropy) {
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize);
+ svg_entropy_bar();
+ svg("</g>\n\n");
+ }
+
+ if (pss) {
+ svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize + esize);
+ svg_pss_graph();
+ svg("</g>\n\n");
+
+ svg("<g transform=\"translate(410,200)\">\n");
+ svg_top_ten_pss();
+ svg("</g>\n\n");
+ }
+
+
+ /* svg footer */
+ svg("\n</svg>\n");
+}
+