summaryrefslogtreecommitdiff
path: root/libs/msm/doc/HTML/ch03s04.html
blob: 7bff0135c561f59a26656b4032ea966ed1f97928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
<html><head>
      <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
   <title>eUML (experimental)</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="ch03.html" title="Chapter&nbsp;3.&nbsp;Tutorial"><link rel="prev" href="ch03s03.html" title="Functor front-end"><link rel="next" href="ch03s05.html" title="Back-end"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">eUML (experimental)</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch03s03.html">Prev</a>&nbsp;</td><th width="60%" align="center">Chapter&nbsp;3.&nbsp;Tutorial</th><td width="20%" align="right">&nbsp;<a accesskey="n" href="ch03s05.html">Next</a></td></tr></table><hr></div><div class="sect1" title="eUML (experimental)"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e1421"></a><span class="command"><strong><a name="eUML-front-end"></a></strong></span>eUML (experimental)</h2></div></div></div><p><span class="underline">Important note</span>: eUML requires a compiler
                    supporting Boost.Typeof. More generally, eUML has experimental status because
                    some compilers will start crashing when a state machine becomes too big (usually
                    when you write huge actions).</p><p>The previous front-ends are simple to write but still force an amount of
                    noise, mostly MPL types, so it would be nice to write code looking like C++
                    (with a C++ action language) directly inside the transition table, like UML
                    designers like to do on their state machine diagrams. If it were functional
                    programming, it would be even better. This is what eUML is for.</p><p>eUML is a Boost.Proto and Boost.Typeof-based compile-time domain specific
                    embedded language. It provides grammars which allow the definition of
                    actions/guards directly inside the transition table or entry/exit in the state
                    definition. There are grammars for actions, guards, flags, attributes, deferred
                    events, initial states.</p><p>It also relies on Boost.Typeof as a wrapper around the new decltype C++0x
                    feature to provide a compile-time evaluation of all the grammars. Unfortunately,
                    all the underlying Boost libraries are not Typeof-enabled, so for the moment,
                    you will need a compiler where Typeof is supported (like VC9-10, g++ &gt;=
                    4.3).</p><p>Examples will be provided in the next paragraphs. You need to include eUML
                    basic features: </p><p>
                    </p><pre class="programlisting">#include &lt;msm/front/euml/euml.hpp&gt;</pre><p>
                </p><p>To add STL support (at possible cost of longer compilation times), include: </p><p>
                    </p><pre class="programlisting">#include &lt;msm/front/euml/stl.hpp&gt;</pre><p>
                </p><p>eUML is defined in the namespace <code class="code">msm::front::euml</code>.</p><div class="sect2" title="Transition table"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1454"></a>Transition table</h3></div></div></div><p>A transition can be defined using eUML as: </p><p>
                        </p><pre class="programlisting">source + event [guard] / action == target</pre><p>
                    </p><p>or as</p><p>
                        </p><pre class="programlisting">target == source + event [guard] / action</pre><p>
                    </p><p>The first version looks like a drawn transition in a diagram, the second
                        one seems natural to a C++ developer.</p><p>The simple transition table written with the <span class="command"><strong><a class="command" href="ch03s03.html#functor-front-end">functor front-end</a></strong></span> can now be
                        written as:</p><pre class="programlisting">BOOST_MSM_EUML_TRANSITION_TABLE(( 
Stopped + play [some_guard] / (some_action , start_playback)  == Playing ,
Stopped + open_close/ open_drawer                             == Open    ,
Stopped + stop                                                == Stopped ,
Open    + open_close / close_drawer                           == Empty   ,
Empty   + open_close / open_drawer                            == Open    ,
Empty   + cd_detected [good_disk_format] / store_cd_info      == Stopped
),transition_table)                       </pre><p>Or, using the alternative notation, it can be:</p><pre class="programlisting">BOOST_MSM_EUML_TRANSITION_TABLE(( 
Playing  == Stopped + play [some_guard] / (some_action , start_playback) ,
Open     == Stopped + open_close/ open_drawer                            ,
Stopped  == Stopped + stop                                               ,
Empty    == Open    + open_close / close_drawer                          ,
Open     == Empty   + open_close / open_drawer                           ,
Stopped  == Empty   + cd_detected [good_disk_format] / store_cd_info
),transition_table)           </pre><p>The transition table now looks like a list of (readable) rules with little
                        noise.</p><p>UML defines guards between &#8220;[ ]&#8221; and actions after a &#8220;/&#8221;, so the chosen
                        syntax is already more readable for UML designers. UML also allows designers
                        to define several actions sequentially (our previous ActionSequence_)
                        separated by a comma. The first transition does just this: two actions
                        separated by a comma and enclosed inside parenthesis to respect C++ operator
                        precedence.</p><p>If this seems to you like it will cost you run-time performance, don't
                        worry, eUML is based on typeof (or decltype) which only evaluates the
                        parameters to BOOST_MSM_EUML_TRANSITION_TABLE and no run-time cost occurs.
                        Actually, eUML is only a metaprogramming layer on top of "standard" MSM
                        metaprogramming and this first layer generates the previously-introduced
                            <span class="command"><strong><a class="command" href="ch03s03.html#functor-front-end">functor
                        front-end</a></strong></span>.</p><p>UML also allows designers to define more complicated guards, like
                        [good_disk_format &amp;&amp; (some_condition || some_other_condition)]. This
                        was possible with our previously defined functors, but using a complicated
                        template syntax. This syntax is now possible exactly as written, which means
                        without any syntactic noise at all.</p></div><div class="sect2" title="A simple example: rewriting only our transition table"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1495"></a>A simple example: rewriting only our transition table </h3></div></div></div><p>As an introduction to eUML, we will rewrite our tutorial's transition
                        table using eUML. This will require two or three changes, depending on the compiler:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>events must inherit from msm::front::euml::euml_event&lt;
                                    event_name &gt;</p></li><li class="listitem"><p>states must inherit from msm::front::euml::euml_state&lt;
                                    state_name &gt;</p></li><li class="listitem"><p>with VC, states must be declared before the front-end</p></li></ul></div><p>We now can write the transition table like just shown, using
                        BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE instead of
                        BOOST_MSM_EUML_TRANSITION_TABLE. The <a class="link" href="examples/SimpleTutorialWithEumlTable.cpp" target="_top">implementation</a> is pretty straightforward. The only required
                        addition is the need to declare a variable for each state or add parenses (a
                        default-constructor call) in the transition table.</p><p>The <a class="link" href="examples/CompositeTutorialWithEumlTable.cpp" target="_top">
                      <span class="command"><strong></strong></span></a><a name="eUML-composite-table"></a><a class="link" href="examples/CompositeTutorialWithEumlTable.cpp" target="_top"><span class="command"><strong>composite</strong></span></a> implementation is also natural:</p><pre class="programlisting">// front-end like always
struct sub_front_end : public boost::msm::front::state_machine_def&lt;sub_front_end&gt;
{
...
};
// back-end like always
typedef boost::msm::back::state_machine&lt;sub_front_end&gt; sub_back_end;

sub_back_end const sub; // sub can be used in a transition table.</pre><p>Unfortunately, there is a bug with VC, which appears from time to time and
                        causes in a stack overflow. If you get a warning that the program is
                        recursive on all paths, revert to either standard eUML or another front-end
                        as Microsoft doesn't seem to intend to fix it.</p><p>We now have a new, more readable transition table with few changes to our
                        example. eUML can do much more so please follow the guide.</p></div><div class="sect2" title="Defining events, actions and states with entry/exit actions"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1528"></a>Defining events, actions and states with entry/exit actions</h3></div></div></div><div class="sect3" title="Events"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1531"></a>Events</h4></div></div></div><p>Events must be proto-enabled. To achieve this, they must inherit from
                            a proto terminal (euml_event&lt;event-name&gt;). eUML also provides a macro
                            to make this easier:</p><p>
                            </p><pre class="programlisting">BOOST_MSM_EUML_EVENT(play)</pre><p>
                        </p><p>This declares an event type and an instance of this type called
                                <code class="code">play</code>, which is now ready to use in state or transition
                            behaviors.</p><p>There is a second macro, BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES, which
                            takes as second parameter the attributes an event will contain, using
                            the <span class="command"><strong><a class="command" href="ch03s04.html#eUML-attributes">attribute
                            syntax</a></strong></span>.</p><p><span class="underline">Note</span>: as we now have events
                            defined as instances instead of just types, can we still process an
                            event by creating one on the fly, like:
                                <code class="code">fsm.process_event(play());</code> or do we have to write:
                                <code class="code">fsm.process_event(play);</code></p><p>The answer is you can do both. The second one is easier but unlike
                            other front-ends, the second uses a defined operator(), which creates an
                            event on the fly.</p></div><div class="sect3" title="Actions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1562"></a>Actions</h4></div></div></div><p>Actions (returning void) and guards (returning a bool) are defined
                            like previous functors, with the difference that they also must be
                            proto-enabled. This can be done by inheriting from euml_action&lt;
                            functor-name &gt;. eUML also provides a macro:</p><pre class="programlisting">BOOST_MSM_EUML_ACTION(some_condition)
{
    template &lt;class Fsm,class Evt,class SourceState,class TargetState&gt;
    bool operator()(Evt const&amp; ,Fsm&amp; ,SourceState&amp;,TargetState&amp; ) 
    { return true; }
}; </pre><p>Like for events, this macro declares a functor type and an instance
                            for use in transition or state behaviors.</p><p>It is possible to use the same action grammar from the transition
                            table to define state entry and exit behaviors. So
                                <code class="code">(action1,action2)</code> is a valid entry or exit behavior
                            executing both actions in turn.</p><p>The state functors have a slightly different signature as there is no
                            source and target state but only a current state (entry/exit actions are
                            transition-independent), for example:</p><pre class="programlisting">BOOST_MSM_EUML_ACTION(Empty_Entry)
{
    template &lt;class Evt,class Fsm,class State&gt;
    void operator()(Evt const&amp; ,Fsm&amp; ,State&amp; ) { ... }                           
    }; </pre><p><span class="command"><strong><a name="eUML-reuse-functor"></a></strong></span>It is also possible to reuse the functors from the functor front-end.
                            The syntax is however slightly less comfortable as we need to pretend
                            creating one on the fly for typeof. For example:</p><pre class="programlisting">struct start_playback 
{
        template &lt;class Fsm,class Evt,class SourceState,class TargetState&gt;
        void operator()(Evt const&amp; ,Fsm&amp;,SourceState&amp; ,TargetState&amp; )
        {
         ...            
        }
};
BOOST_MSM_EUML_TRANSITION_TABLE((
Playing   == Stopped  + play        / start_playback() ,
...
),transition_table)</pre></div><div class="sect3" title="States"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1585"></a>States</h4></div></div></div><p>There is also a macro for states. This macro has 2 arguments, first
                            the expression defining the state, then the state (instance)
                            name:</p><pre class="programlisting">BOOST_MSM_EUML_STATE((),Paused)</pre><p>This defines a simple state without entry or exit action. You can
                            provide in the expression parameter the state behaviors (entry and exit)
                            using the action grammar, like in the transition table:</p><pre class="programlisting">BOOST_MSM_EUML_STATE(((Empty_Entry,Dummy_Entry)/*2 entryactions*/,
                       Empty_Exit/*1 exit action*/ ),
                     Empty)</pre><p>This means that Empty is defined as a state with an entry action made
                            of two sub-actions, Empty_Entry and Dummy_Entry (enclosed inside
                            parenthesis), and an exit action, Empty_Exit.</p><p>There are several possibilitites for the <span class="command"><strong><a name="eUML-build-state"></a></strong></span> expression syntax:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>(): state without entry or exit action.</p></li><li class="listitem"><p>(Expr1): state with entry but no exit action.</p></li><li class="listitem"><p>(Expr1,Expr2): state with entry and exit action.</p></li><li class="listitem"><p>(Expr1,Expr2,Attributes): state with entry and exit
                                        action, defining some attributes (read further on).</p></li><li class="listitem"><p>(Expr1,Expr2,Attributes,Configure): state with entry and
                                        exit action, defining some attributes (read further on) and
                                        flags (standard MSM flags) or deferred events (standard MSM
                                        deferred events).</p></li><li class="listitem"><p>(Expr1,Expr2,Attributes,Configure,Base): state with entry
                                        and exit action, defining some attributes (read further on),
                                        flags and deferred events (plain msm deferred events) and a
                                        non-default base state (as defined in standard MSM).</p></li></ul></div><p>no_action is also defined, which does, well, nothing except being a
                            placeholder (needed for example as entry action if we have no entry but
                            an exit). Expr1 and Expr2 are a sequence of actions, obeying the same
                            action grammar as in the transition table (following the &#8220;/&#8221;
                            symbol).</p><p>The BOOST_MSM_EUML_STATE macro will allow you to define most common
                            states, but sometimes you will need more, for example provide in your
                            states some special behavior. In this case, you will have to do the
                            macro's job by hand, which is not very complicated. The state will need
                            to inherit from <code class="code">msm::front::state&lt;&gt;</code>, like any state, and
                            from <code class="code">euml_state&lt;state-name&gt;</code> to be proto-enabled. You
                            will then need to declare an instance for use in the transition table.
                            For example:</p><pre class="programlisting">struct Empty_impl : public msm::front::state&lt;&gt; , public euml_state&lt;Empty_impl&gt; 
{
   void activate_empty() {std::cout &lt;&lt; "switching to Empty " &lt;&lt; std::endl;}
   template &lt;class Event,class Fsm&gt;
   void on_entry(Event const&amp; evt,Fsm&amp;fsm){...}
   template &lt;class Event,class Fsm&gt;
   void on_exit(Event const&amp; evt,Fsm&amp;fsm){...}
};
//instance for use in the transition table
Empty_impl const Empty;</pre><p>Notice also that we defined a method named activate_empty. We would
                            like to call it inside a behavior. This can be done using the
                            BOOST_MSM_EUML_METHOD macro. </p><pre class="programlisting">BOOST_MSM_EUML_METHOD(ActivateEmpty_,activate_empty,activate_empty_,void,void)</pre><p>The first parameter is the name of the underlying functor, which you
                            could use with the functor front-end, the second is the state method
                            name, the third is the eUML-generated function, the fourth and fifth the
                            return value when used inside a transition or a state behavior. You can
                            now use this inside a transition:</p><pre class="programlisting">Empty == Open + open_close / (close_drawer,activate_empty_(target_))</pre></div></div><div class="sect2" title="Wrapping up a simple state machine and first complete examples"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1641"></a>Wrapping up a simple state machine and first complete examples</h3></div></div></div><p>You can reuse the state machine definition method from the standard
                        front-end and simply replace the transition table by this new one. You can
                        also use eUML to define a state machine "on the fly" (if, for example, you
                        need to provide an on_entry/on_exit for this state machine as a functor).
                        For this, there is also a macro, <span class="command"><strong><a name="eUML-build-sm"></a></strong></span>BOOST_MSM_EUML_DECLARE_STATE_MACHINE, which has 2 arguments, an expression
                        describing the state machine and the state machine name. The expression has
                        up to 8 arguments:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>(Stt, Init): simplest state machine where only the transition
                                    table and initial state(s) are defined.</p></li><li class="listitem"><p>(Stt, Init, Expr1): state machine where the transition table,
                                    initial state and entry action are defined.</p></li><li class="listitem"><p>(Stt, Init, Expr1, Expr2): state machine where the transition
                                    table, initial state, entry and exit actions are defined.</p></li><li class="listitem"><p>(Stt, Init, Expr1, Expr2, Attributes): state machine where the
                                    transition table, initial state, entry and exit actions are
                                    defined. Furthermore, some attributes are added (read further
                                    on).</p></li><li class="listitem"><p>(Stt, Init, Expr1, Expr2, Attributes, Configure): state
                                    machine where the transition table, initial state, entry and
                                    exit actions are defined. Furthermore, some attributes (read
                                    further on), flags, deferred events and <a class="link" href="ch03s04.html#eUML-Configuration">configuration
                                        capabilities</a> (no message queue / no exception
                                    catching) are added.</p></li><li class="listitem"><p>(Stt, Init, Expr1, Expr2, Attributes, Flags, Deferred , Base):
                                    state machine where the transition table, initial state, entry
                                    and exit actions are defined. Furthermore, attributes (read
                                    further on), flags , deferred events and configuration
                                    capabilities (no message queue / no exception catching) are
                                    added and a non-default base state (see the <a class="link" href="ch03s05.html#backend-base-state">back-end
                                    description</a>) is defined.</p></li></ul></div><p>For example, a minimum state machine could be defined
                        as:</p><pre class="programlisting">BOOST_MSM_EUML_TRANSITION_TABLE(( 
),transition_table)                       </pre><pre class="programlisting">BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,init_ &lt;&lt; Empty ),
                                     player_)</pre><p>Please have a look at the player tutorial written using eUML's <a class="link" href="examples/SimpleTutorialEuml2.cpp" target="_top">first syntax</a> and
                            <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">second syntax</a>.
                        The BOOST_MSM_EUML_DECLARE_ATTRIBUTE macro, to which we will get back
                        shortly, declares attributes given to an eUML type (state or event) using
                        the <span class="command"><strong><a class="command" href="ch03s04.html#eUML-attributes">attribute
                        syntax</a></strong></span>.</p></div><div class="sect2" title="Defining a submachine"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1689"></a>Defining a submachine</h3></div></div></div><p>Defining a submachine (see <a class="link" href="examples/CompositeTutorialEuml.cpp" target="_top">tutorial</a>) with
                        other front-ends simply means using a state which is a state machine in the
                        transition table of another state machine. This is the same with eUML. One
                        only needs define a second state machine and reference it in the transition
                        table of the containing state machine.</p><p>Unlike the state or event definition macros,
                        BOOST_MSM_EUML_DECLARE_STATE_MACHINE defines a type, not an instance because
                        a type is what the back-end requires. This means that you will need to
                        declare yourself an instance to reference your submachine into another state
                        machine, for example:</p><pre class="programlisting">BOOST_MSM_EUML_DECLARE_STATE_MACHINE(...,Playing_)
typedef msm::back::state_machine&lt;Playing_&gt; Playing_type;
Playing_type const Playing;</pre><p>We can now use this instance inside the transition table of the containing
                        state machine:</p><pre class="programlisting">Paused == Playing + pause / pause_playback</pre></div><div class="sect2" title="Attributes / Function call"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1705"></a>
                        <span class="command"><strong><a name="eUML-attributes"></a></strong></span>Attributes / Function call</h3></div></div></div><p>We now want to make our grammar more useful. Very often, one needs only
                        very simple action methods, for example ++Counter or Counter &gt; 5 where
                        Counter is usually defined as some attribute of the class containing the
                        state machine. It seems like a waste to write a functor for such a simple
                        action. Furthermore, states within MSM are also classes so they can have
                        attributes, and we would also like to provide them with attributes. </p><p>If you look back at our examples using the <a class="link" href="examples/SimpleTutorialEuml2.cpp" target="_top">first</a> and <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">second</a> syntaxes, you
                        will find a BOOST_MSM_EUML_DECLARE_ATTRIBUTE and a BOOST_MSM_EUML_ATTRIBUTES
                        macro. The first one declares possible attributes:</p><pre class="programlisting">BOOST_MSM_EUML_DECLARE_ATTRIBUTE(std::string,cd_name)
BOOST_MSM_EUML_DECLARE_ATTRIBUTE(DiskTypeEnum,cd_type)</pre><p>This declares two attributes: cd_name of type std::string and cd_type of
                        type DiskTypeEnum. These attributes are not part of any event or state in
                        particular, we just declared a name and a type. Now, we can add attributes
                        to our cd_detected event using the second one:</p><pre class="programlisting">BOOST_MSM_EUML_ATTRIBUTES((attributes_ &lt;&lt; cd_name &lt;&lt; cd_type ), 
                          cd_detected_attributes)</pre><p>This declares an attribute list which is not linked to anything in
                        particular yet. It can be attached to a state or an event. For example, if
                        we want the event cd_detected to have these defined attributes we
                        write:</p><pre class="programlisting">BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES(cd_detected,cd_detected_attributes)</pre><p>For states, we use the BOOST_MSM_EUML_STATE macro, which has an expression
                        form where one can provide attributes. For example:</p><pre class="programlisting">BOOST_MSM_EUML_STATE((no_action /*entry*/,no_action/*exit*/,
                      attributes_ &lt;&lt; cd_detected_attributes),
                     some_state)</pre><p>OK, great, we now have a way to add attributes to a class, which we could
                        have done more easily, so what is the point? The point is that we can now
                        reference these attributes directly, at compile-time, in the transition
                        table. For example, in the example, you will find this transition:</p><pre class="programlisting">Stopped==Empty+cd_detected[good_disk_format&amp;&amp;(event_(cd_type)==Int_&lt;DISK_CD&gt;())] </pre><p>Read event_(cd_type) as event_-&gt;cd_type with event_ a type generic for
                        events, whatever the concrete event is (in this particular case, it happens
                        to be a cd_detected as the transition shows).</p><p>The main advantage of this feature is that you do not need to define a new
                        functor and you do not need to look inside the functor to know what it does,
                        you have all at hand.</p><p>MSM provides more generic objects for state machine types:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>event_ : used inside any action, the event triggering the
                                    transition</p></li><li class="listitem"><p>state_: used inside entry and exit actions, the entered /
                                    exited state</p></li><li class="listitem"><p>source_: used inside a transition action, the source
                                    state</p></li><li class="listitem"><p>target_: used inside a transition action, the target
                                    state</p></li><li class="listitem"><p>fsm_: used inside any action, the (lowest-level) state machine
                                    processing the transition</p></li><li class="listitem"><p>Int_&lt;int value&gt;: a functor representing an int</p></li><li class="listitem"><p>Char_&lt;value&gt;: a functor representing a char</p></li><li class="listitem"><p>Size_t_&lt;value&gt;: a functor representing a size_t</p></li><li class="listitem"><p>String_&lt;mpl::string&gt; (boost &gt;= 1.40): a functor
                                    representing a string.</p></li></ul></div><p>These helpers can be used in two different ways:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>helper(attribute_name) returns the attribute with name
                                    attribute_name</p></li><li class="listitem"><p>helper returns the state / event type itself.</p></li></ul></div><p>The second form is helpful if you want to provide your states with their
                        own methods, which you also want to use inside the transition table. In the
                            <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">above
                        tutorial</a>, we provide Empty with an activate_empty method. We would
                        like to create a eUML functor and call it from inside the transition table.
                        This is done using the MSM_EUML_METHOD / MSM_EUML_FUNCTION macros. The first
                        creates a functor to a method, the second to a free function. In the
                        tutorial, we write:</p><pre class="programlisting">MSM_EUML_METHOD(ActivateEmpty_,activate_empty,activate_empty_,void,void)</pre><p>The first parameter is the functor name, for use with the functor
                        front-end. The second is the name of the method to call. The third is the
                        function name for use with eUML, the fourth is the return type of the
                        function if used in the context of a transition action, the fifth is the
                        result type if used in the context of a state entry / exit action (usually
                        fourth and fifth are the same). We now have a new eUML function calling a
                        method of "something", and this "something" is one of the five previously
                        shown generic helpers. We can now use this in a transition, for
                        example:</p><pre class="programlisting">Empty == Open + open_close / (close_drawer,activate_empty_(target_))</pre><p>The action is now defined as a sequence of two actions: close_drawer and
                        activate_empty, which is called on the target itself. The target being Empty
                        (the state defined left), this really will call Empty::activate_empty().
                        This method could also have an (or several) argument(s), for example the
                        event, we could then call activate_empty_(target_ , event_).</p><p>More examples can be found in the <a class="link" href="examples/CompilerStressTestEuml.cpp" target="_top">terrible compiler
                            stress test</a>, the <a class="link" href="examples/SimpleTimer.cpp" target="_top">timer example</a> or in the <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">iPodSearch with eUML</a>
                        (for String_ and more).</p></div><div class="sect2" title="Orthogonal regions, flags, event deferring"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1805"></a>Orthogonal regions, flags, event deferring</h3></div></div></div><p>Defining orthogonal regions really means providing more initial states. To
                        add more initial states, &#8220;shift left&#8221; some, for example, if we had another
                        initial state named AllOk :</p><pre class="programlisting">BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,
                                     init_ &lt;&lt; Empty &lt;&lt; AllOk ),
                                    player_)</pre><p>You remember from the <span class="command"><strong><a class="command" href="ch03s04.html#eUML-build-state">BOOST_MSM_EUML_STATE </a></strong></span> and <span class="command"><strong><a class="command" href="ch03s04.html#eUML-build-sm">BOOST_MSM_EUML_DECLARE_STATE_MACHINE</a></strong></span> signatures that just
                        after attributes, we can define flags, like in the basic MSM front-end. To
                        do this, we have another "shift-left" grammar, for example:</p><pre class="programlisting">BOOST_MSM_EUML_STATE((no_action,no_action, attributes_ &lt;&lt;no_attributes_, 
                      /* flags */ configure_&lt;&lt; PlayingPaused &lt;&lt; CDLoaded), 
                    Paused)</pre><p>We now defined that Paused will get two flags, PlayingPaused and CDLoaded,
                        defined, with another macro:</p><pre class="programlisting">BOOST_MSM_EUML_FLAG(CDLoaded)</pre><p>This corresponds to the following basic front-end definition of
                        Paused:</p><pre class="programlisting">struct Paused : public msm::front::state&lt;&gt;
{ 
   typedef mpl::vector2&lt;PlayingPaused,CDLoaded&gt; flag_list; 
};</pre><p>Under the hood, what you get really is a mpl::vector2.</p><p><span class="underline">Note</span>: As we use the version of
                        BOOST_MSM_EUML_STATE's expression with 4 arguments, we need to tell eUML
                        that we need no attributes. Similarly to a <code class="code">cout &lt;&lt; endl</code>,
                        we need a <code class="code">attributes_ &lt;&lt; no_attributes_</code> syntax.</p><p>You can use the flag with the is_flag_active method of a state machine.
                        You can also use the provided helper function is_flag_ (returning a bool)
                        for state and transition behaviors. For example, in the <a class="link" href="examples/iPodEuml.cpp" target="_top">iPod implementation with eUML</a>,
                        you find the following transition:</p><pre class="programlisting">ForwardPressed == NoForward + EastPressed[!is_flag_(NoFastFwd)]</pre><p>The function also has an optional second parameter which is the state
                        machine on which the function is called. By default, fsm_ is used (the
                        current state machine) but you could provide a functor returning a reference
                        to another state machine.</p><p>eUML also supports defining deferred events in the state (state machine)
                        definition. To this aim, we can reuse the flag grammar. For example:</p><pre class="programlisting">BOOST_MSM_EUML_STATE((Empty_Entry,Empty_Exit, attributes_ &lt;&lt; no_attributes_,
                      /* deferred */ configure_&lt;&lt; play ),Empty) </pre><p>The configure_ left shift is also responsible for deferring events. Shift
                        inside configure_ a flag and the state will get a flag, shift an event and
                        it will get a deferred event. This replaces the basic front-end
                        definition:</p><pre class="programlisting">typedef mpl::vector&lt;play&gt; deferred_events;</pre><p>In <a class="link" href="examples/OrthogonalDeferredEuml.cpp" target="_top">this
                            tutorial</a>, player is defining a second orthogonal region with
                        AllOk as initial state. The <code class="code">Empty</code> and <code class="code">Open</code> states
                        also defer the event <code class="code">play</code>. <code class="code">Open</code>,
                            <code class="code">Stopped</code> and <code class="code">Pause</code> also support the flag
                            <code class="code">CDLoaded</code> using the same left shift into
                            <code class="code">configure_</code>.</p><p>In the functor front-end, we also had the possibility to defer an event
                        inside a transition, which makes possible conditional deferring. This is
                        also possible with eUML through the use of the defer_ order, as shown in
                            <a class="link" href="examples/OrthogonalDeferredEuml.cpp" target="_top">this
                            tutorial</a>. You will find the following transition:</p><pre class="programlisting">Open + play / defer_</pre><p>This is an <span class="command"><strong><a class="command" href="ch03s04.html#eUML-internal">internal
                            transition</a></strong></span>. Ignore it for the moment. Interesting is, that
                        when the event <code class="code">play</code> is fired and <code class="code">Open</code> is active,
                        the event will be deferred. Now add a guard and you can conditionally defer
                        the event, for example:</p><pre class="programlisting">Open + play [ some_condition ] / defer_</pre><p>This is similar to what we did with the functor front-end. This means that
                        we have the same constraints. Using defer_ instead of a state declaration,
                        we need to tell MSM that we have deferred events in this state machine. We
                        do this (again) using a configure_ declaration in the state machine
                        definition in which we shift the deferred_events configuration flag:</p><pre class="programlisting">BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,
                                      init_ &lt;&lt; Empty &lt;&lt; AllOk,
                                      Entry_Action, 
                                      Exit_Action, 
                                      attributes_ &lt;&lt; no_attributes_,
                                      configure_&lt;&lt; deferred_events ),
                                    player_)</pre><p>A <a class="link" href="examples/OrthogonalDeferredEuml2.cpp" target="_top">tutorial</a>
                        illustrates this possibility.</p></div><div class="sect2" title="Customizing a state machine / Getting more speed"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1917"></a>
                        <span class="command"><strong><a name="eUML-Configuration"></a></strong></span>Customizing a state machine / Getting
                        more speed</h3></div></div></div><p>We just saw how to use configure_ to define deferred events or flags. We
                        can also use it to configure our state machine like we did with the other front-ends:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">configure_ &lt;&lt; no_exception</code>: disables
                                    exception handling</p></li><li class="listitem"><p><code class="code">configure_ &lt;&lt; no_msg_queue</code> deactivates the
                                    message queue</p></li><li class="listitem"><p><code class="code">configure_ &lt;&lt; deferred_events</code> manually
                                    enables event deferring</p></li></ul></div><p>Deactivating the first two features and not activating the third if not
                        needed greatly improves the event dispatching speed of your state machine.
                        Our <a class="link" href="examples/EumlSimple.cpp" target="_top">speed testing</a> example
                        with eUML does this for the best performance.</p><p><span class="underline">Important note</span>: As exit pseudo
                        states are using the message queue to forward events out of a submachine,
                        the <code class="code">no_message_queue</code> option cannot be used with state machines
                        containing an exit pseudo state.</p></div><div class="sect2" title="Completion / Anonymous transitions"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1952"></a>Completion / Anonymous transitions</h3></div></div></div><p>Anonymous transitions (See <span class="command"><strong><a class="command" href="ch02s02.html#uml-anonymous">UML
                            tutorial</a></strong></span>) are transitions without a named event, which are
                        therefore triggered immediately when the source state becomes active,
                        provided a guard allows it. As there is no event, to define such a
                        transition, simply omit the &#8220;+&#8221; part of the transition (the event), for
                        example: </p><pre class="programlisting">State3 == State4 [always_true] / State3ToState4
State4 [always_true] / State3ToState4 == State3</pre><p>Please have a look at <a class="link" href="examples/AnonymousTutorialEuml.cpp" target="_top">this example</a>,
                        which implements the <span class="command"><strong><a class="command" href="ch03s02.html#anonymous-transitions">previously
                            defined</a></strong></span> state machine with eUML.</p></div><div class="sect2" title="Internal transitions"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1970"></a><span class="command"><strong><a name="eUML-internal"></a></strong></span>Internal transitions</h3></div></div></div><p>Like both other front-ends, eUML supports two ways of defining internal transitions:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>in the state machine's transition table. In this case, you
                                    need to specify a source state, event, actions and guards but no
                                    target state, which eUML will interpret as an internal
                                    transition, for example this defines a transition internal to
                                    Open, on the event open_close:</p><pre class="programlisting">Open + open_close [internal_guard1] / internal_action1</pre><p><a class="link" href="examples/EumlInternal.cpp" target="_top">A full
                                        example</a> is also provided.</p></li><li class="listitem"><p>in a state's <code class="code">internal_transition_table</code>. For
                                    example:</p><pre class="programlisting">BOOST_MSM_EUML_DECLARE_STATE((Open_Entry,Open_Exit),Open_def)
struct Open_impl : public Open_def
{
   BOOST_MSM_EUML_DECLARE_INTERNAL_TRANSITION_TABLE((
        open_close [internal_guard1] / internal_action1
   ))
};</pre><p>Notice how we do not need to repeat that the transition
                                    originates from Open as we already are in Open's context. </p><p>The <a class="link" href="examples/EumlInternalDistributed.cpp" target="_top">implementation</a> also shows the added bonus offered
                                    for submachines, which can have both the standard
                                    transition_table and an internal_transition_table (which has
                                    higher priority). This makes it easier if you decide to make a
                                    full submachine from a state. It is also slightly faster than
                                    the standard alternative, adding orthogonal regions, because
                                    event dispatching will, if accepted by the internal table, not
                                    continue to the subregions. This gives you a O(1) dispatch
                                    instead of O(number of regions).</p></li></ul></div></div><div class="sect2" title="Kleene(any) event)"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2001"></a><span class="command"><strong><a name="kleene-event"></a></strong></span>Kleene(any) event)</h3></div></div></div><p>As for the functor front-end, eUML supports the concept of an <span class="italic"><span class="command"><strong><a class="command" href="ch03s03.html#any-event">any</a></strong></span></span>
                        event, but boost::any is not an acceptable eUML terminal. If you need an
                            <span class="italic">any</span> event, use
                        msm::front::euml::kleene, which inherits boost::any. The same transition as
                        with boost:any would be: </p><pre class="programlisting">State1 + kleene == State2</pre></div><div class="sect2" title="Other state types"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2016"></a>Other state types</h3></div></div></div><p>We saw the <span class="command"><strong><a class="command" href="ch03s04.html#eUML-build-state">build_state</a></strong></span>
                        function, which creates a simple state. Likewise, eUML provides other
                        state-building macros for other types of states:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>BOOST_MSM_EUML_TERMINATE_STATE takes the same arguments as
                                    BOOST_MSM_EUML_STATE and defines, well, a terminate
                                    state.</p></li><li class="listitem"><p>BOOST_MSM_EUML_INTERRUPT_STATE takes the same arguments as
                                    BOOST_MSM_EUML_STATE and defines an interrupt state. However,
                                    the expression argument must contain as first element the event
                                    ending the interruption, for example:
                                        <code class="code">BOOST_MSM_EUML_INTERRUPT_STATE(( end_error /*end
                                        interrupt event*/,ErrorMode_Entry,ErrorMode_Exit
                                        ),ErrorMode)</code></p></li><li class="listitem"><p>BOOST_MSM_EUML_EXIT_STATE takes the same arguments as
                                    BOOST_MSM_EUML_STATE and defines an exit pseudo state. However,
                                    the expression argument must contain as first element the event
                                    propagated from the exit point:
                                        <code class="code">BOOST_MSM_EUML_EXIT_STATE(( event6 /*propagated
                                        event*/,PseudoExit1_Entry,PseudoExit1_Exit
                                        ),PseudoExit1)</code></p></li><li class="listitem"><p>BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE defines an entry pseudo
                                    state. It takes 3 parameters: the region index to be entered is
                                    defined as an int argument, followed by the configuration
                                    expression like BOOST_MSM_EUML_STATE and the state name, so that
                                        <code class="code">BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE(0 /*region
                                        index*/,( SubState2_Entry,SubState2_Exit ),SubState2)</code>
                                    defines an entry state into the first region of a
                                    submachine.</p></li><li class="listitem"><p>BOOST_MSM_EUML_ENTRY_STATE defines an entry pseudo state. It
                                    takes 3 parameters: the region index to be entered is defined as
                                    an int argument, followed by the configuration expression like
                                    BOOST_MSM_EUML_STATE and the state name, so that
                                        <code class="code">BOOST_MSM_EUML_ENTRY_STATE(0,(
                                        PseudoEntry1_Entry,PseudoEntry1_Exit ),PseudoEntry1)</code>
                                    defines a pseudo entry state into the first region of a
                                    submachine.</p></li></ul></div><p>To use these states in the transition table, eUML offers the functions
                            <code class="code">explicit_</code>, <code class="code">exit_pt_</code> and
                        <code class="code">entry_pt_</code>. For example, a direct entry into the substate
                        SubState2 from SubFsm2 could be:</p><pre class="programlisting">explicit_(SubFsm2,SubState2) == State1 + event2</pre><p>Forks being a list on direct entries, eUML supports a logical syntax
                        (state1, state2, ...), for example:</p><pre class="programlisting">(explicit_(SubFsm2,SubState2), 
 explicit_(SubFsm2,SubState2b),
 explicit_(SubFsm2,SubState2c)) == State1 + event3 </pre><p>An entry point is entered using the same syntax as explicit entries:
                        </p><pre class="programlisting">entry_pt_(SubFsm2,PseudoEntry1) == State1 + event4</pre><p>For exit points, it is again the same syntax except that exit points are
                        used as source of the transition:
                        </p><pre class="programlisting">State2 == exit_pt_(SubFsm2,PseudoExit1) + event6 </pre><p>The <a class="link" href="examples/DirectEntryEuml.cpp" target="_top">entry tutorial</a>
                        is also available with eUML.</p></div><div class="sect2" title="Helper functions"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2080"></a>Helper functions</h3></div></div></div><p>We saw a few helpers but there are more, so let us have a more complete description:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>event_ : used inside any action, the event triggering the
                                    transition</p></li><li class="listitem"><p>state_: used inside entry and exit actions, the entered /
                                    exited state</p></li><li class="listitem"><p>source_: used inside a transition action, the source
                                    state</p></li><li class="listitem"><p>target_: used inside a transition action, the target
                                    state</p></li><li class="listitem"><p>fsm_: used inside any action, the (deepest-level) state
                                    machine processing the transition</p></li><li class="listitem"><p>These objects can also be used as a function and return an
                                    attribute, for example event_(cd_name)</p></li><li class="listitem"><p>Int_&lt;int value&gt;: a functor representing an int</p></li><li class="listitem"><p>Char_&lt;value&gt;: a functor representing a char</p></li><li class="listitem"><p>Size_t_&lt;value&gt;: a functor representing a size_t</p></li><li class="listitem"><p>True_ and False_ functors returning true and false
                                    respectively</p></li><li class="listitem"><p>String_&lt;mpl::string&gt; (boost &gt;= 1.40): a functor
                                    representing a string.</p></li><li class="listitem"><p>if_then_else_(guard, action, action) where action can be an
                                    action sequence</p></li><li class="listitem"><p>if_then_(guard, action) where action can be an action
                                    sequence</p></li><li class="listitem"><p>while_(guard, action) where action can be an action
                                    sequence</p></li><li class="listitem"><p>do_while_(guard, action) where action can be an action
                                    sequence</p></li><li class="listitem"><p>for_(action, guard, action, action) where action can be an
                                    action sequence</p></li><li class="listitem"><p>process_(some_event [, some state machine] [, some state
                                    machine] [, some state machine] [, some state machine]) will
                                    call process_event (some_event) on the current state machine or
                                    on the one(s) passed as 2nd , 3rd, 4th, 5th argument. This allow
                                    sending events to several external machines</p></li><li class="listitem"><p>process_(event_): reprocesses the event which triggered the
                                    transition</p></li><li class="listitem"><p>reprocess_(): same as above but shorter to write</p></li><li class="listitem"><p>process2_(some_event,Value [, some state machine] [, some
                                    state machine] [, some state machine]) will call process_event
                                    (some_event(Value)) on the current state machine or on the
                                    one(s) passed as 3rd, 4th, 5th argument</p></li><li class="listitem"><p>is_ flag_(some_flag[, some state machine]) will call
                                    is_flag_active on the current state machine or on the one passed
                                    as 2nd argument</p></li><li class="listitem"><p>Predicate_&lt;some predicate&gt;: Used in STL algorithms. Wraps
                                    unary/binary functions to make them eUML-compatible so that they
                                    can be used in STL algorithms</p></li></ul></div><p>This can be quite fun. For example, </p><pre class="programlisting">/( if_then_else_(--fsm_(m_SongIndex) &gt; Int_&lt;0&gt;(),/*if clause*/
                 show_playing_song, /*then clause*/
                 (fsm_(m_SongIndex)=Int_&lt;1&gt;(),process_(EndPlay))/*else clause*/
                 ) 
  )</pre><p>means: if (fsm.SongIndex &gt; 0, call show_playing_song else
                        {fsm.SongIndex=1; process EndPlay on fsm;}</p><p>A few examples are using these features:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>the iPod example introduced at the BoostCon09 <a class="link" href="examples/iPodEuml.cpp" target="_top">has been rewritten</a>
                                    with eUML (weak compilers please move on...)</p></li><li class="listitem"><p>the iPodSearch example also introduced at the BoostCon09 <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">has been
                                        rewritten</a> with eUML. In this example, you will also
                                    find some examples of STL functor usage.</p></li><li class="listitem"><p><a class="link" href="examples/SimpleTimer.cpp" target="_top">A simpler
                                        timer</a> example is a good starting point. </p></li></ul></div><p>There is unfortunately a small catch. Defining a functor using
                        MSM_EUML_METHOD or MSM_EUML_FUNCTION will create a correct functor. Your own
                        eUML functors written as described at the beginning of this section will
                        also work well, <span class="underline">except</span>, for the
                        moment, with the while_, if_then_, if_then_else_ functions.</p></div><div class="sect2" title="Phoenix-like STL support"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2183"></a>Phoenix-like STL support</h3></div></div></div><p>eUML supports most C++ operators (except address-of). For example it is
                        possible to write event_(some_attribute)++ or [source_(some_bool) &amp;&amp;
                        fsm_(some_other_bool)]. But a programmer needs more than operators in his
                        daily programming. The STL is clearly a must have. Therefore, eUML comes in
                        with a lot of functors to further reduce the need for your own functors for
                        the transition table. For almost every algorithm or container method of the
                        STL, a corresponding eUML function is defined. Like Boost.Phoenix, &#8220;.&#8221; And
                        &#8220;-&gt;&#8221; of call on objects are replaced by a functional programming paradigm,
                        for example:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>begin_(container), end_(container): return iterators of a
                                    container.</p></li><li class="listitem"><p>empty_(container): returns container.empty()</p></li><li class="listitem"><p>clear_(container): container.clear()</p></li><li class="listitem"><p>transform_ : std::transform</p></li></ul></div><p>In a nutshell, almost every STL method or algorithm is matched by a
                        corresponding functor, which can then be used in the transition table or
                        state actions. The <a class="link" href="pt02.html#Reference-begin">reference</a>
                        lists all eUML functions and the underlying functor (so that this
                        possibility is not reserved to eUML but also to the functor-based
                        front-end). The file structure of this Phoenix-like library matches the one
                        of Boost.Phoenix. All functors for STL algorithms are to be found in:</p><pre class="programlisting">#include &lt;msm/front/euml/algorithm.hpp&gt;</pre><p>The algorithms are also divided into sub-headers, matching the phoenix
                        structure for simplicity:</p><pre class="programlisting">#include &lt; msm/front/euml/iteration.hpp&gt; 
#include &lt; msm/front/euml/transformation.hpp&gt;
#include &lt; msm/front/euml/querying.hpp&gt; </pre><p>Container methods can be found in:</p><pre class="programlisting">#include &lt; msm/front/euml/container.hpp&gt;</pre><p>Or one can simply include the whole STL support (you will also need to
                        include euml.hpp):</p><pre class="programlisting">#include &lt; msm/front/euml/stl.hpp&gt;</pre><p>A few examples (to be found in <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">this tutorial</a>):</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">push_back_(fsm_(m_tgt_container),event_(m_song))</code>:
                                    the state machine has an attribute m_tgt_container of type
                                    std::vector&lt;OneSong&gt; and the event has an attribute m_song of
                                    type OneSong. The line therefore pushes m_song at the end of
                                    m_tgt_container</p></li><li class="listitem"><p><code class="code">if_then_( state_(m_src_it) !=
                                        end_(fsm_(m_src_container)),
                                        process2_(OneSong(),*(state_(m_src_it)++)) )</code>: the
                                    current state has an attribute m_src_it (an iterator). If this
                                    iterator != fsm.m_src_container.end(), process OneSong on fsm,
                                    copy-constructed from state.m_src_it which we
                                    post-increment</p></li></ul></div></div><div class="sect2" title="Writing actions with Boost.Phoenix (in development)"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2236"></a><span class="command"><strong><a name="eUML-phoenix"></a></strong></span>Writing actions with Boost.Phoenix (in development)</h3></div></div></div><p> It is also possible to write actions, guards, state entry and exit
                        actions using a reduced set of Boost.Phoenix capabilities. This feature
                        is still in development stage, so you might get here and there some
                        surprise. Simple cases, however, should work well. What will not work
                        will be mixing of eUML and Phoenix functors. Writing guards in one
                        language and actions in another is ok though.</p><p>Phoenix also supports a larger syntax than what will ever be possible
                        with eUML, so you can only use a reduced set of phoenix's grammar. This
                        is due to the nature of eUML. The run-time transition table definition
                        is translated to a type using Boost.Typeof. The result is a "normal" MSM
                        transition table made of functor types. As C++ does not allow mixing
                        run-time and compile-time constructs, there will be some limit (trying
                        to instantiate a template class MyTemplateClass&lt;i&gt; where i is an int
                        will give you an idea). This means following valid Phoenix constructs
                        will not work:</p><p>
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>literals</p></li><li class="listitem"><p>function pointers</p></li><li class="listitem"><p>bind</p></li><li class="listitem"><p>-&gt;*</p></li></ul></div><p>
                    </p><p>MSM also provides placeholders which make more sense in its context
                        than arg1.. argn:</p><p>
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>_event: the event triggering the transition</p></li><li class="listitem"><p>_fsm: the state machine processing the event</p></li><li class="listitem"><p>_source: the source state of the transition</p></li><li class="listitem"><p>_target: the target state of the transition</p></li><li class="listitem"><p>_state: for state entry/exit actions, the entry/exit
                                    state</p></li></ul></div><p>
                    </p><p>Future versions of MSM will support Phoenix better. You can contribute
                        by finding out cases which do not work but should, so that they can be
                        added.</p><p>Phoenix support is not activated by default. To activate it, add
                        before any MSM header: #define BOOST_MSM_EUML_PHOENIX_SUPPORT.</p><p>A <a class="link" href="examples/SimplePhoenix.cpp" target="_top">simple example</a> shows some basic capabilities.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch03s03.html">Prev</a>&nbsp;</td><td width="20%" align="center"><a accesskey="u" href="ch03.html">Up</a></td><td width="40%" align="right">&nbsp;<a accesskey="n" href="ch03s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Functor front-end&nbsp;</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top">&nbsp;Back-end</td></tr></table></div></body></html>