summaryrefslogtreecommitdiff
path: root/libs/signals/doc/tutorial.xml
blob: 6a15316132274ca6a5c8c2b2b58035f5db4846c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE section PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
  "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<section last-revision="$Date: 2007-01-29 12:05:29 -0800 (Mon, 29 Jan 2007) $" id="signals.tutorial">
  <title>Tutorial</title>

  <using-namespace name="boost"/>
  <using-namespace name="boost::signals"/>
  <using-class name="boost::signalN"/>

  <section>
    <title>How to Read this Tutorial</title>
<para>This tutorial is not meant to be read linearly. Its top-level
structure roughly separates different concepts in the library
(e.g., handling calling multiple slots, passing values to and from
slots) and in each of these concepts the basic ideas are presented
first and then more complex uses of the library are described
later. Each of the sections is marked <emphasis>Beginner</emphasis>,
<emphasis>Intermediate</emphasis>, or <emphasis>Advanced</emphasis> to help guide the
reader. The <emphasis>Beginner</emphasis> sections include information that all
library users should know; one can make good use of the Signals
library after having read only the <emphasis>Beginner</emphasis> sections. The
<emphasis>Intermediate</emphasis> sections build on the <emphasis>Beginner</emphasis>
sections with slightly more complex uses of the library. Finally,
the <emphasis>Advanced</emphasis> sections detail very advanced uses of the
Signals library, that often require a solid working knowledge of
the <emphasis>Beginner</emphasis> and <emphasis>Intermediate</emphasis> topics; most users
will not need to read the <emphasis>Advanced</emphasis> sections.</para>
</section>

<section><title>Compatibility Note</title> 

<para>Boost.Signals has two syntactical forms: the preferred form and
the compatibility form. The preferred form fits more closely with the
C++ language and reduces the number of separate template parameters
that need to be considered, often improving readability; however, the
preferred form is not supported on all platforms due to compiler
bugs. The compatible form will work on all compilers supported by
Boost.Signals. Consult the table below to determine which syntactic
form to use for your compiler. Users of Boost.Function, please note
that the preferred syntactic form in Signals is equivalent to that of
Function's preferred syntactic form.</para>

<para>If your compiler does not appear in this list, please try the
preferred syntax and report your results to the Boost list so that
we can keep this table up-to-date.</para>

  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
            <itemizedlist>
              <listitem><para>GNU C++ 2.95.x, 3.0.x, 3.1.x</para></listitem>
              <listitem><para>Comeau C++ 4.2.45.2</para></listitem>
              <listitem><para>SGI MIPSpro 7.3.0</para></listitem>
              <listitem><para>Intel C++ 5.0, 6.0</para></listitem>
              <listitem><para>Compaq's cxx 6.2</para></listitem>
              <listitem><para>Microsoft Visual C++ 7.1</para></listitem>
            </itemizedlist>
          </entry>
          <entry>
            <itemizedlist>
              <listitem><para><emphasis>Any compiler supporting the preferred syntax</emphasis></para></listitem>
              <listitem><para>Microsoft Visual C++ 6.0, 7.0</para></listitem>
              <listitem><para>Borland C++ 5.5.1</para></listitem>
              <listitem><para>Sun WorkShop 6 update 2 C++ 5.3</para></listitem>
              <listitem><para>Metrowerks CodeWarrior 8.1</para></listitem>
            </itemizedlist>
          </entry>
        </row>
      </tbody>
    </tgroup>
  </informaltable>
</section>

<section><title>Hello, World! (Beginner)</title>
<para>The following example writes "Hello, World!" using signals and
slots. First, we create a signal <code>sig</code>, a signal that
takes no arguments and has a void return value. Next, we connect
the <code>hello</code> function object to the signal using the
<code>connect</code> method. Finally, use the signal
<code>sig</code> like a function to call the slots, which in turns
invokes <code>HelloWorld::operator()</code> to print "Hello,
World!".</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
struct HelloWorld 
{
  void operator()() const 
  { 
    std::cout &lt;&lt; "Hello, World!" &lt;&lt; std::endl;
  } 
};

// ...

// Signal with no arguments and a void return value
<classname>boost::signal</classname>&lt;void ()&gt; sig;

// Connect a HelloWorld slot
HelloWorld hello;
sig.<methodname>connect</methodname>(hello);

// Call all of the slots
sig();
</programlisting>
</entry>
<entry>
<programlisting>
struct HelloWorld 
{
  void operator()() const 
  { 
    std::cout &lt;&lt; "Hello, World!" &lt;&lt; std::endl;
  } 
};

// ...

// Signal with no arguments and a void return value
<classname alt="boost::signalN">boost::signal0</classname>&lt;void&gt; sig;

// Connect a HelloWorld slot
HelloWorld hello;
sig.<methodname>connect</methodname>(hello);

// Call all of the slots
sig();
</programlisting>
</entry>
          </row>
        </tbody>
      </tgroup>
    </informaltable>
</section>

<section><title>Calling multiple slots</title>
<section><title>Connecting multiple slots (Beginner)</title>
<para>Calling a single slot from a signal isn't very interesting, so
we can make the Hello, World program more interesting by splitting
the work of printing "Hello, World!" into two completely separate
slots. The first slot will print "Hello" and may look like
this:</para>
<programlisting>
struct Hello 
{
  void operator()() const
  {
    std::cout &lt;&lt; "Hello";
  }
};
</programlisting>
<para>The second slot will print ", World!" and a newline, to complete
the program. The second slot may look like this:</para>
<programlisting>
struct World
{
  void operator()() const
  {
    std::cout &lt;&lt; ", World!" &lt;&lt; std::endl;
  }
};
</programlisting>
<para>Like in our previous example, we can create a signal
<code>sig</code> that takes no arguments and has a
<code>void</code> return value. This time, we connect both a
<code>hello</code> and a <code>world</code> slot to the same
signal, and when we call the signal both slots will be called.</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
<classname>boost::signal</classname>&lt;void ()&gt; sig;

sig.<methodname>connect</methodname>(Hello());
sig.<methodname>connect</methodname>(World());

sig();
</programlisting>
</entry>
<entry>
<programlisting>
<classname alt="boost::signalN">boost::signal0</classname>&lt;void&gt; sig;

sig.<methodname>connect</methodname>(Hello());
sig.<methodname>connect</methodname>(World());

sig();
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>
<para>By default, slots are called in first-in first-out (FIFO) order,
so the output of this program will be as expected:</para>
<programlisting>
Hello, World!
</programlisting>
</section>

<section><title>Ordering slot call groups (Intermediate)</title>
<para>Slots are free to have side effects, and that can mean that some
slots will have to be called before others even if they are not connected in that order. The Boost.Signals
library allows slots to be placed into groups that are ordered in
some way. For our Hello, World program, we want "Hello" to be
printed before ", World!", so we put "Hello" into a group that must
be executed before the group that ", World!" is in. To do this, we
can supply an extra parameter at the beginning of the
<code>connect</code> call that specifies the group. Group values
are, by default, <code>int</code>s, and are ordered by the integer
&lt; relation. Here's how we construct Hello, World:</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
<classname>boost::signal</classname>&lt;void ()&gt; sig;
sig.<methodname>connect</methodname>(1, World());
sig.<methodname>connect</methodname>(0, Hello());
sig();
</programlisting>
</entry>
            <entry>
<programlisting>
<classname alt="boost::signalN">boost::signal0</classname>&lt;void&gt; sig;
sig.<methodname>connect</methodname>(1, World());
sig.<methodname>connect</methodname>(0, Hello());
sig();
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>This program will correctly print "Hello, World!", because the
<code>Hello</code> object is in group 0, which precedes group 1 where
the <code>World</code> object resides. The group
parameter is, in fact, optional. We omitted it in the first Hello,
World example because it was unnecessary when all of the slots are
independent. So what happens if we mix calls to connect that use the
group parameter and those that don't? The "unnamed" slots (i.e., those
that have been connected without specifying a group name) can be
placed at the front or back of the slot list (by passing
<code>boost::signals::at_front</code> or <code>boost::signals::at_back</code>
as the last parameter to <code><methodname
alt="boost::signalN::connect">connect</methodname></code>, respectively), and defaults to the end of the list. When
a group is specified, the final parameter describes where the slot
will be placed within the group ordering. If we add a new slot
to our example like this:</para>
<programlisting>
struct GoodMorning
{
  void operator()() const
  {
    std::cout &lt;&lt; "... and good morning!" &lt;&lt; std::endl;
  }
};

sig.<methodname>connect</methodname>(GoodMorning());
</programlisting>
<para>... we will get the result we wanted:</para>
<programlisting>
Hello, World!
... and good morning!
</programlisting>
</section>
</section>

<section><title>Passing values to and from slots</title>
<section><title>Slot Arguments (Beginner)</title>
<para>Signals can propagate arguments to each of the slots they call.
For instance, a signal that propagates mouse motion events might
want to pass along the new mouse coordinates and whether the mouse
buttons are pressed.</para>
<para>As an example, we'll create a signal that passes two
<code>float</code> arguments to its slots. Then we'll create a few
slots that print the results of various arithmetic operations on
these values.</para>
<programlisting>
void print_sum(float x, float y)
{
  std::cout &lt;&lt; "The sum is " &lt;&lt; x+y &lt;&lt; std::endl;
}

void print_product(float x, float y)
{
  std::cout &lt;&lt; "The product is " &lt;&lt; x*y &lt;&lt; std::endl;
}

void print_difference(float x, float y)
{
  std::cout &lt;&lt; "The difference is " &lt;&lt; x-y &lt;&lt; std::endl;
}

void print_quotient(float x, float y)
{
  std::cout &lt;&lt; "The quotient is " &lt;&lt; x/y &lt;&lt; std::endl;
}
</programlisting>

  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
<classname>boost::signal</classname>&lt;void (float, float)&gt; sig;

sig.<methodname>connect</methodname>(&amp;print_sum);
sig.<methodname>connect</methodname>(&amp;print_product);
sig.<methodname>connect</methodname>(&amp;print_difference);
sig.<methodname>connect</methodname>(&amp;print_quotient);

sig(5, 3);
</programlisting>
</entry>
<entry>
<programlisting>
<classname alt="boost::signalN">boost::signal2</classname>&lt;void, float, float&gt; sig;

sig.<methodname>connect</methodname>(&amp;print_sum);
sig.<methodname>connect</methodname>(&amp;print_product);
sig.<methodname>connect</methodname>(&amp;print_difference);
sig.<methodname>connect</methodname>(&amp;print_quotient);

sig(5, 3);
</programlisting>
</entry>
              </row>
            </tbody>
          </tgroup>
        </informaltable>

<para>This program will print out the following:</para>
<programlisting>
The sum is 8
The product is 15
The difference is 2
The quotient is 1.66667
</programlisting>
<para>So any values that are given to <code>sig</code> when it is
called like a function are passed to each of the slots. We have to
declare the types of these values up front when we create the
signal. The type <code><classname>boost::signal</classname>&lt;void (float,
float)&gt;</code> means that the signal has a <code>void</code>
return value and takes two <code>float</code> values. Any slot
connected to <code>sig</code> must therefore be able to take two
<code>float</code> values.</para>
</section>

<section><title>Signal Return Values (Advanced)</title>
<para>Just as slots can receive arguments, they can also return
values. These values can then be returned back to the caller of the
signal through a <firstterm>combiner</firstterm>. The combiner is a mechanism
that can take the results of calling slots (there many be no
results or a hundred; we don't know until the program runs) and
coalesces them into a single result to be returned to the caller.
The single result is often a simple function of the results of the
slot calls: the result of the last slot call, the maximum value
returned by any slot, or a container of all of the results are some
possibilities.</para>
<para>We can modify our previous arithmetic operations example
slightly so that the slots all return the results of computing the
product, quotient, sum, or difference. Then the signal itself can
return a value based on these results to be printed:</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
float product(float x, float y) { return x*y; }
float quotient(float x, float y) { return x/y; }
float sum(float x, float y) { return x+y; }
float difference(float x, float y) { return x-y; }

<classname>boost::signal</classname>&lt;float (float x, float y)&gt; sig;

sig.<methodname>connect</methodname>(&amp;product);
sig.<methodname>connect</methodname>(&amp;quotient);
sig.<methodname>connect</methodname>(&amp;sum);
sig.<methodname>connect</methodname>(&amp;difference);

std::cout &lt;&lt; sig(5, 3) &lt;&lt; std::endl;
</programlisting>
</entry>
<entry>
<programlisting>
float product(float x, float y) { return x*y; }
float quotient(float x, float y) { return x/y; }
float sum(float x, float y) { return x+y; }
float difference(float x, float y) { return x-y; }

<classname alt="boost::signalN">boost::signal2</classname>&lt;float, float, float&gt; sig;

sig.<methodname>connect</methodname>(&amp;product);
sig.<methodname>connect</methodname>(&amp;quotient);
sig.<methodname>connect</methodname>(&amp;sum);
sig.<methodname>connect</methodname>(&amp;difference);

std::cout &lt;&lt; sig(5, 3) &lt;&lt; std::endl;
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>This example program will output <code>2</code>. This is because the
default behavior of a signal that has a return type
(<code>float</code>, the first template argument given to the
<code><classname>boost::signal</classname></code> class template) is to call all slots and
then return the result returned by the last slot called. This
behavior is admittedly silly for this example, because slots have
no side effects and the result is the last slot connect.</para>
<para>A more interesting signal result would be the maximum of the
values returned by any slot. To do this, we create a custom
combiner that looks like this:</para>
<programlisting>
template&lt;typename T&gt;
struct maximum
{
  typedef T result_type;

  template&lt;typename InputIterator&gt;
  T operator()(InputIterator first, InputIterator last) const
  {
    // If there are no slots to call, just return the
    // default-constructed value
    if (first == last)
      return T();

    T max_value = *first++;
    while (first != last) {
      if (max_value &lt; *first)
        max_value = *first;
      ++first;
    }
  
    return max_value;
  }
};
</programlisting>
<para>The <code>maximum</code> class template acts as a function
object. Its result type is given by its template parameter, and
this is the type it expects to be computing the maximum based on
(e.g., <code>maximum&lt;float&gt;</code> would find the maximum
<code>float</code> in a sequence of <code>float</code>s). When a
<code>maximum</code> object is invoked, it is given an input
iterator sequence <code>[first, last)</code> that includes the
results of calling all of the slots. <code>maximum</code> uses this
input iterator sequence to calculate the maximum element, and
returns that maximum value.</para>
<para>We actually use this new function object type by installing it
as a combiner for our signal. The combiner template argument
follows the signal's calling signature:</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
<classname>boost::signal</classname>&lt;float (float x, float y), 
              maximum&lt;float&gt; &gt; sig;
</programlisting>
</entry>
<entry>
<programlisting>
<classname alt="boost::signalN">boost::signal2</classname>&lt;float, float, float, 
               maximum&lt;float&gt; &gt; sig;
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>Now we can connect slots that perform arithmetic functions and
use the signal:</para>
<programlisting>
sig.<methodname>connect</methodname>(&amp;quotient);
sig.<methodname>connect</methodname>(&amp;product);
sig.<methodname>connect</methodname>(&amp;sum);
sig.<methodname>connect</methodname>(&amp;difference);

std::cout &lt;&lt; sig(5, 3) &lt;&lt; std::endl;
</programlisting>
<para>The output of this program will be <code>15</code>, because
regardless of the order in which the slots are connected, the product
of 5 and 3 will be larger than the quotient, sum, or
difference.</para>
<para>In other cases we might want to return all of the values
computed by the slots together, in one large data structure. This
is easily done with a different combiner:</para>
<programlisting>
template&lt;typename Container&gt;
struct aggregate_values
{
  typedef Container result_type;

  template&lt;typename InputIterator&gt;
  Container operator()(InputIterator first, InputIterator last) const
  {
    return Container(first, last);
  }
};
</programlisting>
<para>
Again, we can create a signal with this new combiner: 
</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
<classname>boost::signal</classname>&lt;float (float, float), 
    aggregate_values&lt;std::vector&lt;float&gt; &gt; &gt; sig;

sig.<methodname>connect</methodname>(&amp;quotient);
sig.<methodname>connect</methodname>(&amp;product);
sig.<methodname>connect</methodname>(&amp;sum);
sig.<methodname>connect</methodname>(&amp;difference);

std::vector&lt;float&gt; results = sig(5, 3);
std::copy(results.begin(), results.end(), 
    std::ostream_iterator&lt;float&gt;(cout, " "));
</programlisting>
</entry>
<entry>
<programlisting>
<classname alt="boost::signalN">boost::signal2</classname>&lt;float, float, float,
    aggregate_values&lt;std::vector&lt;float&gt; &gt; &gt; sig;

sig.<methodname>connect</methodname>(&amp;quotient);
sig.<methodname>connect</methodname>(&amp;product);
sig.<methodname>connect</methodname>(&amp;sum);
sig.<methodname>connect</methodname>(&amp;difference);

std::vector&lt;float&gt; results = sig(5, 3);
std::copy(results.begin(), results.end(), 
    std::ostream_iterator&lt;float&gt;(cout, " "));
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>The output of this program will contain 15, 8, 1.6667, and 2. It
is interesting here that
the first template argument for the <code>signal</code> class,
<code>float</code>, is not actually the return type of the signal.
Instead, it is the return type used by the connected slots and will
also be the <code>value_type</code> of the input iterators passed
to the combiner. The combiner itself is a function object and its
<code>result_type</code> member type becomes the return type of the
signal.</para>
<para>The input iterators passed to the combiner transform dereference
operations into slot calls. Combiners therefore have the option to
invoke only some slots until some particular criterion is met. For
instance, in a distributed computing system, the combiner may ask
each remote system whether it will handle the request. Only one
remote system needs to handle a particular request, so after a
remote system accepts the work we do not want to ask any other
remote systems to perform the same task. Such a combiner need only
check the value returned when dereferencing the iterator, and
return when the value is acceptable. The following combiner returns
the first non-NULL pointer to a <code>FulfilledRequest</code> data
structure, without asking any later slots to fulfill the
request:</para>
<programlisting>
struct DistributeRequest {
  typedef FulfilledRequest* result_type;

  template&lt;typename InputIterator&gt;
  result_type operator()(InputIterator first, InputIterator last) const
  {
    while (first != last) {
      if (result_type fulfilled = *first)
        return fulfilled;
      ++first;
    }
    return 0;
  }
};
</programlisting>
</section>
</section>

<section><title>Connection Management</title>
<section><title>Disconnecting Slots (Beginner)</title>
<para>Slots aren't expected to exist indefinately after they are
connected. Often slots are only used to receive a few events and
are then disconnected, and the programmer needs control to decide
when a slot should no longer be connected.</para>
<para>The entry point for managing connections explicitly is the
<code><classname>boost::signals::connection</classname></code> class. The
<code><classname>connection</classname></code> class uniquely represents the connection
between a particular signal and a particular slot. The
<code><methodname alt="connection::connected">connected</methodname>()</code> method checks if the signal and slot are
still connected, and the <code><methodname alt="connection::disconnect">disconnect()</methodname></code> method
disconnects the signal and slot if they are connected before it is
called. Each call to the signal's <code>connect()</code> method
returns a connection object, which can be used to determine if the
connection still exists or to disconnect the signal and slot.</para>
<programlisting>
boost::signals::connection c = sig.<methodname>connect</methodname>(HelloWorld());
if (c.<methodname>connected</methodname>()) {
<emphasis>// c is still connected to the signal</emphasis>
  sig(); <emphasis>// Prints "Hello, World!"</emphasis>
}

c.disconnect(); <emphasis>// Disconnect the HelloWorld object</emphasis>
assert(!c.<methodname>connected</methodname>()); <emphasis>c isn't connected any more</emphasis>

sig(); <emphasis>// Does nothing: there are no connected slots</emphasis>
</programlisting>
</section>

<section><title>Blocking Slots (Beginner)</title> 

<para>Slots can be temporarily "blocked", meaning that they will be
ignored when the signal is invoked but have not been disconnected. The
<code><methodname>block</methodname></code> member function
temporarily blocks a slot, which can be unblocked via
<code><methodname>unblock</methodname></code>. Here is an example of
blocking/unblocking slots:</para>

<programlisting>
boost::signals::connection c = sig.<methodname>connect</methodname>(HelloWorld());
sig(); <emphasis>// Prints "Hello, World!"</emphasis>

c.<methodname>block</methodname>(); <emphasis>// block the slot</emphasis>
assert(c.<methodname>blocked</methodname>());
sig(); <emphasis>// No output: the slot is blocked</emphasis>

c.<methodname>unblock</methodname>(); <emphasis>// unblock the slot</emphasis>
sig(); <emphasis>// Prints "Hello, World!"</emphasis>
</programlisting>

</section>

<section><title>Scoped connections (Intermediate)</title>
<para>The <code>boost::signals::scoped_connection</code> class
references a signal/slot connection that will be disconnected when
the <code>scoped_connection</code> class goes out of scope. This
ability is useful when a connection need only be temporary,
e.g.,</para>
<programlisting>
{
  boost::signals::scoped_connection c = sig.<methodname>connect</methodname>(ShortLived());
  sig(); <emphasis>// will call ShortLived function object</emphasis>
}
sig(); <emphasis>// ShortLived function object no longer connected to sig</emphasis>
</programlisting>
</section>

<section><title>Disconnecting equivalent slots (Intermediate)</title>
<para>One can disconnect slots that are equivalent to a given function
object using a form of the
<code><methodname>disconnect</methodname></code> method, so long as
the type of the function object has an accessible <code>==</code>
operator. For instance:

</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
void foo();
void bar();

signal&lt;void()&gt; sig;

sig.connect(&amp;foo);
sig.connect(&amp;bar);

// disconnects foo, but not bar
sig.disconnect(&amp;foo);
</programlisting>
</entry>
<entry>
<programlisting>
void foo();
void bar();

signal0&lt;void&gt; sig;

sig.connect(&amp;foo);
sig.connect(&amp;bar);

// disconnects foo, but not bar
sig.disconnect(&amp;foo);
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

</section>

<section><title>Automatic connection management (Intermediate)</title>
<para>Boost.Signals can automatically track the lifetime of objects
involved in signal/slot connections, including automatic
disconnection of slots when objects involved in the slot call are
destroyed. For instance, consider a simple news delivery service,
where clients connect to a news provider that then sends news to
all connected clients as information arrives. The news delivery
service may be constructed like this: </para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
class NewsItem { /* ... */ };

boost::signal&lt;void (const NewsItem&amp;)&gt; deliverNews;
</programlisting>
</entry>
<entry>
<programlisting>
class NewsItem { /* ... */ };

boost::signal1&lt;void, const NewsItem&amp;&gt; deliverNews;
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>Clients that wish to receive news updates need only connect a
function object that can receive news items to the
<code>deliverNews</code> signal. For instance, we may have a
special message area in our application specifically for news,
e.g.,:</para>
<programlisting>
struct NewsMessageArea : public MessageArea
{
public:
  // ...

  void displayNews(const NewsItem&amp; news) const
  {
    messageText = news.text();
    update();
  }
};

// ...
NewsMessageArea newsMessageArea = new NewsMessageArea(/* ... */);
// ...
deliverNews.<methodname>connect</methodname>(boost::bind(&amp;NewsMessageArea::displayNews, 
                                newsMessageArea, _1));
</programlisting>
<para>However, what if the user closes the news message area,
destroying the <code>newsMessageArea</code> object that
<code>deliverNews</code> knows about? Most likely, a segmentation
fault will occur. However, with Boost.Signals one need only make
<code>NewsMessageArea</code> <emphasis>trackable</emphasis>, and the slot
involving <code>newsMessageArea</code> will be disconnected when
<code>newsMessageArea</code> is destroyed. The
<code>NewsMessageArea</code> class is made trackable by deriving
publicly from the <code>boost::signals::trackable</code> class,
e.g.:</para>
<programlisting>
struct NewsMessageArea : public MessageArea, public boost::signals::trackable
{
  // ...
};
</programlisting>
<para>At this time there is a significant limitation to the use of
<code>trackable</code> objects in making slot connections: function
objects built using Boost.Bind are understood, such that pointers
or references to <code>trackable</code> objects passed to
<code>boost::bind</code> will be found and tracked.</para>
<para><emphasis role="bold">Warning</emphasis>: User-defined function objects and function
objects from other libraries (e.g., Boost.Function or Boost.Lambda)
do not implement the required interfaces for <code>trackable</code>
object detection, and <emphasis>will silently ignore any bound trackable
objects</emphasis>. Future versions of the Boost libraries will address
this limitation.</para>
</section>

<section><title>When can disconnections occur? (Intermediate)</title>
<para>Signal/slot disconnections occur when any of these conditions
occur:</para>
<itemizedlist>
<listitem><para>The connection is explicitly disconnected via the connection's
<code>disconnect</code> method directly, or indirectly via the
signal's <code>disconnect</code> method or
<code>scoped_connection</code>'s destructor.</para></listitem>
<listitem><para>A <code>trackable</code> object bound to the slot is
destroyed.</para></listitem>
<listitem><para>The signal is destroyed.</para></listitem></itemizedlist>
<para>These events can occur at any time without disrupting a signal's
calling sequence. If a signal/slot connection is disconnected at
any time during a signal's calling sequence, the calling sequence
will still continue but will not invoke the disconnected slot.
Additionally, a signal may be destroyed while it is in a calling
sequence, and which case it will complete its slot call sequence
but may not be accessed directly.</para>
<para>Signals may be invoked recursively (e.g., a signal A calls a
slot B that invokes signal A...). The disconnection behavior does
not change in the recursive case, except that the slot calling
sequence includes slot calls for all nested invocations of the
signal.</para>
</section>

<section><title>Passing slots (Intermediate)</title>
<para>Slots in the Boost.Signals library are created from arbitrary
function objects, and therefore have no fixed type. However, it is
commonplace to require that slots be passed through interfaces that
cannot be templates. Slots can be passed via the
<code>slot_type</code> for each particular signal type and any
function object compatible with the signature of the signal can be
passed to a <code>slot_type</code> parameter. For instance:</para>
  <informaltable>
    <tgroup cols="2" align="left">
      <thead>
        <row>
          <entry>Preferred syntax</entry>
          <entry>Portable syntax</entry>
        </row>
      </thead>
      <tbody>
        <row>
          <entry>
<programlisting>
class Button 
{
  typedef boost::signal&lt;void (int x, int y)&gt; OnClick;

public:
  void doOnClick(const OnClick::slot_type&amp; slot);

private:
  OnClick onClick;
};

void Button::doOnClick(
      const OnClick::slot_type&amp; slot
    )
{
  onClick.<methodname>connect</methodname>(slot);
}

void printCoordinates(long x, long y)
{
  std::cout &lt;&lt; "(" &lt;&lt; x &lt;&lt; ", " &lt;&lt; y &lt;&lt; ")\n";
}

void f(Button&amp; button)
{
  button.doOnClick(&amp;printCoordinates);
}
</programlisting>
</entry>
<entry>
<programlisting>
class Button 
{
  typedef <classname alt="boost::signalN">boost::signal2</classname>&lt;void,int,int&gt; OnClick;

public:
  void doOnClick(const OnClick::slot_type&amp; slot);

private:
  OnClick onClick;
};

void Button::doOnClick(
      const OnClick::slot_type&amp; slot
    )
{
  onClick.<methodname>connect</methodname>(slot);
}

void printCoordinates(long x, long y)
{
  std::cout &lt;&lt; "(" &lt;&lt; x &lt;&lt; ", " &lt;&lt; y &lt;&lt; ")\n";
}

void f(Button&amp; button)
{
  button.doOnClick(&amp;printCoordinates);
}
</programlisting>
</entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>

<para>The <code>doOnClick</code> method is now functionally equivalent
to the <code>connect</code> method of the <code>onClick</code>
signal, but the details of the <code>doOnClick</code> method can be
hidden in an implementation detail file.</para>
</section>
</section>

<section>
  <title>Example: Document-View</title>
  
  <para>Signals can be used to implement flexible Document-View
  architectures. The document will contain a signal to which each of
  the views can connect. The following <code>Document</code> class
  defines a simple text document that supports mulitple views. Note
  that it stores a single signal to which all of the views will be
  connected.</para>

  <programlisting>class Document
{
public:
    typedef boost::signal&lt;void (bool)&gt;  signal_t;
    typedef boost::signals::connection  connection_t;

public:
    Document()
    {}

    connection_t connect(signal_t::slot_function_type subscriber)
    {
        return m_sig.connect(subscriber);
    }

    void disconnect(connection_t subscriber)
    {
        subscriber.disconnect();
    }

    void append(const char* s)
    {
        m_text += s;
        m_sig(true);
    }

    const std::string&amp; getText() const
    {
        return m_text;
    }

private:
    signal_t    m_sig;
    std::string m_text;
};</programlisting>

  <para>Next, we can define a <code>View</code> base class from which
  views can derive. This isn't strictly required, but it keeps the
  Document-View logic separate from the logic itself. Note that the
  constructor just connects the view to the document and the
  destructor disconnects the view.</para>

  <programlisting>
class View
{
public:
    View(Document&amp; m)
        : m_document(m)
    {
        m_connection = m_document.connect(boost::bind(&amp;View::refresh, this, _1));
    }

    virtual ~View()
    {
        m_document.disconnect(m_connection);
    }

    virtual void refresh(bool bExtended) const = 0;

protected:
    Document&amp;               m_document;

private:
    Document::connection_t  m_connection;
};
  </programlisting>

  <para>Finally, we can begin to define views. The
  following <code>TextView</code> class provides a simple view of the
    document text.</para>

  <programlisting>class TextView : public View
{
public:
    TextView(Document&amp; doc)
        : View(doc)
    {}

    virtual void refresh(bool bExtended) const
    {
        std::cout &lt;&lt; "TextView: " &lt;&lt; m_document.getText() &lt;&lt; std::endl;
    }
};</programlisting>

  <para>Alternatively, we can provide a view of the document
    translated into hex values using the <code>HexView</code>
    view:</para>

  <programlisting>class HexView : public View
{
public:
    HexView(Document&amp; doc)
        : View(doc)
    {}

    virtual void refresh(bool bExtended) const
    {
        const std::string&amp;  s = m_document.getText();

        std::cout &lt;&lt; "HexView:";

        for (std::string::const_iterator it = s.begin(); it != s.end(); ++it)
            std::cout &lt;&lt; ' ' &lt;&lt; std::hex &lt;&lt; static_cast&lt;int&gt;(*it);

        std::cout &lt;&lt; std::endl;
    }
};</programlisting>

  <para>To tie the example together, here is a
  simple <code>main</code> function that sets up two views and then
    modifies the document:</para>

  <programlisting>int main(int argc, char* argv[])
{
    Document    doc;
    TextView    v1(doc);
    HexView     v2(doc);

    doc.append(argc == 2 ? argv[1] : "Hello world!");
    return 0;
}</programlisting>

  <para>The complete example source, contributed by Keith MacDonald,
    is available in <ulink
    url="../../libs/signals/example/doc_view.cpp"><code>libs/signals/example/doc_view.cpp</code></ulink>.</para>
</section>

<section>
  <title>Linking against the Signals library</title>

  <para>Part of the Boost.Signals library is compiled into a binary
  library that must be linked into your application to use
  Signals. Please refer to
    the <ulink url="../../more/getting_started.html">Getting Started</ulink>
  guide. You will need to link against the <code>boost_signals</code>
  library.</para>
</section>

</section>