summaryrefslogtreecommitdiff
path: root/libs/math/doc/sf_and_dist/html/math_toolkit/dist/stat_tut/weg/normal_example/normal_misc.html
blob: a69134adeada8de2f3378624caf5169645732e73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Some Miscellaneous Examples of the Normal (Gaussian) Distribution</title>
<link rel="stylesheet" href="../../../../../../../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.76.1">
<link rel="home" href="../../../../../index.html" title="Math Toolkit">
<link rel="up" href="../normal_example.html" title="Normal Distribution Examples">
<link rel="prev" href="../normal_example.html" title="Normal Distribution Examples">
<link rel="next" href="../inverse_chi_squared_eg.html" title="Inverse Chi-Squared Distribution Bayes Example">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../normal_example.html"><img src="../../../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../normal_example.html"><img src="../../../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../../index.html"><img src="../../../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_chi_squared_eg.html"><img src="../../../../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section math_toolkit_dist_stat_tut_weg_normal_example_normal_misc">
<div class="titlepage"><div><div><h6 class="title">
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc"></a><a class="link" href="normal_misc.html" title="Some Miscellaneous Examples of the Normal (Gaussian) Distribution">Some
            Miscellaneous Examples of the Normal (Gaussian) Distribution</a>
</h6></div></div></div>
<p>
              The sample program <a href="../../../../../../../../example/normal_misc_examples.cpp" target="_top">normal_misc_examples.cpp</a>
              illustrates their use.
            </p>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h0"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.traditional_tables"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.traditional_tables">Traditional
              Tables</a>
            </h5>
<p>
              First we need some includes to access the normal distribution (and
              some std output of course).
            </p>
<p>
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">normal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// for normal_distribution</span>
  <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">normal</span><span class="special">;</span> <span class="comment">// typedef provides default type is double.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
  <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">left</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">noshowpoint</span><span class="special">;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iomanip</span><span class="special">&gt;</span>
  <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setw</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">limits</span><span class="special">&gt;</span>
  <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">;</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Example: Normal distribution, Miscellaneous Applications."</span><span class="special">;</span>

  <span class="keyword">try</span>
  <span class="special">{</span>
    <span class="special">{</span> <span class="comment">// Traditional tables and values.</span></pre>
<p>
            </p>
<p>
              Let's start by printing some traditional tables.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.</span><span class="special">;</span> <span class="comment">// in z </span>
<span class="keyword">double</span> <span class="identifier">range</span> <span class="special">=</span> <span class="number">4</span><span class="special">;</span> <span class="comment">// min and max z = -range to +range.</span>
<span class="keyword">int</span> <span class="identifier">precision</span> <span class="special">=</span> <span class="number">17</span><span class="special">;</span> <span class="comment">// traditional tables are only computed to much lower precision.</span>
<span class="comment">// but std::numeric_limits&lt;double&gt;::max_digits10; on new Standard Libraries gives</span>
<span class="comment">// 17, the maximum number of digits that can possibly be significant.</span>
<span class="comment">// std::numeric_limits&lt;double&gt;::digits10; == 15 is number of guaranteed digits,</span>
<span class="comment">// the other two digits being 'noisy'.</span>

<span class="comment">// Construct a standard normal distribution s</span>
  <span class="identifier">normal</span> <span class="identifier">s</span><span class="special">;</span> <span class="comment">// (default mean = zero, and standard deviation = unity)</span>
  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Standard normal distribution, mean = "</span><span class="special">&lt;&lt;</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span>
    <span class="special">&lt;&lt;</span> <span class="string">", standard deviation = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              First the probability distribution function (pdf).
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Probability distribution function values"</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"  z "</span> <span class="string">"      pdf "</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="number">5</span><span class="special">);</span>
<span class="keyword">for</span> <span class="special">(</span><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">range</span><span class="special">;</span> <span class="identifier">z</span> <span class="special">&lt;</span> <span class="identifier">range</span> <span class="special">+</span> <span class="identifier">step</span><span class="special">;</span> <span class="identifier">z</span> <span class="special">+=</span> <span class="identifier">step</span><span class="special">)</span>
<span class="special">{</span>
  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">left</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">3</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">6</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span>
    <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">precision</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">12</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">pdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="number">6</span><span class="special">);</span> <span class="comment">// default</span></pre>
<p>
            </p>
<p>
              And the area under the normal curve from -&#8734; up to z, the cumulative distribution
              function (cdf).
            </p>
<p>
</p>
<pre class="programlisting"><span class="comment">// For a standard normal distribution </span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Standard normal mean = "</span><span class="special">&lt;&lt;</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span>
  <span class="special">&lt;&lt;</span> <span class="string">", standard deviation = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Integral (area under the curve) from - infinity up to z "</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"  z "</span> <span class="string">"      cdf "</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">for</span> <span class="special">(</span><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">range</span><span class="special">;</span> <span class="identifier">z</span> <span class="special">&lt;</span> <span class="identifier">range</span> <span class="special">+</span> <span class="identifier">step</span><span class="special">;</span> <span class="identifier">z</span> <span class="special">+=</span> <span class="identifier">step</span><span class="special">)</span>
<span class="special">{</span>
  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">left</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">3</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">6</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span>
    <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="identifier">precision</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">12</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="number">6</span><span class="special">);</span> <span class="comment">// default</span></pre>
<p>
            </p>
<p>
              And all this you can do with a nanoscopic amount of work compared to
              the team of <span class="bold"><strong>human computers</strong></span> toiling
              with Milton Abramovitz and Irene Stegen at the US National Bureau of
              Standards (now <a href="http://www.nist.gov" target="_top">NIST</a>). Starting
              in 1938, their "Handbook of Mathematical Functions with Formulas,
              Graphs and Mathematical Tables", was eventually published in 1964,
              and has been reprinted numerous times since. (A major replacement is
              planned at <a href="http://dlmf.nist.gov" target="_top">Digital Library of Mathematical
              Functions</a>).
            </p>
<p>
              Pretty-printing a traditional 2-dimensional table is left as an exercise
              for the student, but why bother now that the Math Toolkit lets you
              write
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">2.</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Area for z = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// to get the area for z.</span></pre>
<p>
            </p>
<p>
              Correspondingly, we can obtain the traditional 'critical' values for
              significance levels. For the 95% confidence level, the significance
              level usually called alpha, is 0.05 = 1 - 0.95 (for a one-sided test),
              so we can write
            </p>
<p>
</p>
<pre class="programlisting">  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"95% of area has a z below "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">0.95</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// 95% of area has a z below 1.64485</span></pre>
<p>
            </p>
<p>
              and a two-sided test (a comparison between two levels, rather than
              a one-sided test)
            </p>
<p>
</p>
<pre class="programlisting">  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"95% of area has a z between "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">0.975</span><span class="special">)</span>
    <span class="special">&lt;&lt;</span> <span class="string">" and "</span> <span class="special">&lt;&lt;</span> <span class="special">-</span><span class="identifier">quantile</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">0.975</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// 95% of area has a z between 1.95996 and -1.95996</span></pre>
<p>
            </p>
<p>
              First, define a table of significance levels: these are the probabilities
              that the true occurrence frequency lies outside the calculated interval.
            </p>
<p>
              It is convenient to have an alpha level for the probability that z
              lies outside just one standard deviation. This will not be some nice
              neat number like 0.05, but we can easily calculate it,
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">alpha1</span> <span class="special">=</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="special">-</span><span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="number">2</span><span class="special">;</span> <span class="comment">// 0.3173105078629142</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">17</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">"Significance level for z == 1 is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">alpha1</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              and place in our array of favorite alpha values.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">alpha</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0.3173105078629142</span><span class="special">,</span> <span class="comment">// z for 1 standard deviation.</span>
  <span class="number">0.20</span><span class="special">,</span> <span class="number">0.1</span><span class="special">,</span> <span class="number">0.05</span><span class="special">,</span> <span class="number">0.01</span><span class="special">,</span> <span class="number">0.001</span><span class="special">,</span> <span class="number">0.0001</span><span class="special">,</span> <span class="number">0.00001</span> <span class="special">};</span></pre>
<p>
            </p>
<p>
              Confidence value as % is (1 - alpha) * 100 (so alpha 0.05 == 95% confidence)
              that the true occurrence frequency lies <span class="bold"><strong>inside</strong></span>
              the calculated interval.
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"level of significance (alpha)"</span> <span class="special">&lt;&lt;</span> <span class="identifier">setprecision</span><span class="special">(</span><span class="number">4</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"2-sided       1 -sided          z(alpha) "</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">for</span> <span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">alpha</span><span class="special">)/</span><span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">alpha</span><span class="special">[</span><span class="number">0</span><span class="special">]);</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
  <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">15</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">/</span><span class="number">2</span> <span class="special">&lt;&lt;</span> <span class="identifier">setw</span><span class="special">(</span><span class="number">10</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span>  <span class="identifier">alpha</span><span class="special">[</span><span class="identifier">i</span><span class="special">]/</span><span class="number">2</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
  <span class="comment">// Use quantile(complement(s, alpha[i]/2)) to avoid potential loss of accuracy from quantile(s,  1 - alpha[i]/2) </span>
<span class="special">}</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              Notice the distinction between one-sided (also called one-tailed) where
              we are using a &gt; <span class="bold"><strong>or</strong></span> &lt; test (and
              not both) and considering the area of the tail (integral) from z up
              to +&#8734;, and a two-sided test where we are using two &gt; <span class="bold"><strong>and</strong></span>
              &lt; tests, and thus considering two tails, from -&#8734; up to z low and z
              high up to +&#8734;.
            </p>
<p>
              So the 2-sided values alpha[i] are calculated using alpha[i]/2.
            </p>
<p>
              If we consider a simple example of alpha = 0.05, then for a two-sided
              test, the lower tail area from -&#8734; up to -1.96 is 0.025 (alpha/2) and
              the upper tail area from +z up to +1.96 is also 0.025 (alpha/2), and
              the area between -1.96 up to 12.96 is alpha = 0.95. and the sum of
              the two tails is 0.025 + 0.025 = 0.05,
            </p>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h1"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.standard_deviations_either_side_of_the_mean"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.standard_deviations_either_side_of_the_mean">Standard
              deviations either side of the Mean</a>
            </h5>
<p>
              Armed with the cumulative distribution function, we can easily calculate
              the easy to remember proportion of values that lie within 1, 2 and
              3 standard deviations from the mean.
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="number">3</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="string">"cdf(s, s.standard_deviation()) = "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">())</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>  <span class="comment">// from -infinity to 1 sd</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cdf(complement(s, s.standard_deviation())) = "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction 1 standard deviation within either side of mean is "</span>
  <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">-</span>  <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()))</span> <span class="special">*</span> <span class="number">2</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction 2 standard deviations within either side of mean is "</span>
  <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">-</span>  <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">2</span> <span class="special">*</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()))</span> <span class="special">*</span> <span class="number">2</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction 3 standard deviations within either side of mean is "</span>
  <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">-</span>  <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">3</span> <span class="special">*</span> <span class="identifier">s</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()))</span> <span class="special">*</span> <span class="number">2</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              To a useful precision, the 1, 2 &amp; 3 percentages are 68, 95 and
              99.7, and these are worth memorising as useful 'rules of thumb', as,
              for example, in <a href="http://en.wikipedia.org/wiki/Standard_deviation" target="_top">standard
              deviation</a>:
            </p>
<pre class="programlisting">Fraction 1 standard deviation within either side of mean is 0.683
Fraction 2 standard deviations within either side of mean is 0.954
Fraction 3 standard deviations within either side of mean is 0.997
</pre>
<p>
              We could of course get some really accurate values for these <a href="http://en.wikipedia.org/wiki/Confidence_interval" target="_top">confidence intervals</a>
              by using cout.precision(15);
            </p>
<pre class="programlisting">Fraction 1 standard deviation within either side of mean is 0.682689492137086
Fraction 2 standard deviations within either side of mean is 0.954499736103642
Fraction 3 standard deviations within either side of mean is 0.997300203936740
</pre>
<p>
              But before you get too excited about this impressive precision, don't
              forget that the <span class="bold"><strong>confidence intervals of the standard
              deviation</strong></span> are surprisingly wide, especially if you have
              estimated the standard deviation from only a few measurements.
            </p>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h2"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.some_simple_examples"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.some_simple_examples">Some
              simple examples</a>
            </h5>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h3"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.life_of_light_bulbs"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.life_of_light_bulbs">Life
              of light bulbs</a>
            </h5>
<p>
              Examples from K. Krishnamoorthy, Handbook of Statistical Distributions
              with Applications, ISBN 1 58488 635 8, page 125... implemented using
              the Math Toolkit library.
            </p>
<p>
              A few very simple examples are shown here:
            </p>
<p>
</p>
<pre class="programlisting"><span class="comment">// K. Krishnamoorthy, Handbook of Statistical Distributions with Applications,</span>
 <span class="comment">// ISBN 1 58488 635 8, page 125, example 10.3.5</span></pre>
<p>
            </p>
<p>
              Mean lifespan of 100 W bulbs is 1100 h with standard deviation of 100
              h. Assuming, perhaps with little evidence and much faith, that the
              distribution is normal, we construct a normal distribution called
              <span class="emphasis"><em>bulbs</em></span> with these values:
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">mean_life</span> <span class="special">=</span> <span class="number">1100.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">life_standard_deviation</span> <span class="special">=</span> <span class="number">100.</span><span class="special">;</span>
<span class="identifier">normal</span> <span class="identifier">bulbs</span><span class="special">(</span><span class="identifier">mean_life</span><span class="special">,</span> <span class="identifier">life_standard_deviation</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">expected_life</span> <span class="special">=</span> <span class="number">1000.</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              The we can use the Cumulative distribution function to predict fractions
              (or percentages, if * 100) that will last various lifetimes.
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction of bulbs that will last at best (&lt;=) "</span> <span class="comment">// P(X &lt;= 1000)</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">expected_life</span> <span class="special">&lt;&lt;</span> <span class="string">" is "</span><span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bulbs</span><span class="special">,</span> <span class="identifier">expected_life</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction of bulbs that will last at least (&gt;) "</span> <span class="comment">// P(X &gt; 1000)</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">expected_life</span> <span class="special">&lt;&lt;</span> <span class="string">" is "</span><span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">bulbs</span><span class="special">,</span> <span class="identifier">expected_life</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">min_life</span> <span class="special">=</span> <span class="number">900</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">max_life</span> <span class="special">=</span> <span class="number">1200</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction of bulbs that will last between "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">min_life</span> <span class="special">&lt;&lt;</span> <span class="string">" and "</span> <span class="special">&lt;&lt;</span> <span class="identifier">max_life</span> <span class="special">&lt;&lt;</span> <span class="string">" is "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bulbs</span><span class="special">,</span> <span class="identifier">max_life</span><span class="special">)</span>  <span class="comment">// P(X &lt;= 1200)</span>
   <span class="special">-</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bulbs</span><span class="special">,</span> <span class="identifier">min_life</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// P(X &lt;= 900)</span></pre>
<p>
            </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
                Real-life failures are often very ab-normal, with a significant number
                that 'dead-on-arrival' or suffer failure very early in their life:
                the lifetime of the survivors of 'early mortality' may be well described
                by the normal distribution.
              </p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h4"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.how_many_onions_"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.how_many_onions_">How
              many onions?</a>
            </h5>
<p>
              Weekly demand for 5 lb sacks of onions at a store is normally distributed
              with mean 140 sacks and standard deviation 10.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">mean</span> <span class="special">=</span> <span class="number">140.</span><span class="special">;</span> <span class="comment">// sacks per week.</span>
<span class="keyword">double</span> <span class="identifier">standard_deviation</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
<span class="identifier">normal</span> <span class="identifier">sacks</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span>

<span class="keyword">double</span> <span class="identifier">stock</span> <span class="special">=</span> <span class="number">160.</span><span class="special">;</span> <span class="comment">// per week.</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Percentage of weeks overstocked "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">sacks</span><span class="special">,</span> <span class="identifier">stock</span><span class="special">)</span> <span class="special">*</span> <span class="number">100.</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// P(X &lt;=160)</span>
<span class="comment">// Percentage of weeks overstocked 97.7</span></pre>
<p>
            </p>
<p>
              So there will be lots of mouldy onions! So we should be able to say
              what stock level will meet demand 95% of the weeks.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">stock_95</span> <span class="special">=</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">sacks</span><span class="special">,</span> <span class="number">0.95</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Store should stock "</span> <span class="special">&lt;&lt;</span> <span class="keyword">int</span><span class="special">(</span><span class="identifier">stock_95</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" sacks to meet 95% of demands."</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              And it is easy to estimate how to meet 80% of demand, and waste even
              less.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">stock_80</span> <span class="special">=</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">sacks</span><span class="special">,</span> <span class="number">0.80</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Store should stock "</span> <span class="special">&lt;&lt;</span> <span class="keyword">int</span><span class="special">(</span><span class="identifier">stock_80</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="string">" sacks to meet 8 out of 10 demands."</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
            </p>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h5"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.packing_beef"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.packing_beef">Packing
              beef</a>
            </h5>
<p>
              A machine is set to pack 3 kg of ground beef per pack. Over a long
              period of time it is found that the average packed was 3 kg with a
              standard deviation of 0.1 kg. Assuming the packing is normally distributed,
              we can find the fraction (or %) of packages that weigh more than 3.1
              kg.
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">mean</span> <span class="special">=</span> <span class="number">3.</span><span class="special">;</span> <span class="comment">// kg</span>
<span class="keyword">double</span> <span class="identifier">standard_deviation</span> <span class="special">=</span> <span class="number">0.1</span><span class="special">;</span> <span class="comment">// kg</span>
<span class="identifier">normal</span> <span class="identifier">packs</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span>

<span class="keyword">double</span> <span class="identifier">max_weight</span> <span class="special">=</span> <span class="number">3.1</span><span class="special">;</span> <span class="comment">// kg</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Percentage of packs &gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">max_weight</span> <span class="special">&lt;&lt;</span> <span class="string">" is "</span>
<span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">max_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// P(X &gt; 3.1)</span>

<span class="keyword">double</span> <span class="identifier">under_weight</span> <span class="special">=</span> <span class="number">2.9</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span><span class="string">"fraction of packs &lt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span> <span class="special">&lt;&lt;</span> <span class="string">" with a mean of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">mean</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// fraction of packs &lt;= 2.9 with a mean of 3 is 0.841345</span>
<span class="comment">// This is 0.84 - more than the target 0.95</span>
<span class="comment">// Want 95% to be over this weight, so what should we set the mean weight to be?</span>
<span class="comment">// KK StatCalc says:</span>
<span class="keyword">double</span> <span class="identifier">over_mean</span> <span class="special">=</span> <span class="number">3.0664</span><span class="special">;</span>
<span class="identifier">normal</span> <span class="identifier">xpacks</span><span class="special">(</span><span class="identifier">over_mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"fraction of packs &gt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span>
<span class="special">&lt;&lt;</span> <span class="string">" with a mean of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">xpacks</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">xpacks</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// fraction of packs &gt;= 2.9 with a mean of 3.06449 is 0.950005</span>
<span class="keyword">double</span> <span class="identifier">under_fraction</span> <span class="special">=</span> <span class="number">0.05</span><span class="special">;</span>  <span class="comment">// so 95% are above the minimum weight mean - sd = 2.9</span>
<span class="keyword">double</span> <span class="identifier">low_limit</span> <span class="special">=</span> <span class="identifier">standard_deviation</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">offset</span> <span class="special">=</span> <span class="identifier">mean</span> <span class="special">-</span> <span class="identifier">low_limit</span> <span class="special">-</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">under_fraction</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">nominal_mean</span> <span class="special">=</span> <span class="identifier">mean</span> <span class="special">+</span> <span class="identifier">offset</span><span class="special">;</span>

<span class="identifier">normal</span> <span class="identifier">nominal_packs</span><span class="special">(</span><span class="identifier">nominal_mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Setting the packer to "</span> <span class="special">&lt;&lt;</span> <span class="identifier">nominal_mean</span> <span class="special">&lt;&lt;</span> <span class="string">" will mean that "</span>
  <span class="special">&lt;&lt;</span> <span class="string">"fraction of packs &gt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">nominal_packs</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              Setting the packer to 3.06449 will mean that fraction of packs &gt;=
              2.9 is 0.95.
            </p>
<p>
              Setting the packer to 3.13263 will mean that fraction of packs &gt;=
              2.9 is 0.99, but will more than double the mean loss from 0.0644 to
              0.133.
            </p>
<p>
              Alternatively, we could invest in a better (more precise) packer with
              a lower standard deviation.
            </p>
<p>
              To estimate how much better (how much smaller standard deviation) it
              would have to be, we need to get the 5% quantile to be located at the
              under_weight limit, 2.9
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="number">0.05</span><span class="special">;</span> <span class="comment">// wanted p th quantile.</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Quantile of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">p</span> <span class="special">&lt;&lt;</span> <span class="string">" = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span>
  <span class="special">&lt;&lt;</span> <span class="string">", mean = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="string">", sd = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">//</span></pre>
<p>
            </p>
<p>
              Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1
            </p>
<p>
              With the current packer (mean = 3, sd = 0.1), the 5% quantile is at
              2.8551 kg, a little below our target of 2.9 kg. So we know that the
              standard deviation is going to have to be smaller.
            </p>
<p>
              Let's start by guessing that it (now 0.1) needs to be halved, to a
              standard deviation of 0.05
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack05</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Quantile of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">p</span> <span class="special">&lt;&lt;</span> <span class="string">" = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">pack05</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span>
  <span class="special">&lt;&lt;</span> <span class="string">", mean = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="string">", sd = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span><span class="string">"Fraction of packs &gt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span> <span class="special">&lt;&lt;</span> <span class="string">" with a mean of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">mean</span>
  <span class="special">&lt;&lt;</span> <span class="string">" and standard deviation of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack05</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="comment">//</span></pre>
<p>
            </p>
<p>
              Fraction of packs &gt;= 2.9 with a mean of 3 and standard deviation
              of 0.05 is 0.9772
            </p>
<p>
              So 0.05 was quite a good guess, but we are a little over the 2.9 target,
              so the standard deviation could be a tiny bit more. So we could do
              some more guessing to get closer, say by increasing to 0.06
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack06</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="number">0.06</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Quantile of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">p</span> <span class="special">&lt;&lt;</span> <span class="string">" = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">pack06</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span>
  <span class="special">&lt;&lt;</span> <span class="string">", mean = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="string">", sd = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span><span class="string">"Fraction of packs &gt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span> <span class="special">&lt;&lt;</span> <span class="string">" with a mean of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">mean</span>
  <span class="special">&lt;&lt;</span> <span class="string">" and standard deviation of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack06</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span></pre>
<p>
            </p>
<p>
              Fraction of packs &gt;= 2.9 with a mean of 3 and standard deviation
              of 0.06 is 0.9522
            </p>
<p>
              Now we are getting really close, but to do the job properly, we could
              use root finding method, for example the tools provided, and used elsewhere,
              in the Math Toolkit, see <a class="link" href="../../../../toolkit/internals1/roots2.html" title="Root Finding Without Derivatives: Bisection, Bracket and TOMS748">Root
              Finding Without Derivatives</a>.
            </p>
<p>
              But in this normal distribution case, we could be even smarter and
              make a direct calculation.
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">s</span><span class="special">;</span> <span class="comment">// For standard normal distribution, </span>
<span class="keyword">double</span> <span class="identifier">sd</span> <span class="special">=</span> <span class="number">0.1</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">2.9</span><span class="special">;</span> <span class="comment">// Our required limit.</span>
<span class="comment">// then probability p = N((x - mean) / sd)</span>
<span class="comment">// So if we want to find the standard deviation that would be required to meet this limit,</span>
<span class="comment">// so that the p th quantile is located at x,</span>
<span class="comment">// in this case the 0.95 (95%) quantile at 2.9 kg pack weight, when the mean is 3 kg.</span>

<span class="keyword">double</span> <span class="identifier">prob</span> <span class="special">=</span>  <span class="identifier">pdf</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">mean</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">sd</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">qp</span> <span class="special">=</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">s</span><span class="special">,</span> <span class="number">0.95</span><span class="special">);</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"prob = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">prob</span> <span class="special">&lt;&lt;</span> <span class="string">", quantile(p) "</span> <span class="special">&lt;&lt;</span> <span class="identifier">qp</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// p = 0.241971, quantile(p) 1.64485</span>
<span class="comment">// Rearranging, we can directly calculate the required standard deviation:</span>
<span class="keyword">double</span> <span class="identifier">sd95</span> <span class="special">=</span> <span class="identifier">abs</span><span class="special">((</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">mean</span><span class="special">))</span> <span class="special">/</span> <span class="identifier">qp</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"If we want the "</span><span class="special">&lt;&lt;</span> <span class="identifier">p</span> <span class="special">&lt;&lt;</span> <span class="string">" th quantile to be located at "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">x</span> <span class="special">&lt;&lt;</span> <span class="string">", would need a standard deviation of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">sd95</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">normal</span> <span class="identifier">pack95</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">sd95</span><span class="special">);</span>  <span class="comment">// Distribution of the 'ideal better' packer.</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span><span class="string">"Fraction of packs &gt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">under_weight</span> <span class="special">&lt;&lt;</span> <span class="string">" with a mean of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">mean</span>
  <span class="special">&lt;&lt;</span> <span class="string">" and standard deviation of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">pack95</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span>
  <span class="special">&lt;&lt;</span> <span class="string">" is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack95</span><span class="special">,</span> <span class="identifier">under_weight</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="comment">// Fraction of packs &gt;= 2.9 with a mean of 3 and standard deviation of 0.0608 is 0.95</span></pre>
<p>
            </p>
<p>
              Notice that these two deceptively simple questions (do we over-fill
              or measure better) are actually very common. The weight of beef might
              be replaced by a measurement of more or less anything. But the calculations
              rely on the accuracy of the standard deviation - something that is
              almost always less good than we might wish, especially if based on
              a few measurements.
            </p>
<h5>
<a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.h6"></a>
              <span><a name="math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.length_of_bolts"></a></span><a class="link" href="normal_misc.html#math_toolkit.dist.stat_tut.weg.normal_example.normal_misc.length_of_bolts">Length
              of bolts</a>
            </h5>
<p>
              A bolt is usable if between 3.9 and 4.1 long. From a large batch of
              bolts, a sample of 50 show a mean length of 3.95 with standard deviation
              0.1. Assuming a normal distribution, what proportion is usable? The
              true sample mean is unknown, but we can use the sample mean and standard
              deviation to find approximate solutions.
            </p>
<p>
</p>
<pre class="programlisting">    <span class="identifier">normal</span> <span class="identifier">bolts</span><span class="special">(</span><span class="number">3.95</span><span class="special">,</span> <span class="number">0.1</span><span class="special">);</span>
    <span class="keyword">double</span> <span class="identifier">top</span> <span class="special">=</span> <span class="number">4.1</span><span class="special">;</span>
    <span class="keyword">double</span> <span class="identifier">bottom</span> <span class="special">=</span> <span class="number">3.9</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction long enough [ P(X &lt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">top</span> <span class="special">&lt;&lt;</span> <span class="string">") ] is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="identifier">top</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction too short [ P(X &lt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">bottom</span> <span class="special">&lt;&lt;</span> <span class="string">") ] is "</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="identifier">bottom</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction OK  -between "</span> <span class="special">&lt;&lt;</span> <span class="identifier">bottom</span> <span class="special">&lt;&lt;</span> <span class="string">" and "</span> <span class="special">&lt;&lt;</span> <span class="identifier">top</span>
  <span class="special">&lt;&lt;</span> <span class="string">"[ P(X &lt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">top</span>  <span class="special">&lt;&lt;</span> <span class="string">") - P(X&lt;= "</span> <span class="special">&lt;&lt;</span> <span class="identifier">bottom</span> <span class="special">&lt;&lt;</span> <span class="string">" ) ] is "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="identifier">top</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="identifier">bottom</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Fraction too long [ P(X &gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">top</span> <span class="special">&lt;&lt;</span> <span class="string">") ] is "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="identifier">top</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"95% of bolts are shorter than "</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">bolts</span><span class="special">,</span> <span class="number">0.95</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>

</pre>
<p>
            </p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010 John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, Bruno
      Lalande, Johan R&#229;de, Gautam Sewani and Thijs van den Berg<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../normal_example.html"><img src="../../../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../normal_example.html"><img src="../../../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../../index.html"><img src="../../../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_chi_squared_eg.html"><img src="../../../../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>