summaryrefslogtreecommitdiff
path: root/doc/html/proto/users_guide.html
blob: 635ee53e2b2f055645022234b1a64a40de1bd256 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Users' Guide</title>
<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
<link rel="up" href="../proto.html" title="Chapter&#160;32.&#160;Boost.Proto">
<link rel="prev" href="../proto.html" title="Chapter&#160;32.&#160;Boost.Proto">
<link rel="next" href="reference.html" title="Reference">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.html">Home</a></td>
<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../proto.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="proto.users_guide"></a><a class="link" href="users_guide.html" title="Users' Guide">Users' Guide</a>
</h2></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started">Getting Started</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end">Fronts Ends: Defining
      Terminals and Non-Terminals of Your EDSL</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form">Intermediate
      Form: Understanding and Introspecting Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end">Back Ends: Making Expression
      Templates Do Useful Work</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples">Examples</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.resources">Background and Resources</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.glossary">Glossary</a></span></dt>
</dl></div>
<h4>
<a name="proto.users_guide.h0"></a>
      <span class="phrase"><a name="proto.users_guide.compilers__compiler_construction_toolkits__and_proto"></a></span><a class="link" href="users_guide.html#proto.users_guide.compilers__compiler_construction_toolkits__and_proto">Compilers,
      Compiler Construction Toolkits, and Proto</a>
    </h4>
<p>
      Most compilers have front ends and back ends. The front end parses the text
      of an input program into some intermediate form like an abstract syntax tree,
      and the back end takes the intermediate form and generates an executable from
      it.
    </p>
<p>
      A library built with Proto is essentially a compiler for an embedded domain-specific
      language (EDSL). It also has a front end, an intermediate form, and a back
      end. The front end is comprised of the symbols (a.k.a., terminals), members,
      operators and functions that make up the user-visible aspects of the EDSL.
      The back end is made of evaluation contexts and transforms that give meaning
      and behavior to the expression templates generated by the front end. In between
      is the intermediate form: the expression template itself, which is an abstract
      syntax tree in a very real sense.
    </p>
<p>
      To build a library with Proto, you will first decide what your interface will
      be; that is, you'll design a programming language for your domain and build
      the front end with tools provided by Proto. Then you'll design the back end
      by writing evaluation contexts and/or transforms that accept expression templates
      and do interesting things with them.
    </p>
<p>
      This users' guide is organized as follows. After a <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started" title="Getting Started">Getting
      Started guide</a>, we'll cover the tools Proto provides for defining and
      manipulating the three major parts of a compiler:
    </p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.front_end" title="Fronts Ends: Defining Terminals and Non-Terminals of Your EDSL">Front Ends</a></span></dt>
<dd><p>
            How to define the aspects of your EDSL with which your users will interact
            directly.
          </p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form" title="Intermediate Form: Understanding and Introspecting Expressions">Intermediate
        Form</a></span></dt>
<dd><p>
            What Proto expression templates look like, how to discover their structure
            and access their constituents.
          </p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end" title="Back Ends: Making Expression Templates Do Useful Work">Back Ends</a></span></dt>
<dd><p>
            How to define evaluation contexts and transforms that make expression
            templates do interesting things.
          </p></dd>
</dl>
</div>
<p>
      After that, you may be interested in seeing some <a class="link" href="users_guide.html#boost_proto.users_guide.examples" title="Examples">Examples</a>
      to get a better idea of how the pieces all fit together.
    </p>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.getting_started"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started" title="Getting Started">Getting Started</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto">Installing
        Proto</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.naming">Naming
        Conventions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.hello_world">Hello
        World</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator">Hello
        Calculator</a></span></dt>
</dl></div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.installing_proto"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto" title="Installing Proto">Installing
        Proto</a>
</h4></div></div></div>
<h6>
<a name="boost_proto.users_guide.getting_started.installing_proto.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.installing_proto.getting_proto"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.getting_proto">Getting
          Proto</a>
        </h6>
<p>
          You can get Proto by downloading Boost (Proto is in version 1.37 and later),
          or by accessing Boost's SVN repository on SourceForge.net. Just go to
          <a href="http://svn.boost.org/trac/boost/wiki/BoostSubversion" target="_top">http://svn.boost.org/trac/boost/wiki/BoostSubversion</a>
          and follow the instructions there for anonymous SVN access.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.installing_proto.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.installing_proto.building_with_proto"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.building_with_proto">Building
          with Proto</a>
        </h6>
<p>
          Proto is a header-only template library, which means you don't need to
          alter your build scripts or link to any separate lib file to use it. All
          you need to do is <code class="computeroutput"><span class="preprocessor">#include</span>
          <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>. Or, you might decide to just include
          the core of Proto (<code class="computeroutput"><span class="preprocessor">#include</span>
          <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>) and whichever contexts and transforms
          you happen to use.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.installing_proto.h2"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.installing_proto.requirements"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.requirements">Requirements</a>
        </h6>
<p>
          Proto depends on Boost. You must use either Boost version 1.34.1 or higher,
          or the version in SVN trunk.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.installing_proto.h3"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.installing_proto.supported_compilers"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.supported_compilers">Supported
          Compilers</a>
        </h6>
<p>
          Currently, Boost.Proto is known to work on the following compilers:
        </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
              Visual C++ 8 and higher
            </li>
<li class="listitem">
              GNU C++ 3.4 and higher
            </li>
<li class="listitem">
              Intel on Linux 8.1 and higher
            </li>
<li class="listitem">
              Intel on Windows 9.1 and higher
            </li>
</ul></div>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            Please send any questions, comments and bug reports to eric &lt;at&gt;
            boostpro &lt;dot&gt; com.
          </p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.naming"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming" title="Naming Conventions">Naming
        Conventions</a>
</h4></div></div></div>
<p>
          Proto is a large library and probably quite unlike any library you've used
          before. Proto uses some consistent naming conventions to make it easier
          to navigate, and they're described below.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.naming.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.naming.functions"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.functions">Functions</a>
        </h6>
<p>
          All of Proto's functions are defined in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
          namespace. For example, there is a function called <code class="computeroutput"><span class="identifier">value</span><span class="special">()</span></code> defined in <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
          that accepts a terminal expression and returns the terminal's value.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.naming.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.naming.metafunctions"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.metafunctions">Metafunctions</a>
        </h6>
<p>
          Proto defines <span class="emphasis"><em>metafunctions</em></span> that correspond to each
          of Proto's free functions. The metafunctions are used to compute the functions'
          return types. All of Proto's metafunctions live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span></code>
          namespace and have the same name as the functions to which they correspond.
          For instance, there is a class template <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;&gt;</span></code> that you can use to compute the
          return type of the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> function.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.naming.h2"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.naming.function_objects"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.function_objects">Function
          Objects</a>
        </h6>
<p>
          Proto defines <span class="emphasis"><em>function object</em></span> equivalents of all of
          its free functions. (A function object is an instance of a class type that
          defines an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
          member function.) All of Proto's function object types are defined in the
          <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span></code> namespace and have the same
          name as their corresponding free functions. For example, <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span></code> is a class that defines a function
          object that does the same thing as the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> free function.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.naming.h3"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.naming.primitive_transforms"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.primitive_transforms">Primitive
          Transforms</a>
        </h6>
<p>
          Proto also defines <span class="emphasis"><em>primitive transforms</em></span> -- class types
          that can be used to compose larger transforms for manipulating expression
          trees. Many of Proto's free functions have corresponding primitive transforms.
          These live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
          namespace and their names have a leading underscore. For instance, the
          transform corresponding to the <code class="computeroutput"><span class="identifier">value</span><span class="special">()</span></code> function is called <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>.
        </p>
<p>
          The following table summarizes the discussion above:
        </p>
<div class="table">
<a name="boost_proto.users_guide.getting_started.naming.t0"></a><p class="title"><b>Table&#160;32.1.&#160;Proto Naming Conventions</b></p>
<div class="table-contents"><table class="table" summary="Proto Naming Conventions">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                  <p>
                    Entity
                  </p>
                </th>
<th>
                  <p>
                    Example
                  </p>
                </th>
</tr></thead>
<tbody>
<tr>
<td>
                  <p>
                    Free Function
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    Metafunction
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    Function Object
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    Transform
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
                  </p>
                </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.hello_world"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_world" title="Hello World">Hello
        World</a>
</h4></div></div></div>
<p>
          Below is a very simple program that uses Proto to build an expression template
          and then execute it.
        </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">;</span>

<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="string">"hello"</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="string">" world"</span> <span class="special">);</span>
    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
          This program outputs the following:
        </p>
<pre class="programlisting">hello, world
</pre>
<p>
          This program builds an object representing the output operation and passes
          it to an <code class="computeroutput"><span class="identifier">evaluate</span><span class="special">()</span></code>
          function, which then executes it.
        </p>
<p>
          The basic idea of expression templates is to overload all the operators
          so that, rather than evaluating the expression immediately, they build
          a tree-like representation of the expression so that it can be evaluated
          later. For each operator in an expression, at least one operand must be
          Protofied in order for Proto's operator overloads to be found. In the expression
          ...
        </p>
<pre class="programlisting"><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="string">"hello"</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="string">" world"</span>
</pre>
<p>
          ... the Protofied sub-expression is <code class="computeroutput"><span class="identifier">cout_</span></code>,
          which is the Proto-ification of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>.
          The presence of <code class="computeroutput"><span class="identifier">cout_</span></code> "infects"
          the expression, and brings Proto's tree-building operator overloads into
          consideration. Any literals in the expression are then Protofied by wrapping
          them in a Proto terminal before they are combined into larger Proto expressions.
        </p>
<p>
          Once Proto's operator overloads have built the expression tree, the expression
          can be lazily evaluated later by walking the tree. That is what <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
          does. It is a general tree-walking expression evaluator, whose behavior
          is customizable via a <span class="emphasis"><em>context</em></span> parameter. The use of
          <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>
          assigns the standard meanings to the operators in the expression. (By using
          a different context, you could give the operators in your expressions different
          semantics. By default, Proto makes no assumptions about what operators
          actually <span class="emphasis"><em>mean</em></span>.)
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_world.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_world.proto_design_philosophy"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_world.proto_design_philosophy">Proto
          Design Philosophy</a>
        </h6>
<p>
          Before we continue, let's use the above example to illustrate an important
          design principle of Proto's. The expression template created in the <span class="emphasis"><em>hello
          world</em></span> example is totally general and abstract. It is not tied
          in any way to any particular domain or application, nor does it have any
          particular meaning or behavior on its own, until it is evaluated in a
          <span class="emphasis"><em>context</em></span>. Expression templates are really just heterogeneous
          trees, which might mean something in one domain, and something else entirely
          in a different one.
        </p>
<p>
          As we'll see later, there is a way to create Proto expression trees that
          are <span class="emphasis"><em>not</em></span> purely abstract, and that have meaning and
          behaviors independent of any context. There is also a way to control which
          operators are overloaded for your particular domain. But that is not the
          default behavior. We'll see later why the default is often a good thing.
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.hello_calculator"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
        Calculator</a>
</h4></div></div></div>
<p>
          "Hello, world" is nice, but it doesn't get you very far. Let's
          use Proto to build a EDSL (embedded domain-specific language) for a lazily-evaluated
          calculator. We'll see how to define the terminals in your mini-language,
          how to compose them into larger expressions, and how to define an evaluation
          context so that your expressions can do useful work. When we're done, we'll
          have a mini-language that will allow us to declare a lazily-evaluated arithmetic
          expression, such as <code class="computeroutput"><span class="special">(</span><span class="identifier">_2</span>
          <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span>
          <span class="special">*</span> <span class="number">100</span></code>,
          where <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="identifier">_2</span></code> are placeholders for values to be
          passed in when the expression is evaluated.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.defining_terminals"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.defining_terminals">Defining
          Terminals</a>
        </h6>
<p>
          The first order of business is to define the placeholders <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="identifier">_2</span></code>.
          For that, we'll use the <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal&lt;&gt;</a></code>
          metafunction.
        </p>
<pre class="programlisting"><span class="comment">// Define a placeholder type</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>

<span class="comment">// Define the Protofied placeholder terminals</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
</pre>
<p>
          The initialization may look a little odd at first, but there is a good
          reason for doing things this way. The objects <code class="computeroutput"><span class="identifier">_1</span></code>
          and <code class="computeroutput"><span class="identifier">_2</span></code> above do not require
          run-time construction -- they are <span class="emphasis"><em>statically initialized</em></span>,
          which means they are essentially initialized at compile time. See the
          <a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">Static
          Initialization</a> section in the <a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix C: Rationale">Rationale</a>
          appendix for more information.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.constructing_expression_trees"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.constructing_expression_trees">Constructing
          Expression Trees</a>
        </h6>
<p>
          Now that we have terminals, we can use Proto's operator overloads to combine
          these terminals into larger expressions. So, for instance, we can immediately
          say things like:
        </p>
<pre class="programlisting"><span class="comment">// This builds an expression template</span>
<span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">;</span>
</pre>
<p>
          This creates an expression tree with a node for each operator. The type
          of the resulting object is large and complex, but we are not terribly interested
          in it right now.
        </p>
<p>
          So far, the object is just a tree representing the expression. It has no
          behavior. In particular, it is not yet a calculator. Below we'll see how
          to make it a calculator by defining an evaluation context.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h2"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.evaluating_expression_trees"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.evaluating_expression_trees">Evaluating
          Expression Trees</a>
        </h6>
<p>
          No doubt you want your expression templates to actually <span class="emphasis"><em>do</em></span>
          something. One approach is to define an <span class="emphasis"><em>evaluation context</em></span>.
          The context is like a function object that associates behaviors with the
          node types in your expression tree. The following example should make it
          clear. It is explained below.
        </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// Values to replace the placeholders</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">args</span><span class="special">;</span>

    <span class="comment">// Define the result type of the calculator.</span>
    <span class="comment">// (This makes the calculator_context "callable".)</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Handle the placeholders:</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
          In <code class="computeroutput"><span class="identifier">calculator_context</span></code>,
          we specify how Proto should evaluate the placeholder terminals by defining
          the appropriate overloads of the function call operator. For any other
          nodes in the expression tree (e.g., arithmetic operations or non-placeholder
          terminals), Proto will evaluate the expression in the "default"
          way. For example, a binary plus node is evaluated by first evaluating the
          left and right operands and adding the results. Proto's default evaluator
          uses the <a href="../../../libs/typeof/index.html" target="_top">Boost.Typeof</a>
          library to compute return types.
        </p>
<p>
          Now that we have an evaluation context for our calculator, we can use it
          to evaluate our arithmetic expressions, as below:
        </p>
<pre class="programlisting"><span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">45</span><span class="special">);</span> <span class="comment">// the value of _1 is 45</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">50</span><span class="special">);</span> <span class="comment">// the value of _2 is 50</span>

<span class="comment">// Create an arithmetic expression and immediately evaluate it</span>
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span>

<span class="comment">// This prints "10"</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">d</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
          Later, we'll see how to define more interesting evaluation contexts and
          expression transforms that give you total control over how your expressions
          are evaluated.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h3"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.customizing_expression_trees"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.customizing_expression_trees">Customizing
          Expression Trees</a>
        </h6>
<p>
          Our calculator EDSL is already pretty useful, and for many EDSL scenarios,
          no more would be needed. But let's keep going. Imagine how much nicer it
          would be if all calculator expressions overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> so that they could be used as function
          objects. We can do that by creating a calculator <span class="emphasis"><em>domain</em></span>
          and telling Proto that all expressions in the calculator domain have extra
          members. Here is how to define a calculator domain:
        </p>
<pre class="programlisting"><span class="comment">// Forward-declare an expression wrapper</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span><span class="special">;</span>

<span class="comment">// Define a calculator domain. Expression within</span>
<span class="comment">// the calculator domain will be wrapped in the</span>
<span class="comment">// calculator&lt;&gt; expression wrapper.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calculator</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
          The <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code>
          type will be an expression wrapper. It will behave just like the expression
          that it wraps, but it will have extra member functions that we will define.
          The <code class="computeroutput"><span class="identifier">calculator_domain</span></code> is
          what informs Proto about our wrapper. It is used below in the definition
          of <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code>.
          Read on for a description.
        </p>
<pre class="programlisting"><span class="comment">// Define a calculator expression wrapper. It behaves just like</span>
<span class="comment">// the expression it wraps, but with an extra operator() member</span>
<span class="comment">// function that evaluates the expression.    </span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
    <span class="identifier">base_type</span><span class="special">;</span>

    <span class="identifier">calculator</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
      <span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Overload operator() to invoke proto::eval() with</span>
    <span class="comment">// our calculator_context.</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>

        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
          The <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code>
          struct is an expression <span class="emphasis"><em>extension</em></span>. It uses <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;&gt;</span></code>
          to effectively add additional members to an expression type. When composing
          larger expressions from smaller ones, Proto notes what domain the smaller
          expressions are in. The larger expression is in the same domain and is
          automatically wrapped in the domain's extension wrapper.
        </p>
<p>
          All that remains to be done is to put our placeholders in the calculator
          domain. We do that by wrapping them in our <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> wrapper, as below:
        </p>
<pre class="programlisting"><span class="comment">// Define the Protofied placeholder terminals, in the</span>
<span class="comment">// calculator domain.</span>
<span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
</pre>
<p>
          Any larger expression that contain these placeholders will automatically
          be wrapped in the <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> wrapper and have our <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
          overload. That means we can use them as function objects as follows.
        </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">result</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">)(</span><span class="number">45.0</span><span class="special">,</span> <span class="number">50.0</span><span class="special">);</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">result</span> <span class="special">==</span> <span class="special">(</span><span class="number">50.0</span> <span class="special">-</span> <span class="number">45.0</span><span class="special">)</span> <span class="special">/</span> <span class="number">50.0</span> <span class="special">*</span> <span class="number">100</span><span class="special">));</span>
</pre>
<p>
          Since calculator expressions are now valid function objects, we can use
          them with standard algorithms, as shown below:
        </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">56</span><span class="special">,</span> <span class="number">84</span><span class="special">,</span> <span class="number">37</span><span class="special">,</span> <span class="number">69</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a2</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">65</span><span class="special">,</span> <span class="number">120</span><span class="special">,</span> <span class="number">60</span><span class="special">,</span> <span class="number">70</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a3</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0</span> <span class="special">};</span>

<span class="comment">// Use std::transform() and a calculator expression</span>
<span class="comment">// to calculate percentages given two input sequences:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">a1</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">a2</span><span class="special">,</span> <span class="identifier">a3</span><span class="special">,</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">);</span>
</pre>
<p>
          Now, let's use the calculator example to explore some other useful features
          of Proto.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h4"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.detecting_invalid_expressions"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.detecting_invalid_expressions">Detecting
          Invalid Expressions</a>
        </h6>
<p>
          You may have noticed that you didn't have to define an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">-()</span></code>
          or <code class="computeroutput"><span class="keyword">operator</span><span class="special">/()</span></code>
          -- Proto defined them for you. In fact, Proto overloads <span class="emphasis"><em>all</em></span>
          the operators for you, even though they may not mean anything in your domain-specific
          language. That means it may be possible to create expressions that are
          invalid in your domain. You can detect invalid expressions with Proto by
          defining the <span class="emphasis"><em>grammar</em></span> of your domain-specific language.
        </p>
<p>
          For simplicity, assume that our calculator EDSL should only allow addition,
          subtraction, multiplication and division. Any expression involving any
          other operator is invalid. Using Proto, we can state this requirement by
          defining the grammar of the calculator EDSL. It looks as follows:
        </p>
<pre class="programlisting"><span class="comment">// Define the grammar of calculator expressions</span>
<span class="keyword">struct</span> <span class="identifier">calculator_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
          You can read the above grammar as follows: an expression tree conforms
          to the calculator grammar if it is a binary plus, minus, multiplies or
          divides node, where both child nodes also conform to the calculator grammar;
          or if it is a terminal. In a Proto grammar, <code class="computeroutput"><a class="link" href="../boost/proto/_.html" title="Struct _">proto::_</a></code> is a wildcard that matches
          any type, so <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span>
          <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span></code>
          matches any terminal, whether it is a placeholder or a literal.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            This grammar is actually a little looser than we would like. Only placeholders
            and literals that are convertible to doubles are valid terminals. Later
            on we'll see how to express things like that in Proto grammars.
          </p></td></tr>
</table></div>
<p>
          Once you have defined the grammar of your EDSL, you can use the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code> metafunction to check
          whether a given expression type conforms to the grammar. For instance,
          we might add the following to our <code class="computeroutput"><span class="identifier">calculator</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> overload:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span> <span class="comment">/* ... as before ... */</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">/* ... */</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">// Check here that the expression we are about to</span>
        <span class="comment">// evaluate actually conforms to the calculator grammar.</span>
        <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_grammar</span><span class="special">&gt;));</span>
        <span class="comment">/* ... */</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
          The addition of the <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code> line enforces at compile time that we
          only evaluate expressions that conform to the calculator EDSL's grammar.
          With Proto grammars, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> and <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code> it is very easy to give the users of
          your EDSL short and readable compile-time errors when they accidentally
          misuse your EDSL.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code>
            is part of the Boost Metaprogramming Library. To use it, just <code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>.
          </p></td></tr>
</table></div>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h5"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.controlling_operator_overloads"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.controlling_operator_overloads">Controlling
          Operator Overloads</a>
        </h6>
<p>
          Grammars and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code>
          make it possible to detect when a user has created an invalid expression
          and issue a compile-time error. But what if you want to prevent users from
          creating invalid expressions in the first place? By using grammars and
          domains together, you can disable any of Proto's operator overloads that
          would create an invalid expression. It is as simple as specifying the EDSL's
          grammar when you define the domain, as shown below:
        </p>
<pre class="programlisting"><span class="comment">// Define a calculator domain. Expression within</span>
<span class="comment">// the calculator domain will be wrapped in the</span>
<span class="comment">// calculator&lt;&gt; expression wrapper.</span>
<span class="comment">// NEW: Any operator overloads that would create an</span>
<span class="comment">//      expression that does not conform to the</span>
<span class="comment">//      calculator grammar is automatically disabled.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calculator</span><span class="special">&gt;,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
          The only thing we changed is we added <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
          as the second template parameter to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;&gt;</span></code> template when defining <code class="computeroutput"><span class="identifier">calculator_domain</span></code>. With this simple addition,
          we disable any of Proto's operator overloads that would create an invalid
          calculator expression.
        </p>
<h6>
<a name="boost_proto.users_guide.getting_started.hello_calculator.h6"></a>
          <span class="phrase"><a name="boost_proto.users_guide.getting_started.hello_calculator.____and_much_more"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.____and_much_more">...
          And Much More</a>
        </h6>
<p>
          Hopefully, this gives you an idea of what sorts of things Proto can do
          for you. But this only scratches the surface. The rest of this users' guide
          will describe all these features and others in more detail.
        </p>
<p>
          Happy metaprogramming!
        </p>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.front_end"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end" title="Fronts Ends: Defining Terminals and Non-Terminals of Your EDSL">Fronts Ends: Defining
      Terminals and Non-Terminals of Your EDSL</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.making_terminals">Making
        Terminals</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads">Proto's
        Operator Overloads</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions">Making
        Lazy Functions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain">Customizing
        Expressions in Your Domain</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.define_operators">Adapting
        Existing Types to Proto</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.code_repetition">Generating
        Repetitive Code with the Preprocessor</a></span></dt>
</dl></div>
<p>
        Here is the fun part: designing your own mini-programming language. In this
        section we'll talk about the nuts and bolts of designing an EDSL interface
        using Proto. We'll cover the definition of terminals and lazy functions that
        the users of your EDSL will get to program with. We'll also talk about Proto's
        expression template-building operator overloads, and about ways to add additional
        members to expressions within your domain.
      </p>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.making_terminals"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_terminals" title="Making Terminals">Making
        Terminals</a>
</h4></div></div></div>
<p>
          As we saw with the Calculator example from the Introduction, the simplest
          way to get an EDSL up and running is simply to define some terminals, as
          follows.
        </p>
<pre class="programlisting"><span class="comment">// Define a literal integer Proto expression.</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">};</span>

<span class="comment">// This creates an expression template.</span>
<span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
<p>
          With some terminals and Proto's operator overloads, you can immediately
          start creating expression templates.
        </p>
<p>
          Defining terminals -- with aggregate initialization -- can be a little
          awkward at times. Proto provides an easier-to-use wrapper for literals
          that can be used to construct Protofied terminal expressions. It's called
          <code class="computeroutput"><a class="link" href="../boost/proto/literal.html" title="Struct template literal">proto::literal&lt;&gt;</a></code>.
        </p>
<pre class="programlisting"><span class="comment">// Define a literal integer Proto expression.</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>

<span class="comment">// Proto literals are really just Proto terminal expressions.</span>
<span class="comment">// For example, this builds a Proto expression template:</span>
<span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
<p>
          There is also a <code class="computeroutput"><a class="link" href="../boost/proto/lit_idp728253920.html" title="Function lit">proto::lit()</a></code> function for constructing
          a <code class="computeroutput"><a class="link" href="../boost/proto/literal.html" title="Struct template literal">proto::literal&lt;&gt;</a></code> in-place. The above
          expression can simply be written as:
        </p>
<pre class="programlisting"><span class="comment">// proto::lit(0) creates an integer terminal expression</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">0</span><span class="special">)</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads" title="Proto's Operator Overloads">Proto's
        Operator Overloads</a>
</h4></div></div></div>
<p>
          Once we have some Proto terminals, expressions involving those terminals
          build expression trees for us. Proto defines overloads for each of C++'s
          overloadable operators in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
          namespace. As long as one operand is a Proto expression, the result of
          the operation is a tree node representing that operation.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            Proto's operator overloads live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
            namespace and are found via ADL (argument-dependent lookup). That is
            why expressions must be "tainted" with Proto-ness for Proto
            to be able to build trees out of expressions.
          </p></td></tr>
</table></div>
<p>
          As a result of Proto's operator overloads, we can say:
        </p>
<pre class="programlisting"><span class="special">-</span><span class="identifier">_1</span><span class="special">;</span>        <span class="comment">// OK, build a unary-negate tree node</span>
<span class="identifier">_1</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span>    <span class="comment">// OK, build a binary-plus tree node</span>
</pre>
<p>
          For the most part, this Just Works and you don't need to think about it,
          but a few operators are special and it can be helpful to know how Proto
          handles them.
        </p>
<h6>
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.assignment__subscript__and_function_call_operators"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads.assignment__subscript__and_function_call_operators">Assignment,
          Subscript, and Function Call Operators</a>
        </h6>
<p>
          Proto also overloads <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>, <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code>, and <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>, but these operators are member functions
          of the expression template rather than free functions in Proto's namespace.
          The following are valid Proto expressions:
        </p>
<pre class="programlisting"><span class="identifier">_1</span> <span class="special">=</span> <span class="number">5</span><span class="special">;</span>     <span class="comment">// OK, builds a binary assign tree node</span>
<span class="identifier">_1</span><span class="special">[</span><span class="number">6</span><span class="special">];</span>      <span class="comment">// OK, builds a binary subscript tree node</span>
<span class="identifier">_1</span><span class="special">();</span>       <span class="comment">// OK, builds a unary function tree node</span>
<span class="identifier">_1</span><span class="special">(</span><span class="number">7</span><span class="special">);</span>      <span class="comment">// OK, builds a binary function tree node</span>
<span class="identifier">_1</span><span class="special">(</span><span class="number">8</span><span class="special">,</span><span class="number">9</span><span class="special">);</span>    <span class="comment">// OK, builds a ternary function tree node</span>
<span class="comment">// ... etc.</span>
</pre>
<p>
          For the first two lines, assignment and subscript, it should be fairly
          unsurprising that the resulting expression node should be binary. After
          all, there are two operands in each expression. It may be surprising at
          first that what appears to be a function call with no arguments, <code class="computeroutput"><span class="identifier">_1</span><span class="special">()</span></code>,
          actually creates an expression node with one child. The child is <code class="computeroutput"><span class="identifier">_1</span></code> itself. Likewise, the expression
          <code class="computeroutput"><span class="identifier">_1</span><span class="special">(</span><span class="number">7</span><span class="special">)</span></code> has two
          children: <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="number">7</span></code>.
        </p>
<p>
          Because these operators can only be defined as member functions, the following
          expressions are invalid:
        </p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="identifier">i</span> <span class="special">=</span> <span class="identifier">_1</span><span class="special">;</span>         <span class="comment">// ERROR: cannot assign _1 to an int</span>

<span class="keyword">int</span> <span class="special">*</span><span class="identifier">p</span><span class="special">;</span>
<span class="identifier">p</span><span class="special">[</span><span class="identifier">_1</span><span class="special">];</span>          <span class="comment">// ERROR: cannot use _1 as an index</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">_1</span><span class="special">);</span>   <span class="comment">// ERROR: cannot call std::sin() with _1</span>
</pre>
<p>
          Also, C++ has special rules for overloads of <code class="computeroutput"><span class="keyword">operator</span><span class="special">-&gt;</span></code> that make it useless for building
          expression templates, so Proto does not overload it.
        </p>
<h6>
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.the_address_of_operator"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads.the_address_of_operator">The
          Address-Of Operator</a>
        </h6>
<p>
          Proto overloads the address-of operator for expression types, so that the
          following code creates a new unary address-of tree node:
        </p>
<pre class="programlisting"><span class="special">&amp;</span><span class="identifier">_1</span><span class="special">;</span>    <span class="comment">// OK, creates a unary address-of tree node</span>
</pre>
<p>
          It does <span class="emphasis"><em>not</em></span> return the address of the <code class="computeroutput"><span class="identifier">_1</span></code> object. However, there is special
          code in Proto such that a unary address-of node is implicitly convertible
          to a pointer to its child. In other words, the following code works and
          does what you might expect, but not in the obvious way:
        </p>
<pre class="programlisting"><span class="keyword">typedef</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
<span class="identifier">_1_type</span><span class="special">;</span>

<span class="identifier">_1_type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">_1_type</span> <span class="keyword">const</span> <span class="special">*</span> <span class="identifier">p</span> <span class="special">=</span> <span class="special">&amp;</span><span class="identifier">_1</span><span class="special">;</span> <span class="comment">// OK, &amp;_1 implicitly converted</span>
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.making_lazy_functions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions" title="Making Lazy Functions">Making
        Lazy Functions</a>
</h4></div></div></div>
<p>
          If we limited ourselves to nothing but terminals and operator overloads,
          our embedded domain-specific languages wouldn't be very expressive. Imagine
          that we wanted to extend our calculator EDSL with a full suite of math
          functions like <code class="computeroutput"><span class="identifier">sin</span><span class="special">()</span></code>
          and <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
          that we could invoke lazily as follows.
        </p>
<pre class="programlisting"><span class="comment">// A calculator expression that takes one argument</span>
<span class="comment">// and takes the sine of it.</span>
<span class="identifier">sin</span><span class="special">(</span><span class="identifier">_1</span><span class="special">);</span>
</pre>
<p>
          We would like the above to create an expression template representing a
          function invocation. When that expression is evaluated, it should cause
          the function to be invoked. (At least, that's the meaning of function invocation
          we'd like the calculator EDSL to have.) You can define <code class="computeroutput"><span class="identifier">sin</span></code>
          quite simply as follows.
        </p>
<pre class="programlisting"><span class="comment">// "sin" is a Proto terminal containing a function pointer</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">double</span><span class="special">(*)(</span><span class="keyword">double</span><span class="special">)</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">sin</span> <span class="special">=</span> <span class="special">{&amp;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">};</span>
</pre>
<p>
          In the above, we define <code class="computeroutput"><span class="identifier">sin</span></code>
          as a Proto terminal containing a pointer to the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">()</span></code> function. Now we can use <code class="computeroutput"><span class="identifier">sin</span></code> as a lazy function. The <code class="computeroutput"><span class="identifier">default_context</span></code> that we saw in the Introduction
          knows how to evaluate lazy functions. Consider the following:
        </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">pi</span> <span class="special">=</span> <span class="number">3.1415926535</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="comment">// Create a lazy "sin" invocation and immediately evaluate it</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="identifier">sin</span><span class="special">(</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span><span class="special">),</span> <span class="identifier">ctx</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
          The above code prints out:
        </p>
<pre class="programlisting">1</pre>
<p>
          I'm no expert at trigonometry, but that looks right to me.
        </p>
<p>
          We can write <code class="computeroutput"><span class="identifier">sin</span><span class="special">(</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span><span class="special">)</span></code> because the <code class="computeroutput"><span class="identifier">sin</span></code>
          object, which is a Proto terminal, has an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()()</span></code> that builds a node representing a function
          call invocation. The actual type of <code class="computeroutput"><span class="identifier">sin</span><span class="special">(</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span><span class="special">)</span></code> is actually
          something like this:
        </p>
<pre class="programlisting"><span class="comment">// The type of the expression sin(pi/2):</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">double</span><span class="special">(*)(</span><span class="keyword">double</span><span class="special">)</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="special">&amp;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="keyword">const</span> <span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span>
</pre>
<p>
          This type further expands to an unsightly node type with a <span class="emphasis"><em>tag</em></span>
          type of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code> and two children: the first
          representing the function to be invoked, and the second representing the
          argument to the function. (Node tag types describe the operation that created
          the node. The difference between <code class="computeroutput"><span class="identifier">a</span>
          <span class="special">+</span> <span class="identifier">b</span></code>
          and <code class="computeroutput"><span class="identifier">a</span> <span class="special">-</span>
          <span class="identifier">b</span></code> is that the former has tag
          type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code> and the latter has tag type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span></code>. Tag types are pure compile-time
          information.)
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            In the type computation above, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code> is a metafunction that ensures
            its argument is a Proto expression type. If it isn't one already, it
            becomes a Proto terminal. We'll learn more about this metafunction, along
            with <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>, its runtime counterpart,
            <a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child" title="Controlling How Child Expressions Are Captured">later</a>.
            For now, you can forget about it.
          </p></td></tr>
</table></div>
<p>
          It is important to note that there is nothing special about terminals that
          contain function pointers. <span class="emphasis"><em>Any</em></span> Proto expression has
          an overloaded function call operator. Consider:
        </p>
<pre class="programlisting"><span class="comment">// This compiles!</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)(</span><span class="number">2</span><span class="special">)(</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">)(</span><span class="number">5</span><span class="special">,</span><span class="number">6</span><span class="special">,</span><span class="number">7</span><span class="special">,</span><span class="number">8</span><span class="special">);</span>
</pre>
<p>
          That may look strange at first. It creates an integer terminal with <code class="computeroutput"><a class="link" href="../boost/proto/lit_idp728253920.html" title="Function lit">proto::lit()</a></code>, and then invokes it like
          a function again and again. What does it mean? Who knows?! You get to decide
          when you define an evaluation context or a transform. But more on that
          later.
        </p>
<h6>
<a name="boost_proto.users_guide.front_end.making_lazy_functions.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.front_end.making_lazy_functions.making_lazy_functions__continued"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions.making_lazy_functions__continued">Making
          Lazy Functions, Continued</a>
        </h6>
<p>
          Now, what if we wanted to add a <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function to our calculator EDSL that
          users could invoke as follows?
        </p>
<pre class="programlisting"><span class="comment">// A calculator expression that takes one argument</span>
<span class="comment">// and raises it to the 2nd power</span>
<span class="identifier">pow</span><span class="special">&lt;</span> <span class="number">2</span> <span class="special">&gt;(</span><span class="identifier">_1</span><span class="special">);</span>
</pre>
<p>
          The simple technique described above of making <code class="computeroutput"><span class="identifier">pow</span></code>
          a terminal containing a function pointer doesn't work here. If <code class="computeroutput"><span class="identifier">pow</span></code> is an object, then the expression
          <code class="computeroutput"><span class="identifier">pow</span><span class="special">&lt;</span>
          <span class="number">2</span> <span class="special">&gt;(</span><span class="identifier">_1</span><span class="special">)</span></code> is
          not valid C++. (Well, technically it is; it means, <code class="computeroutput"><span class="identifier">pow</span></code>
          less than 2, greater than <code class="computeroutput"><span class="special">(</span><span class="identifier">_1</span><span class="special">)</span></code>,
          which is nothing at all like what we want.) <code class="computeroutput"><span class="identifier">pow</span></code>
          should be a real function template. But it must be an unusual function:
          one that returns an expression template.
        </p>
<p>
          With <code class="computeroutput"><span class="identifier">sin</span></code>, we relied on
          Proto to provide an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()()</span></code> to build an expression node with tag
          type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code> for us. Now we'll need to do
          so ourselves. As before, the node will have two children: the function
          to invoke and the function's argument.
        </p>
<p>
          With <code class="computeroutput"><span class="identifier">sin</span></code>, the function
          to invoke was a raw function pointer wrapped in a Proto terminal. In the
          case of <code class="computeroutput"><span class="identifier">pow</span></code>, we want it
          to be a terminal containing TR1-style function object. This will allow
          us to parameterize the function on the exponent. Below is the implementation
          of a simple TR1-style wrapper for the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span></code>
          function:
        </p>
<pre class="programlisting"><span class="comment">// Define a pow_fun function object</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">int</span> <span class="identifier">Exp</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">pow_fun</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">Exp</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
          Following the <code class="computeroutput"><span class="identifier">sin</span></code> example,
          we want <code class="computeroutput"><span class="identifier">pow</span><span class="special">&lt;</span>
          <span class="number">1</span> <span class="special">&gt;(</span>
          <span class="identifier">pi</span><span class="special">/</span><span class="number">2</span> <span class="special">)</span></code> to have
          a type like this:
        </p>
<pre class="programlisting"><span class="comment">// The type of the expression pow&lt;1&gt;(pi/2):</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">pow_fun</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="keyword">const</span> <span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span>
</pre>
<p>
          We could write a <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
          function using code like this, but it's verbose and error prone; it's too
          easy to introduce subtle bugs by forgetting to call <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
          where necessary, resulting in code that seems to work but sometimes doesn't.
          Proto provides a better way to construct expression nodes: <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>.
        </p>
<h6>
<a name="boost_proto.users_guide.front_end.making_lazy_functions.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.front_end.making_lazy_functions.lazy_functions_made_simple_with__literal_make_expr____literal_"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions.lazy_functions_made_simple_with__literal_make_expr____literal_">Lazy
          Functions Made Simple With <code class="literal">make_expr()</code></a>
        </h6>
<p>
          Proto provides a helper for building expression templates called <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>. We can concisely define
          the <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
          function with it as below.
        </p>
<pre class="programlisting"><span class="comment">// Define a lazy pow() function for the calculator EDSL.</span>
<span class="comment">// Can be used as: pow&lt; 2 &gt;(_1)</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span> <span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>  <span class="comment">// Tag type</span>
  <span class="special">,</span> <span class="identifier">pow_fun</span><span class="special">&lt;</span> <span class="identifier">Exp</span> <span class="special">&gt;</span>        <span class="comment">// First child (by value)</span>
  <span class="special">,</span> <span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&amp;</span>           <span class="comment">// Second child (by reference)</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">pow</span><span class="special">(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">arg</span><span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">&gt;(</span>
        <span class="identifier">pow_fun</span><span class="special">&lt;</span><span class="identifier">Exp</span><span class="special">&gt;()</span>    <span class="comment">// First child (by value)</span>
      <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">arg</span><span class="special">)</span>   <span class="comment">// Second child (by reference)</span>
    <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
          There are some things to notice about the above code. We use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;&gt;</span></code>
          to calculate the return type. The first template parameter is the tag type
          for the expression node we're building -- in this case, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code>.
        </p>
<p>
          Subsequent template parameters to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;&gt;</span></code> represent child nodes. If a child
          type is not already a Proto expression, it is automatically made into a
          terminal with <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>.
          A type such as <code class="computeroutput"><span class="identifier">pow_fun</span><span class="special">&lt;</span><span class="identifier">Exp</span><span class="special">&gt;</span></code> results in terminal that is held by
          value, whereas a type like <code class="computeroutput"><span class="identifier">Arg</span>
          <span class="keyword">const</span> <span class="special">&amp;</span></code>
          (note the reference) indicates that the result should be held by reference.
        </p>
<p>
          In the function body is the runtime invocation of <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>.
          It closely mirrors the return type calculation. <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>
          requires you to specify the node's tag type as a template parameter. The
          arguments to the function become the node's children. When a child should
          be stored by value, nothing special needs to be done. When a child should
          be stored by reference, you must use the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">()</span></code> function to wrap the argument.
        </p>
<p>
          And that's it! <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>
          is the lazy person's way to make a lazy funtion.
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain" title="Customizing Expressions in Your Domain">Customizing
        Expressions in Your Domain</a>
</h4></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.domains">Domains</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends">The
          <code class="literal">extends&lt;&gt;</code> Expression Wrapper</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.expression_generators">Expression
          Generators</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.inhibiting_overloads">Controlling
          Operator Overloads</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child">Controlling
          How Child Expressions Are Captured</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains">EDSL
          Interoperatability: Sub-Domains</a></span></dt>
</dl></div>
<p>
          In this section, we'll learn all about <span class="emphasis"><em>domains</em></span>. In
          particular, we'll learn:
        </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
              How to associate Proto expressions with a domain,
            </li>
<li class="listitem">
              How to add members to expressions within a domain,
            </li>
<li class="listitem">
              How to use a <span class="emphasis"><em>generator</em></span> to post-process all new
              expressions created in your domain,
            </li>
<li class="listitem">
              How to control which operators are overloaded in a domain,
            </li>
<li class="listitem">
              How to specify capturing policies for child expressions and non-Proto
              objects, and
            </li>
<li class="listitem">
              How to make expressions from separate domains interoperate.
            </li>
</ul></div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.domains"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.domains" title="Domains">Domains</a>
</h5></div></div></div>
<p>
            In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
            Calculator</a> section, we looked into making calculator expressions
            directly usable as lambda expressions in calls to STL algorithms, as
            below:
          </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">data</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1.</span><span class="special">,</span> <span class="number">2.</span><span class="special">,</span> <span class="number">3.</span><span class="special">,</span> <span class="number">4.</span><span class="special">};</span>

<span class="comment">// Use the calculator EDSL to square each element ... HOW?</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">data</span> <span class="special">+</span> <span class="number">4</span><span class="special">,</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span> <span class="special">);</span>
</pre>
<p>
            The difficulty, if you recall, was that by default Proto expressions
            don't have interesting behaviors of their own. They're just trees. In
            particular, the expression <code class="computeroutput"><span class="identifier">_1</span>
            <span class="special">*</span> <span class="identifier">_1</span></code>
            won't have an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
            that takes a double and returns a double like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">()</span></code> expects -- unless we give it one. To
            make this work, we needed to define an expression wrapper type that defined
            the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
            member function, and we needed to associate the wrapper with the calculator
            <span class="emphasis"><em>domain</em></span>.
          </p>
<p>
            In Proto, the term <span class="emphasis"><em>domain</em></span> refers to a type that
            associates expressions in that domain to an expression <span class="emphasis"><em>generator</em></span>.
            The generator is just a function object that accepts an expression and
            does something to it, like wrapping it in an expression wrapper.
          </p>
<p>
            You can also use a domain to associate expressions with a grammar. When
            you specify a domain's grammar, Proto ensures that all the expressions
            it generates in that domain conform to the domain's grammar. It does
            that by disabling any operator overloads that would create invalid expressions.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends" title="The extends&lt;&gt; Expression Wrapper">The
          <code class="literal">extends&lt;&gt;</code> Expression Wrapper</a>
</h5></div></div></div>
<p>
            The first step to giving your calculator expressions extra behaviors
            is to define a calculator domain. All expressions within the calculator
            domain will be imbued with calculator-ness, as we'll see.
          </p>
<pre class="programlisting"><span class="comment">// A type to be used as a domain tag (to be defined below)</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span><span class="special">;</span>
</pre>
<p>
            We use this domain type when extending the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>
            type, which we do with the <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
            class template. Here is our expression wrapper, which imbues an expression
            with calculator-ness. It is described below.
          </p>
<pre class="programlisting"><span class="comment">// The calculator&lt;&gt; expression wrapper makes expressions</span>
<span class="comment">// function objects.</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">Expr</span> <span class="special">&gt;,</span> <span class="identifier">calculator_domain</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">Expr</span> <span class="special">&gt;,</span> <span class="identifier">calculator_domain</span> <span class="special">&gt;</span>
    <span class="identifier">base_type</span><span class="special">;</span>

    <span class="identifier">calculator</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
      <span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// This is usually needed because by default, the compiler-</span>
    <span class="comment">// generated assignment operator hides extends&lt;&gt;::operator=</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_USING_ASSIGN</span><span class="special">(</span><span class="identifier">calculator</span><span class="special">)</span>

    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Hide base_type::operator() by defining our own which</span>
    <span class="comment">// evaluates the calculator expression with a calculator context.</span>
    <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">// As defined in the Hello Calculator section.</span>
        <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>

        <span class="comment">// ctx.args is a vector&lt;double&gt; that holds the values</span>
        <span class="comment">// with which we replace the placeholders (e.g., _1 and _2)</span>
        <span class="comment">// in the expression.</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">d1</span> <span class="special">);</span> <span class="comment">// _1 gets the value of d1</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">d2</span> <span class="special">);</span> <span class="comment">// _2 gets the value of d2</span>

        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span> <span class="comment">// evaluate the expression</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
            We want calculator expressions to be function objects, so we have to
            define an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
            that takes and returns doubles. The <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> wrapper above does that with
            the help of the <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
            template. The first template to <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
            parameter is the expression type we are extending. The second is the
            type of the wrapped expression. The third parameter is the domain that
            this wrapper is associated with. A wrapper type like <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> that inherits from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code> behaves just like
            the expression type it has extended, with any additional behaviors you
            choose to give it.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Why not just inherit from <code class="literal">proto::expr&lt;&gt;</code>?</strong></span>
            </p>
<p>
              You might be thinking that this expression extension business is unnecessarily
              complicated. After all, isn't this why C++ supports inheritance? Why
              can't <code class="literal">calculator&lt;Expr&gt;</code> just inherit from
              <code class="literal">Expr</code> directly? The reason is because <code class="literal">Expr</code>,
              which presumably is an instantiation of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>,
              has expression template-building operator overloads that will be incorrect
              for derived types. They will store <code class="computeroutput"><span class="special">*</span><span class="keyword">this</span></code> by reference to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;&gt;</span></code>, effectively slicing off any
              derived parts. <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
              gives your derived types operator overloads that don't slice off your
              additional members.
            </p>
</td></tr>
</table></div>
<p>
            Although not strictly necessary in this case, we bring <code class="computeroutput"><span class="identifier">extends</span><span class="special">&lt;&gt;::</span><span class="keyword">operator</span><span class="special">=</span></code>
            into scope with the <code class="computeroutput"><span class="identifier">BOOST_PROTO_EXTENDS_USING_ASSIGN</span><span class="special">()</span></code> macro. This is really only necessary
            if you want expressions like <code class="computeroutput"><span class="identifier">_1</span>
            <span class="special">=</span> <span class="number">3</span></code>
            to create a lazily evaluated assignment. <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
            defines the appropriate <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code> for you, but the compiler-generated
            <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;::</span><span class="keyword">operator</span><span class="special">=</span></code>
            will hide it unless you make it available with the macro.
          </p>
<p>
            Note that in the implementation of <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;::</span><span class="keyword">operator</span><span class="special">()</span></code>, we evaluate the expression with the
            <code class="computeroutput"><span class="identifier">calculator_context</span></code> we
            defined earlier. As we saw before, the context is what gives the operators
            their meaning. In the case of the calculator, the context is also what
            defines the meaning of the placeholder terminals.
          </p>
<p>
            Now that we have defined the <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> expression wrapper, we need to
            wrap the placeholders to imbue them with calculator-ness:
          </p>
<pre class="programlisting"><span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
</pre>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends.retaining_pod_ness_with__literal_boost_proto_extends____literal_"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends.retaining_pod_ness_with__literal_boost_proto_extends____literal_">Retaining
            POD-ness with <code class="literal">BOOST_PROTO_EXTENDS()</code></a>
          </h6>
<p>
            To use <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>, your extension type
            must derive from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>.
            Unfortunately, that means that your extension type is no longer POD and
            its instances cannot be <span class="emphasis"><em>statically initialized</em></span>.
            (See the <a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">Static
            Initialization</a> section in the <a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix C: Rationale">Rationale</a>
            appendix for why this matters.) In particular, as defined above, the
            global placeholder objects <code class="computeroutput"><span class="identifier">_1</span></code>
            and <code class="computeroutput"><span class="identifier">_2</span></code> will need to be
            initialized at runtime, which could lead to subtle order of initialization
            bugs.
          </p>
<p>
            There is another way to make an expression extension that doesn't sacrifice
            POD-ness : the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
            macro. You can use it much like you use <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>.
            We can use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
            to keep <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code>
            a POD and our placeholders statically initialized.
          </p>
<pre class="programlisting"><span class="comment">// The calculator&lt;&gt; expression wrapper makes expressions</span>
<span class="comment">// function objects.</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">{</span>
    <span class="comment">// Use BOOST_PROTO_EXTENDS() instead of proto::extends&lt;&gt; to</span>
    <span class="comment">// make this type a Proto expression extension.</span>
    <span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">)</span>

    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">/* ... as before ... */</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
            With the new <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> type, we can redefine our placeholders
            to be statically initialized:
          </p>
<pre class="programlisting"><span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{{}}};</span>
<span class="identifier">calculator</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{{}}};</span>
</pre>
<p>
            We need to make one additional small change to accommodate the POD-ness
            of our expression extension, which we'll describe below in the section
            on expression generators.
          </p>
<p>
            What does <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
            do? It defines a data member of the expression type being extended; some
            nested typedefs that Proto requires; <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>, <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code> and <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> overloads for building expression templates;
            and a nested <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code>
            template for calculating the return type of <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>. In this case, however, the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
            overloads and the <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code> template are not needed because
            we are defining our own <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> in the <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> type. Proto provides additional
            macros for finer control over which member functions are defined. We
            could improve our <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> type as follows:
          </p>
<pre class="programlisting"><span class="comment">// The calculator&lt;&gt; expression wrapper makes expressions</span>
<span class="comment">// function objects.</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">{</span>
    <span class="comment">// Use BOOST_PROTO_BASIC_EXTENDS() instead of proto::extends&lt;&gt; to</span>
    <span class="comment">// make this type a Proto expression extension:</span>
    <span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">)</span>

    <span class="comment">// Define operator[] to build expression templates:</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_SUBSCRIPT</span><span class="special">()</span>

    <span class="comment">// Define operator= to build expression templates:</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_ASSIGN</span><span class="special">()</span>

    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">/* ... as before ... */</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
            Notice that we are now using <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>
            instead of <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>.
            This just adds the data member and the nested typedefs but not any of
            the overloaded operators. Those are added separately with <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>
            and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>.
            We are leaving out the function call operator and the nested <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code>
            template that could have been defined with Proto's <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code>
            macro.
          </p>
<p>
            In summary, here are the macros you can use to define expression extensions,
            and a brief description of each.
          </p>
<div class="table">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.extends.t0"></a><p class="title"><b>Table&#160;32.2.&#160;Expression Extension Macros</b></p>
<div class="table-contents"><table class="table" summary="Expression Extension Macros">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      Macro
                    </p>
                  </th>
<th>
                    <p>
                      Purpose
                    </p>
                  </th>
</tr></thead>
<tbody>
<tr>
<td>
                    <p>
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code><span class="special">(</span>
    <em class="replaceable"><code>expression</code></em>
  <span class="special">,</span> <em class="replaceable"><code>extension</code></em>
  <span class="special">,</span> <em class="replaceable"><code>domain</code></em>
<span class="special">)</span></pre>
<p>
                    </p>
                  </td>
<td>
                    <p>
                      Defines a data member of type <code class="computeroutput"><em class="replaceable"><code>expression</code></em></code>
                      and some nested typedefs that Proto requires.
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>
                    </p>
                  </td>
<td>
                    <p>
                      Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>. Only valid when preceded
                      by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>
                    </p>
                  </td>
<td>
                    <p>
                      Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code>. Only valid when preceded
                      by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code>
                    </p>
                  </td>
<td>
                    <p>
                      Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> and a nested <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code>
                      template for return type calculation. Only valid when preceded
                      by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code><span class="special">(</span>
    <em class="replaceable"><code>expression</code></em>
  <span class="special">,</span> <em class="replaceable"><code>extension</code></em>
  <span class="special">,</span> <em class="replaceable"><code>domain</code></em>
<span class="special">)</span></pre>
<p>
                    </p>
                  </td>
<td>
                    <p>
                      Equivalent to:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code><span class="special">(</span><em class="replaceable"><code>expression</code></em><span class="special">,</span> <em class="replaceable"><code>extension</code></em><span class="special">,</span> <em class="replaceable"><code>domain</code></em><span class="special">)</span>

  <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>

  <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>

  <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code></pre>
<p>
                    </p>
                  </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../doc/src/images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Argument-Dependent Lookup and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code></strong></span>
            </p>
<p>
              Proto's operator overloads are defined in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
              namespace and are found by argument-dependent lookup (ADL). This usually
              just works because expressions are made up of types that live in the
              <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> namespace. However, sometimes
              when you use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
              that is not the case. Consider:
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">my_complex</span>
<span class="special">{</span>
    <span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span>
        <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
      <span class="special">,</span> <span class="identifier">my_complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span>
    <span class="special">)</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">my_complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">c0</span><span class="special">,</span> <span class="identifier">c1</span><span class="special">;</span>

    <span class="identifier">c0</span> <span class="special">+</span> <span class="identifier">c1</span><span class="special">;</span> <span class="comment">// ERROR: operator+ not found</span>
<span class="special">}</span>
</pre>
<p>
            </p>
<p>
              The problem has to do with how argument-dependent lookup works. The
              type <code class="computeroutput"><span class="identifier">my_complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>
              is not associated in any way with the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
              namespace, so the operators defined there are not considered. (Had
              we inherited from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
              instead of used <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>,
              we would have avoided the problem because inheriting from a type in
              <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> namespace is enough to get
              ADL to kick in.)
            </p>
<p>
              So what can we do? By adding an extra dummy template parameter that
              defaults to a type in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
              namespace, we can trick ADL into finding the right operator overloads.
              The solution looks like this:
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Dummy</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_proto_expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">my_complex</span>
<span class="special">{</span>
    <span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span>
        <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
      <span class="special">,</span> <span class="identifier">my_complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span>
    <span class="special">)</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">my_complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">c0</span><span class="special">,</span> <span class="identifier">c1</span><span class="special">;</span>

    <span class="identifier">c0</span> <span class="special">+</span> <span class="identifier">c1</span><span class="special">;</span> <span class="comment">// OK, operator+ found now!</span>
<span class="special">}</span>
</pre>
<p>
            </p>
<p>
              The type <code class="computeroutput"><a class="link" href="../boost/proto/is_proto_expr.html" title="Struct is_proto_expr">proto::is_proto_expr</a></code> is nothing
              but an empty struct, but by making it a template parameter we make
              <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> an associated namespace of
              <code class="computeroutput"><span class="identifier">my_complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>.
              Now ADL can successfully find Proto's operator overloads.
            </p>
</td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.expression_generators"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.expression_generators" title="Expression Generators">Expression
          Generators</a>
</h5></div></div></div>
<p>
            The last thing that remains to be done is to tell Proto that it needs
            to wrap all of our calculator expressions in our <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> wrapper. We have already wrapped
            the placeholders, but we want <span class="emphasis"><em>all</em></span> expressions that
            involve the calculator placeholders to be calculators. We can do that
            by specifying an expression generator when we define our <code class="computeroutput"><span class="identifier">calculator_domain</span></code>, as follows:
          </p>
<pre class="programlisting"><span class="comment">// Define the calculator_domain we forward-declared above.</span>
<span class="comment">// Specify that all expression in this domain should be wrapped</span>
<span class="comment">// in the calculator&lt;&gt; expression wrapper.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span> <span class="identifier">calculator</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The first template parameter to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;&gt;</span></code> is the generator. "Generator"
            is just a fancy name for a function object that accepts an expression
            and does something to it. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;&gt;</span></code> is a very simple one --- it wraps
            an expression in the wrapper you specify. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;&gt;</span></code> inherits from its generator parameter,
            so all domains are themselves function objects.
          </p>
<p>
            If we used <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
            to keep our expression extension type POD, then we need to use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special">&lt;&gt;</span></code>
            instead of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;&gt;</span></code>,
            as follows:
          </p>
<pre class="programlisting"><span class="comment">// If calculator&lt;&gt; uses BOOST_PROTO_EXTENDS() instead of </span>
<span class="comment">// use proto::extends&lt;&gt;, use proto::pod_generator&lt;&gt; instead</span>
<span class="comment">// of proto::generator&lt;&gt;.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special">&lt;</span> <span class="identifier">calculator</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            After Proto has calculated a new expression type, it checks the domains
            of the child expressions. They must match. Assuming they do, Proto creates
            the new expression and passes it to <code class="computeroutput"><em class="replaceable"><code>Domain</code></em><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> for any additional processing. If we
            don't specify a generator, the new expression gets passed through unchanged.
            But since we've specified a generator above, <code class="computeroutput"><span class="identifier">calculator_domain</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> returns <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> objects.
          </p>
<p>
            Now we can use calculator expressions as function objects to STL algorithms,
            as follows:
          </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">data</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1.</span><span class="special">,</span> <span class="number">2.</span><span class="special">,</span> <span class="number">3.</span><span class="special">,</span> <span class="number">4.</span><span class="special">};</span>

<span class="comment">// Use the calculator EDSL to square each element ... WORKS! :-)</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">data</span> <span class="special">+</span> <span class="number">4</span><span class="special">,</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span> <span class="special">);</span>
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.inhibiting_overloads"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.inhibiting_overloads" title="Controlling Operator Overloads">Controlling
          Operator Overloads</a>
</h5></div></div></div>
<p>
            By default, Proto defines every possible operator overload for Protofied
            expressions. This makes it simple to bang together an EDSL. In some cases,
            however, the presence of Proto's promiscuous overloads can lead to confusion
            or worse. When that happens, you'll have to disable some of Proto's overloaded
            operators. That is done by defining the grammar for your domain and specifying
            it as the second parameter of the <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>
            template.
          </p>
<p>
            In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
            Calculator</a> section, we saw an example of a Proto grammar, which
            is repeated here:
          </p>
<pre class="programlisting"><span class="comment">// Define the grammar of calculator expressions</span>
<span class="keyword">struct</span> <span class="identifier">calculator_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            We'll have much more to say about grammars in subsequent sections, but
            for now, we'll just say that the <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
            struct describes a subset of all expression types -- the subset that
            comprise valid calculator expressions. We would like to prohibit Proto
            from creating a calculator expression that does not conform to this grammar.
            We do that by changing the definition of the <code class="computeroutput"><span class="identifier">calculator_domain</span></code>
            struct.
          </p>
<pre class="programlisting"><span class="comment">// Define the calculator_domain. Expressions in the calculator</span>
<span class="comment">// domain are wrapped in the calculator&lt;&gt; wrapper, and they must</span>
<span class="comment">// conform to the calculator_grammar:</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span> <span class="identifier">calculator</span> <span class="special">&gt;,</span> <span class="bold"><strong>calculator_grammar</strong></span>  <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The only new addition is <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
            as the second template parameter to the <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>
            template. That has the effect of disabling any of Proto's operator overloads
            that would create an invalid calculator expression.
          </p>
<p>
            Another common use for this feature would be to disable Proto's unary
            <code class="computeroutput"><span class="keyword">operator</span><span class="special">&amp;</span></code>
            overload. It may be surprising for users of your EDSL that they cannot
            take the address of their expressions! You can very easily disable Proto's
            unary <code class="computeroutput"><span class="keyword">operator</span><span class="special">&amp;</span></code>
            overload for your domain with a very simple grammar, as below:
          </p>
<pre class="programlisting"><span class="comment">// For expressions in my_domain, disable Proto's</span>
<span class="comment">// unary address-of operator.</span>
<span class="keyword">struct</span> <span class="identifier">my_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span> <span class="identifier">my_wrapper</span> <span class="special">&gt;</span>
        <span class="comment">// A simple grammar that matches any expression that</span>
        <span class="comment">// is not a unary address-of expression.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special">&lt;</span>
            <span class="identifier">_</span> <span class="special">&gt;</span>
            <span class="special">&gt;</span></code> is a very simple grammar
            that matches all expressions except unary address-of expressions. In
            the section describing Proto's intermediate form, we'll have much more
            to say about grammars.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child" title="Controlling How Child Expressions Are Captured">Controlling
          How Child Expressions Are Captured</a>
</h5></div></div></div>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              This is an advanced topic. Feel free to skip this if you're just getting
              started with Proto.
            </p></td></tr>
</table></div>
<p>
            Proto's operator overloads build expressions from sub-expressions. The
            sub-expressions become children of the new expression. By default, the
            children are stored in the parent by reference. This section describes
            how to change that default.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.primer___literal_as_child__literal__vs___literal_as_expr__literal_"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.primer___literal_as_child__literal__vs___literal_as_expr__literal_">Primer:
            <code class="literal">as_child</code> vs. <code class="literal">as_expr</code></a>
          </h6>
<p>
            Proto lets you independently customize the behavior of <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code>.
            Both accept an object <code class="literal">x</code> and return a Proto expression
            by turning <code class="literal">x</code> it into a Proto terminal if necessary.
            Although similar, the two functions are used in different situations
            and have subtly different behavior by default. It's important to understand
            the difference so that you know which to customize to achieve the behavior
            you want.
          </p>
<p>
            To wit: <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code> is typically used by
            <span class="emphasis"><em>you</em></span> to turn an object into a Proto expression that
            is to be held in a local variable, as so:
          </p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">x</span><span class="special">);</span> <span class="comment">// Turn x into a Proto expression, hold the result in a local</span>
</pre>
<p>
            The above works regardless of whether <code class="computeroutput"><span class="identifier">x</span></code>
            is already a Proto expression or not. The object <code class="computeroutput"><span class="identifier">l</span></code>
            is guaranteed to be a valid Proto expression. If <code class="computeroutput"><span class="identifier">x</span></code>
            is a non-Proto object, it is turned into a terminal expression that holds
            <code class="computeroutput"><span class="identifier">x</span></code> <span class="emphasis"><em>by value</em></span>.<a href="#ftn.boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.f0" class="footnote" name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.f0"><sup class="footnote">[28]</sup></a> If <code class="computeroutput"><span class="identifier">x</span></code> is a
            Proto object already, <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code>
            returns it <span class="emphasis"><em>by value</em></span> unmodified.
          </p>
<p>
            In contrast, <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
            is used internally by Proto to pre-process objects before making them
            children of another expression. Since it's internal to Proto, you don't
            see it explicitly, but it's there behind the scenes in expressions like
            this:
          </p>
<pre class="programlisting"><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">y</span><span class="special">;</span> <span class="comment">// Consider that y is a Proto expression, but x may or may not be.</span>
</pre>
<p>
            In this case, Proto builds a plus node from the two children. Both are
            pre-processed by passing them to <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
            before making them children of the new node. If <code class="computeroutput"><span class="identifier">x</span></code>
            is not a Proto expression, it becomes one by being wrapped in a Proto
            terminal that holds it <span class="emphasis"><em>by reference</em></span>. If <code class="computeroutput"><span class="identifier">x</span></code> is already a Proto expression, <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code> returns it <span class="emphasis"><em>by
            reference</em></span> unmodified. Contrast this with the above description
            for <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code>.
          </p>
<p>
            The table below summarizes the above description.
          </p>
<div class="table">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.t0"></a><p class="title"><b>Table&#160;32.3.&#160;proto::as_expr() vs. proto::as_child()</b></p>
<div class="table-contents"><table class="table" summary="proto::as_expr() vs. proto::as_child()">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      <span class="bold"><strong>Function</strong></span>
                    </p>
                  </th>
<th>
                    <p>
                      <span class="bold"><strong>When <code class="literal">t</code> is not a Proto
                      expr...</strong></span>
                    </p>
                  </th>
<th>
                    <p>
                      <span class="bold"><strong>When <code class="literal">t</code> is a Proto
                      expr...</strong></span>
                    </p>
                  </th>
</tr></thead>
<tbody>
<tr>
<td>
                    <p>
                      <code class="literal">proto::as_expr(t)</code>
                    </p>
                  </td>
<td>
                    <p>
                      Return (by value) a new Proto terminal holding <code class="literal">t</code>
                      by value.
                    </p>
                  </td>
<td>
                    <p>
                      Return <code class="literal">t</code> by value unmodified.
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="literal">proto::as_child(t)</code>
                    </p>
                  </td>
<td>
                    <p>
                      Return (by value) a new Proto terminal holding <code class="literal">t</code>
                      by reference.
                    </p>
                  </td>
<td>
                    <p>
                      Return <code class="literal">t</code> by reference unmodified.
                    </p>
                  </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              There is one important place where Proto uses both <code class="computeroutput"><span class="identifier">as_expr</span></code>
              <span class="emphasis"><em>and</em></span> <code class="computeroutput"><span class="identifier">as_child</span></code>:
              <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>. The <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code> function requires
              you to specify for each child whether it should be held by value or
              by reference. Proto uses <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code>
              to pre-process the children to be held by value, and <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code> for the ones to be
              held by reference.
            </p></td></tr>
</table></div>
<p>
            Now that you know what <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
            and <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code> are, where they are
            used, and what they do by default, you may decide that one or both of
            these functions should have different behavior for your domain. For instance,
            given the above description of <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>,
            the following code is always wrong:
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
<span class="keyword">auto</span> <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span> <span class="comment">// This is WRONG! Don't do this.</span>
</pre>
<p>
            Why is this wrong? Because <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
            will turn the integer literal 42 into a Proto terminal that holds a reference
            to a temporary integer initialized with 42. The lifetime of that temporary
            ends at the semicolon, guaranteeing that the local <code class="computeroutput"><span class="identifier">l</span></code>
            is left holding a dangling reference to a deceased integer. What to do?
            One answer is to use <code class="computeroutput"><a class="link" href="../boost/proto/deep_copy_idp727047232.html" title="Function template deep_copy">proto::deep_copy()</a></code>.
            Another is to customize the behavior of <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>
            for your domain. Read on for the details.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.h1"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.per_domain__literal_as_child__literal_"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.per_domain__literal_as_child__literal_">Per-Domain
            <code class="literal">as_child</code></a>
          </h6>
<p>
            To control how Proto builds expressions out of sub-expressions in your
            domain, define your domain as usual, and then define a nested <code class="computeroutput"><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code>
            class template within it, as follows:
          </p>
<pre class="programlisting"><span class="keyword">class</span> <span class="identifier">my_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">my_generator</span><span class="special">,</span> <span class="identifier">my_grammar</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// Here is where you define how Proto should handle</span>
    <span class="comment">// sub-expressions that are about to be glommed into</span>
    <span class="comment">// a larger expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">as_child</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="emphasis"><em><code class="literal">unspecified-Proto-expr-type</code></em></span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="identifier">T</span> <span class="special">&amp;</span> <span class="identifier">t</span> <span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="emphasis"><em><code class="literal">unspecified-Proto-expr-object</code></em></span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>
<span class="special">};</span>
</pre>
<p>
            There's one important thing to note: in the above code, the template
            parameter <code class="literal">T</code> may or may not be a Proto expression type,
            but the result <span class="emphasis"><em>must</em></span> be a Proto expression type,
            or a reference to one. That means that most user-defined <code class="literal">as_child&lt;&gt;</code>
            templates will need to check whether <code class="literal">T</code> is an expression
            or not (using <code class="computeroutput"><a class="link" href="../boost/proto/is_expr.html" title="Struct template is_expr">proto::is_expr&lt;&gt;</a></code>), and then turn non-expressions
            into Proto terminals by wrapping them as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="comment">/* ... */</span>
            <span class="special">&gt;::</span><span class="identifier">type</span></code>
            or equivalent.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.h2"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.per_domain__literal_as_expr__literal_"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.per_domain__literal_as_expr__literal_">Per-Domain
            <code class="literal">as_expr</code></a>
          </h6>
<p>
            Although less common, Proto also lets you customize the behavior of
            <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code> on a per-domain basis.
            The technique is identical to that for <code class="literal">as_child</code>. See
            below:
          </p>
<pre class="programlisting"><span class="keyword">class</span> <span class="identifier">my_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">my_generator</span><span class="special">,</span> <span class="identifier">my_grammar</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// Here is where you define how Proto should handle</span>
    <span class="comment">// objects that are to be turned into expressions</span>
    <span class="comment">// fit for storage in local variables.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">as_expr</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="emphasis"><em><code class="literal">unspecified-Proto-expr-type</code></em></span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="identifier">T</span> <span class="special">&amp;</span> <span class="identifier">t</span> <span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="emphasis"><em><code class="literal">unspecified-Proto-expr-object</code></em></span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>
<span class="special">};</span>
</pre>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.h3"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.making_proto_expressions__literal_auto__literal__safe"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.making_proto_expressions__literal_auto__literal__safe">Making
            Proto Expressions <code class="literal">auto</code>-safe</a>
          </h6>
<p>
            Let's look again at the problem described above involving the C++11
            <code class="computeroutput"><span class="keyword">auto</span></code> keyword and the default
            behavior of <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code>.
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
<span class="keyword">auto</span> <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span> <span class="comment">// This is WRONG! Don't do this.</span>
</pre>
<p>
            Recall that the problem is the lifetime of the temporary integer created
            to hold the value 42. The local <code class="computeroutput"><span class="identifier">l</span></code>
            will be left holding a dangling reference to it after its lifetime is
            over. What if we want Proto to make expressions safe to store this way
            in local variables? We can do so very easily by making <code class="computeroutput"><a class="link" href="../boost/proto/as_child_idp731140288.html" title="Function as_child">proto::as_child()</a></code> behave just like <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code>. The following code
            achieves this:
          </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">E</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">my_expr</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">my_generator</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special">&lt;</span> <span class="identifier">my_expr</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">my_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span> <span class="identifier">my_generator</span> <span class="special">&gt;</span>
<span class="special">{</span>
     <span class="comment">// Make as_child() behave like as_expr() in my_domain.</span>
     <span class="comment">// (proto_base_domain is a typedef for proto::domain&lt; my_generator &gt;</span>
     <span class="comment">// that is defined in proto::domain&lt;&gt;.)</span>
     <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span>
     <span class="keyword">struct</span> <span class="identifier">as_child</span>
       <span class="special">:</span> <span class="identifier">proto_base_domain</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span> <span class="identifier">T</span> <span class="special">&gt;</span>
     <span class="special">{};</span>
<span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">E</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">my_expr</span>
<span class="special">{</span>
    <span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span> <span class="identifier">E</span><span class="special">,</span> <span class="identifier">my_expr</span><span class="special">&lt;</span> <span class="identifier">E</span> <span class="special">&gt;,</span> <span class="identifier">my_domain</span> <span class="special">)</span>
<span class="special">};</span>

<span class="comment">/* ... */</span>

<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span> <span class="keyword">int</span><span class="special">,</span> <span class="identifier">my_domain</span> <span class="special">&gt;</span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
<span class="keyword">auto</span> <span class="identifier">l</span> <span class="special">=</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span> <span class="comment">// OK! Everything is stored by value here.</span>
</pre>
<p>
            Notice that <code class="computeroutput"><span class="identifier">my_domain</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code> simply defers to the default
            implementation of <code class="computeroutput"><span class="identifier">as_expr</span><span class="special">&lt;&gt;</span></code> found in <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>.
            By simply cross-wiring our domain's <code class="computeroutput"><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code> to <code class="computeroutput"><span class="identifier">as_expr</span><span class="special">&lt;&gt;</span></code>, we guarantee that all terminals
            that can be held by value are, and that all child expressions are also
            held by value. This increases copying and may incur a runtime performance
            cost, but it eliminates any spector of lifetime management issues.
          </p>
<p>
            For another example, see the definition of <code class="computeroutput"><span class="identifier">lldomain</span></code>
            in <code class="literal">libs/proto/example/lambda.hpp</code>. That example is
            a complete reimplementation of the Boost Lambda Library (BLL) on top
            of Boost.Proto. The function objects the BLL generates are safe to be
            stored in local variables. To emulate this with Proto, the <code class="computeroutput"><span class="identifier">lldomain</span></code> cross-wires <code class="computeroutput"><span class="identifier">as_child</span><span class="special">&lt;&gt;</span></code>
            to <code class="computeroutput"><span class="identifier">as_expr</span><span class="special">&lt;&gt;</span></code>
            as above, but with one extra twist: objects with array type are also
            stored by reference. Check it out.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains" title="EDSL Interoperatability: Sub-Domains">EDSL
          Interoperatability: Sub-Domains</a>
</h5></div></div></div>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              This is an advanced topic. Feel free to skip this if you're just getting
              started with Proto.
            </p></td></tr>
</table></div>
<p>
            The ability to <span class="emphasis"><em>compose</em></span> different EDSLs is one of
            their most exciting features. Consider how you build a parser using yacc.
            You write your grammar rules in yacc's domain-specific language. Then
            you embed semantic actions written in C within your grammar. Boost's
            Spirit parser generator gives you the same ability. You write grammar
            rules using Spirit.Qi and embed semantic actions using the Phoenix library.
            Phoenix and Spirit are both Proto-based domain-specific languages with
            their own distinct syntax and semantics. But you can freely embed Phoenix
            expressions within Spirit expressions. This section describes Proto's
            <span class="emphasis"><em>sub-domain</em></span> feature that lets you define families
            of interoperable domains.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.dueling_domains"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.dueling_domains">Dueling
            Domains</a>
          </h6>
<p>
            When you try to create an expression from two sub-expressions in different
            domains, what is the domain of the resulting expression? This is the
            fundamental problem that is addressed by sub-domains. Consider the following
            code:
          </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>

<span class="comment">// Forward-declare two expression wrappers</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">spirit_expr</span><span class="special">;</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">phoenix_expr</span><span class="special">;</span>

<span class="comment">// Define two domains</span>
<span class="keyword">struct</span> <span class="identifier">spirit_domain</span>  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">spirit_expr</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">phoenix_domain</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">phoenix_expr</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">{};</span>

<span class="comment">// Implement the two expression wrappers</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">spirit_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">spirit_expr</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">&gt;,</span> <span class="identifier">spirit_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">spirit_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">e</span> <span class="special">=</span> <span class="identifier">E</span><span class="special">())</span> <span class="special">:</span> <span class="identifier">spirit_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">e</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">phoenix_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">phoenix_expr</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">&gt;,</span> <span class="identifier">phoenix_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">phoenix_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">e</span> <span class="special">=</span> <span class="identifier">E</span><span class="special">())</span> <span class="special">:</span> <span class="identifier">phoenix_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">e</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="identifier">spirit_domain</span><span class="special">&gt;</span> <span class="identifier">sp</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="identifier">phoenix_domain</span><span class="special">&gt;</span> <span class="identifier">phx</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>

    <span class="comment">// Whoops! What does it mean to add two expressions in different domains?</span>
    <span class="identifier">sp</span> <span class="special">+</span> <span class="identifier">phx</span><span class="special">;</span> <span class="comment">// ERROR</span>
<span class="special">}</span>
</pre>
<p>
            Above, we define two domains called <code class="computeroutput"><span class="identifier">spirit_domain</span></code>
            and <code class="computeroutput"><span class="identifier">phoenix_domain</span></code> and
            declare two int literals in each. Then we try to compose them into a
            larger expression using Proto's binary plus operator, and it fails. Proto
            can't figure out whether the resulting expression should be in the Spirit
            domain or the Phoenix domain, and thus whether it should be an instance
            of <code class="computeroutput"><span class="identifier">spirit_expr</span><span class="special">&lt;&gt;</span></code>
            or <code class="computeroutput"><span class="identifier">phoenix_expr</span><span class="special">&lt;&gt;</span></code>.
            We have to tell Proto how to resolve the conflict. We can do that by
            declaring that Phoenix is a sub-domain of Spirit as in the following
            definition of <code class="computeroutput"><span class="identifier">phoenix_domain</span></code>:
          </p>
<pre class="programlisting"><span class="comment">// Declare that phoenix_domain is a sub-domain of spirit_domain</span>
<span class="keyword">struct</span> <span class="identifier">phoenix_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">phoenix_expr</span><span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <span class="bold"><strong>spirit_domain</strong></span><span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The third template parameter to <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>
            is the super-domain. By defining <code class="computeroutput"><span class="identifier">phoenix_domain</span></code>
            as above, we are saying that Phoenix expressions can be combined with
            Spirit expressions, and that when that happens, the resulting expression
            should be a Spirit expression.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              If you are wondering what the purpose of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
              is in the definition of <code class="computeroutput"><span class="identifier">phoenix_domain</span></code>
              above, recall that the second template parameter to <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain&lt;&gt;</a></code>
              is the domain's grammar. <span class="quote">&#8220;<span class="quote"><code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code></span>&#8221;</span>
              is the default and signifies that the domain places no restrictions
              on the expressions that are valid within it.
            </p></td></tr>
</table></div>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.h1"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.domain_resolution"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.domain_resolution">Domain
            Resolution</a>
          </h6>
<p>
            When there are multiple domains in play within a given expression, Proto
            uses some rules to figure out which domain "wins". The rules
            are loosely modeled on the rules for C++ inheritance. <code class="computeroutput"><span class="identifier">Phoenix_domain</span></code>
            is a sub-domain of <code class="computeroutput"><span class="identifier">spirit_domain</span></code>.
            You can liken that to a derived/base relationship that gives Phoenix
            expressions a kind of implicit conversion to Spirit expressions. And
            since Phoenix expressions can be "converted" to Spirit expressions,
            they can be freely combined with Spirit expressions and the result is
            a Spirit expression.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              Super- and sub-domains are not actually implemented using inheritance.
              This is only a helpful mental model.
            </p></td></tr>
</table></div>
<p>
            The analogy with inheritance holds even in the case of three domains
            when two are sub-domains of the third. Imagine another domain called
            <code class="computeroutput"><span class="identifier">foobar_domain</span></code> that was
            also a sub-domain of <code class="computeroutput"><span class="identifier">spirit_domain</span></code>.
            Expressions in the <code class="computeroutput"><span class="identifier">foobar_domain</span></code>
            could be combined with expressions in the <code class="computeroutput"><span class="identifier">phoenix_domain</span></code>
            and the resulting expression would be in the <code class="computeroutput"><span class="identifier">spirit_domain</span></code>.
            That's because expressions in the two sub-domains both have "conversions"
            to the super-domain, so the operation is allowed and the super-domain
            wins.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.h2"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.the_default_domain"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.the_default_domain">The
            Default Domain</a>
          </h6>
<p>
            When you don't assign a Proto expression to a particular domain, Proto
            considers it a member of the so-called default domain, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span></code>. Even non-Proto objects
            are treated as terminals in the default domain. Consider:
          </p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">,</span> <span class="identifier">spirit_domain</span><span class="special">&gt;</span> <span class="identifier">sp</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>

    <span class="comment">// Add 1 to a spirit expression. Result is a spirit expression.</span>
    <span class="identifier">sp</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
            Expressions in the default domain (or non-expressions like <code class="literal">1</code>)
            have a kind of implicit conversion to expressions every other domain
            type. What's more, you can define your domain to be a sub-domain of the
            default domain. In so doing, you give expressions in your domain conversions
            to expressions in every other domain. This is like a <span class="quote">&#8220;<span class="quote">free love</span>&#8221;</span>
            domain, because it will freely mix with all other domains.
          </p>
<p>
            Let's think again about the Phoenix EDSL. Since it provides generally
            useful lambda functionality, it's reasonable to assume that lots of other
            EDSLs besides Spirit might want the ability to embed Phoenix expressions.
            In other words, <code class="computeroutput"><span class="identifier">phoenix_domain</span></code>
            should be a sub-domain of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span></code>,
            not <code class="computeroutput"><span class="identifier">spirit_domain</span></code>:
          </p>
<pre class="programlisting"><span class="comment">// Declare that phoenix_domain is a sub-domain of proto::default_domain</span>
<span class="keyword">struct</span> <span class="identifier">phoenix_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">phoenix_expr</span><span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span><span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            That's much better. Phoenix expressions can now be put anywhere.
          </p>
<h6>
<a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.h3"></a>
            <span class="phrase"><a name="boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.sub_domain_summary"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.subdomains.sub_domain_summary">Sub-Domain
            Summary</a>
          </h6>
<p>
            Use Proto sub-domains to make it possible to mix expressions from multiple
            domains. And when you want expressions in your domain to freely combine
            with <span class="emphasis"><em>all</em></span> expressions, make it a sub-domain of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span></code>.
          </p>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.define_operators"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.define_operators" title="Adapting Existing Types to Proto">Adapting
        Existing Types to Proto</a>
</h4></div></div></div>
<p>
          The preceding discussions of defining Proto front ends have all made a
          big assumption: that you have the luxury of defining everything from scratch.
          What happens if you have existing types, say a matrix type and a vector
          type, that you would like to treat as if they were Proto terminals? Proto
          usually trades only in its own expression types, but with <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>,
          it can accomodate your custom terminal types, too.
        </p>
<p>
          Let's say, for instance, that you have the following types and that you
          can't modify then to make them <span class="quote">&#8220;<span class="quote">native</span>&#8221;</span> Proto terminal types.
        </p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">math</span>
<span class="special">{</span>
    <span class="comment">// A matrix type ...</span>
    <span class="keyword">struct</span> <span class="identifier">matrix</span> <span class="special">{</span> <span class="comment">/*...*/</span> <span class="special">};</span>

    <span class="comment">// A vector type ...</span>
    <span class="keyword">struct</span> <span class="identifier">vector</span> <span class="special">{</span> <span class="comment">/*...*/</span> <span class="special">};</span>
<span class="special">}</span>
</pre>
<p>
          You can non-intrusively make objects of these types Proto terminals by
          defining the proper operator overloads using <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>.
          The basic procedure is as follows:
        </p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
              Define a trait that returns true for your types and false for all others.
            </li>
<li class="listitem">
              Reopen the namespace of your types and use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>
              to define a set of operator overloads, passing the name of the trait
              as the first macro parameter, and the name of a Proto domain (e.g.,
              <code class="computeroutput"><a class="link" href="../boost/proto/default_domain.html" title="Struct default_domain">proto::default_domain</a></code>)
              as the second.
            </li>
</ol></div>
<p>
          The following code demonstrates how it works.
        </p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">math</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">is_terminal</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
    <span class="special">{};</span>

    <span class="comment">// OK, "matrix" is a custom terminal type</span>
    <span class="keyword">template</span><span class="special">&lt;&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">is_terminal</span><span class="special">&lt;</span><span class="identifier">matrix</span><span class="special">&gt;</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
    <span class="special">{};</span>

    <span class="comment">// OK, "vector" is a custom terminal type</span>
    <span class="keyword">template</span><span class="special">&lt;&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">is_terminal</span><span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&gt;</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
    <span class="special">{};</span>

    <span class="comment">// Define all the operator overloads to construct Proto</span>
    <span class="comment">// expression templates, treating "matrix" and "vector"</span>
    <span class="comment">// objects as if they were Proto terminals.</span>
    <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">is_terminal</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span><span class="special">)</span>
<span class="special">}</span>
</pre>
<p>
          The invocation of the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>
          macro defines a complete set of operator overloads that treat <code class="computeroutput"><span class="identifier">matrix</span></code> and <code class="computeroutput"><span class="identifier">vector</span></code>
          objects as if they were Proto terminals. And since the operators are defined
          in the same namespace as the <code class="computeroutput"><span class="identifier">matrix</span></code>
          and <code class="computeroutput"><span class="identifier">vector</span></code> types, the operators
          will be found by argument-dependent lookup. With the code above, we can
          now construct expression templates with matrices and vectors, as shown
          below.
        </p>
<pre class="programlisting"><span class="identifier">math</span><span class="special">::</span><span class="identifier">matrix</span> <span class="identifier">m1</span><span class="special">;</span>
<span class="identifier">math</span><span class="special">::</span><span class="identifier">vector</span> <span class="identifier">v1</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>

<span class="identifier">m1</span> <span class="special">*</span> <span class="number">1</span><span class="special">;</span>  <span class="comment">// custom terminal and literals are OK</span>
<span class="identifier">m1</span> <span class="special">*</span> <span class="identifier">i</span><span class="special">;</span>  <span class="comment">// custom terminal and Proto expressions are OK</span>
<span class="identifier">m1</span> <span class="special">*</span> <span class="identifier">v1</span><span class="special">;</span> <span class="comment">// two custom terminals are OK, too.</span>
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.code_repetition"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.code_repetition" title="Generating Repetitive Code with the Preprocessor">Generating
        Repetitive Code with the Preprocessor</a>
</h4></div></div></div>
<p>
          Sometimes as an EDSL designer, to make the lives of your users easy, you
          have to make your own life hard. Giving your users natural and flexible
          syntax often involves writing large numbers of repetitive function overloads.
          It can be enough to give you repetitive stress injury! Before you hurt
          yourself, check out the macros Proto provides for automating many repetitive
          code-generation chores.
        </p>
<p>
          Imagine that we are writing a lambda EDSL, and we would like to enable
          syntax for constructing temporary objects of any type using the following
          syntax:
        </p>
<pre class="programlisting"><span class="comment">// A lambda expression that takes two arguments and</span>
<span class="comment">// uses them to construct a temporary std::complex&lt;&gt;</span>
<span class="identifier">construct</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="special">&gt;(</span> <span class="identifier">_1</span><span class="special">,</span> <span class="identifier">_2</span> <span class="special">)</span>
</pre>
<p>
          For the sake of the discussion, imagine that we already have a function
          object template <code class="computeroutput"><span class="identifier">construct_impl</span><span class="special">&lt;&gt;</span></code> that accepts arguments and constructs
          new objects from them. We would want the above lambda expression to be
          equivalent to the following:
        </p>
<pre class="programlisting"><span class="comment">// The above lambda expression should be roughly equivalent</span>
<span class="comment">// to the following:</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">&gt;(</span>
    <span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="special">&gt;()</span> <span class="comment">// The function to invoke lazily</span>
  <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">_1</span><span class="special">)</span>                       <span class="comment">// The first argument to the function</span>
  <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">_2</span><span class="special">)</span>                       <span class="comment">// The second argument to the function</span>
<span class="special">);</span>
</pre>
<p>
          We can define our <code class="computeroutput"><span class="identifier">construct</span><span class="special">()</span></code> function template as follows:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>
  <span class="special">,</span> <span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>
  <span class="special">,</span> <span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;</span>
  <span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a1</span><span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">&gt;(</span>
        <span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;()</span>
      <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a0</span><span class="special">)</span>
      <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a1</span><span class="special">)</span>
    <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
          This works for two arguments, but we would like it to work for any number
          of arguments, up to ( <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>
          - 1). (Why "- 1"? Because one child is taken up by the <code class="computeroutput"><span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;()</span></code>
          terminal leaving room for only ( <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>
          - 1) other children.)
        </p>
<p>
          For cases like this, Proto provides the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
          and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>
          macros. To use it, we turn the function definition above into a macro as
          follows:
        </p>
<pre class="programlisting"><span class="preprocessor">#define</span> <span class="identifier">M0</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">ref_a</span><span class="special">)</span>  <span class="special">\</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)&gt;</span>                           <span class="special">\</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>                         <span class="special">\</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>                                      <span class="special">\</span>
  <span class="special">,</span> <span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>                                         <span class="special">\</span>
  <span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span>                                            <span class="special">\</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span>                                                 <span class="special">\</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span>                                   <span class="special">\</span>
<span class="special">{</span>                                                             <span class="special">\</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">&gt;(</span>            <span class="special">\</span>
        <span class="identifier">construct_impl</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;()</span>                                   <span class="special">\</span>
      <span class="special">,</span> <span class="identifier">ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span>                                              <span class="special">\</span>
    <span class="special">);</span>                                                        <span class="special">\</span>
<span class="special">}</span>
</pre>
<p>
          Notice that we turned the function into a macro that takes 5 arguments.
          The first is the current iteration number. The rest are the names of other
          macros that generate different sequences. For instance, Proto passes as
          the second parameter the name of a macro that will expand to <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">,</span> <span class="special">...</span></code>.
        </p>
<p>
          Now that we have turned our function into a macro, we can pass the macro
          to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>.
          Proto will invoke it iteratively, generating all the function overloads
          for us.
        </p>
<pre class="programlisting"><span class="comment">// Generate overloads of construct() that accept from</span>
<span class="comment">// 1 to BOOST_PROTO_MAX_ARITY-1 arguments:</span>
<span class="identifier">BOOST_PROTO_REPEAT_FROM_TO</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">BOOST_PROTO_MAX_ARITY</span><span class="special">,</span> <span class="identifier">M0</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">M0</span>
</pre>
<h6>
<a name="boost_proto.users_guide.front_end.code_repetition.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.front_end.code_repetition.non_default_sequences"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.code_repetition.non_default_sequences">Non-Default
          Sequences</a>
        </h6>
<p>
          As mentioned above, Proto passes as the last 4 arguments to your macro
          the names of other macros that generate various sequences. The macros
          <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
          and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>
          select defaults for these parameters. If the defaults do not meet your
          needs, you can use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_EX.html" title="Macro BOOST_PROTO_REPEAT_EX">BOOST_PROTO_REPEAT_EX</a></code>()</code>
          and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO_EX.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO_EX">BOOST_PROTO_REPEAT_FROM_TO_EX</a></code>()</code>
          and pass different macros that generate different sequences. Proto defines
          a number of such macros for use as parameters to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_EX.html" title="Macro BOOST_PROTO_REPEAT_EX">BOOST_PROTO_REPEAT_EX</a></code>()</code>
          and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO_EX.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO_EX">BOOST_PROTO_REPEAT_FROM_TO_EX</a></code>()</code>.
          Check the reference section for <code class="computeroutput"><a class="link" href="reference.html#header.boost.proto.repeat_hpp" title="Header &lt;boost/proto/repeat.hpp&gt;">boost/proto/repeat.hpp</a></code>
          for all the details.
        </p>
<p>
          Also, check out <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_LOCAL_ITERATE.html" title="Macro BOOST_PROTO_LOCAL_ITERATE">BOOST_PROTO_LOCAL_ITERATE</a></code>()</code>.
          It works similarly to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
          and friends, but it can be easier to use when you want to change one macro
          argument and accept defaults for the others.
        </p>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.intermediate_form"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form" title="Intermediate Form: Understanding and Introspecting Expressions">Intermediate
      Form: Understanding and Introspecting Expressions</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child">Accessing
        Parts of an Expression</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.deep_copying_expressions">Deep-copying
        Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.debugging_expressions">Debugging
        Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.tags_and_metafunctions">Operator
        Tags and Metafunctions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences">Expressions
        as Fusion Sequences</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection">Expression
        Introspection: Defining a Grammar</a></span></dt>
</dl></div>
<p>
        By now, you know a bit about how to build a front-end for your EDSL "compiler"
        -- you can define terminals and functions that generate expression templates.
        But we haven't said anything about the expression templates themselves. What
        do they look like? What can you do with them? In this section we'll see.
      </p>
<h5>
<a name="boost_proto.users_guide.intermediate_form.h0"></a>
        <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.the__literal_expr_lt__gt___literal__type"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.the__literal_expr_lt__gt___literal__type">The
        <code class="literal">expr&lt;&gt;</code> Type</a>
      </h5>
<p>
        All Proto expressions are an instantiation of a template called <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> (or a wrapper around
        such an instantiation). When we define a terminal as below, we are really
        initializing an instance of the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>
        template.
      </p>
<pre class="programlisting"><span class="comment">// Define a placeholder type</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>

<span class="comment">// Define the Protofied placeholder terminal</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
</pre>
<p>
        The actual type of <code class="computeroutput"><span class="identifier">_1</span></code> looks
        like this:
      </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;,</span> <span class="number">0</span> <span class="special">&gt;</span>
</pre>
<p>
        The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> template is the most
        important type in Proto. Although you will rarely need to deal with it directly,
        it's always there behind the scenes holding your expression trees together.
        In fact, <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> <span class="emphasis"><em>is</em></span>
        the expression tree -- branches, leaves and all.
      </p>
<p>
        The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> template makes up the
        nodes in expression trees. The first template parameter is the node type;
        in this case, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span></code>.
        That means that <code class="computeroutput"><span class="identifier">_1</span></code> is a leaf-node
        in the expression tree. The second template parameter is a list of child
        types, or in the case of terminals, the terminal's value type. Terminals
        will always have only one type in the type list. The last parameter is the
        arity of the expression. Terminals have arity 0, unary expressions have arity
        1, etc.
      </p>
<p>
        The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> struct is defined as
        follows:
      </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Args</span><span class="special">,</span> <span class="keyword">long</span> <span class="identifier">Arity</span> <span class="special">=</span> <span class="identifier">Args</span><span class="special">::</span><span class="identifier">arity</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">expr</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Args</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">expr</span><span class="special">&lt;</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="identifier">Args</span><span class="special">,</span> <span class="number">1</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">Args</span><span class="special">::</span><span class="identifier">child0</span> <span class="identifier">proto_child0</span><span class="special">;</span>
    <span class="identifier">proto_child0</span> <span class="identifier">child0</span><span class="special">;</span>
    <span class="comment">// ...</span>
<span class="special">};</span>
</pre>
<p>
        The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> struct does not define
        a constructor, or anything else that would prevent static initialization.
        All <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code> objects are initialized
        using <span class="emphasis"><em>aggregate initialization</em></span>, with curly braces. In
        our example, <code class="computeroutput"><span class="identifier">_1</span></code> is initialized
        with the initializer <code class="computeroutput"><span class="special">{{}}</span></code>. The
        outer braces are the initializer for the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>
        struct, and the inner braces are for the member <code class="computeroutput"><span class="identifier">_1</span><span class="special">.</span><span class="identifier">child0</span></code>
        which is of type <code class="computeroutput"><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span></code>.
        Note that we use braces to initialize <code class="computeroutput"><span class="identifier">_1</span><span class="special">.</span><span class="identifier">child0</span></code>
        because <code class="computeroutput"><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span></code> is also
        an aggregate.
      </p>
<h5>
<a name="boost_proto.users_guide.intermediate_form.h1"></a>
        <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.building_expression_trees"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.building_expression_trees">Building
        Expression Trees</a>
      </h5>
<p>
        The <code class="computeroutput"><span class="identifier">_1</span></code> node is an instantiation
        of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>, and expressions containing
        <code class="computeroutput"><span class="identifier">_1</span></code> are also instantiations
        of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr&lt;&gt;</a></code>. To use Proto effectively,
        you won't have to bother yourself with the actual types that Proto generates.
        These are details, but you're likely to encounter these types in compiler
        error messages, so it's helpful to be familiar with them. The types look
        like this:
      </p>
<pre class="programlisting"><span class="comment">// The type of the expression -_1</span>
<span class="keyword">typedef</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">list1</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span>
              <span class="special">,</span> <span class="number">0</span>
            <span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="number">1</span>
    <span class="special">&gt;</span>
<span class="identifier">negate_placeholder_type</span><span class="special">;</span>

<span class="identifier">negate_placeholder_type</span> <span class="identifier">x</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">_1</span><span class="special">;</span>

<span class="comment">// The type of the expression _1 + 42</span>
<span class="keyword">typedef</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">list2</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span>
              <span class="special">,</span> <span class="number">0</span>
            <span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special">&lt;</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="special">&gt;</span>
              <span class="special">,</span> <span class="number">0</span>
            <span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="number">2</span>
    <span class="special">&gt;</span>
<span class="identifier">placeholder_plus_int_type</span><span class="special">;</span>

<span class="identifier">placeholder_plus_int_type</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">_1</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span>
</pre>
<p>
        There are a few things to note about these types:
      </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
            Terminals have arity zero, unary expressions have arity one and binary
            expressions have arity two.
          </li>
<li class="listitem">
            When one Proto expression is made a child node of another Proto expression,
            it is held by reference, <span class="emphasis"><em>even if it is a temporary object</em></span>.
            This last point becomes important later.
          </li>
<li class="listitem">
            Non-Proto expressions, such as the integer literal, are turned into Proto
            expressions by wrapping them in new <code class="computeroutput"><span class="identifier">expr</span><span class="special">&lt;&gt;</span></code> terminal objects. These new wrappers
            are not themselves held by reference, but the object wrapped <span class="emphasis"><em>is</em></span>.
            Notice that the type of the Protofied <code class="computeroutput"><span class="number">42</span></code>
            literal is <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
            <span class="special">&amp;</span></code> -- held by reference.
          </li>
</ul></div>
<p>
        The types make it clear: everything in a Proto expression tree is held by
        reference. That means that building an expression tree is exceptionally cheap.
        It involves no copying at all.
      </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
          An astute reader will notice that the object <code class="computeroutput"><span class="identifier">y</span></code>
          defined above will be left holding a dangling reference to a temporary
          int. In the sorts of high-performance applications Proto addresses, it
          is typical to build and evaluate an expression tree before any temporary
          objects go out of scope, so this dangling reference situation often doesn't
          arise, but it is certainly something to be aware of. Proto provides utilities
          for deep-copying expression trees so they can be passed around as value
          types without concern for dangling references.
        </p></td></tr>
</table></div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.left_right_child"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child" title="Accessing Parts of an Expression">Accessing
        Parts of an Expression</a>
</h4></div></div></div>
<p>
          After assembling an expression into a tree, you'll naturally want to be
          able to do the reverse, and access a node's children. You may even want
          to be able to iterate over the children with algorithms from the Boost.Fusion
          library. This section shows how.
        </p>
<h6>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_expression_tags_and_arities"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_expression_tags_and_arities">Getting
          Expression Tags and Arities</a>
        </h6>
<p>
          Every node in an expression tree has both a <span class="emphasis"><em>tag</em></span> type
          that describes the node, and an <span class="emphasis"><em>arity</em></span> corresponding
          to the number of child nodes it has. You can use the <code class="computeroutput"><a class="link" href="../boost/proto/tag_of.html" title="Struct template tag_of">proto::tag_of&lt;&gt;</a></code>
          and <code class="computeroutput"><a class="link" href="../boost/proto/arity_of.html" title="Struct template arity_of">proto::arity_of&lt;&gt;</a></code> metafunctions to fetch
          them. Consider the following:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">check_plus_node</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;)</span>
<span class="special">{</span>
    <span class="comment">// Assert that the tag type is proto::tag::plus</span>
    <span class="identifier">BOOST_STATIC_ASSERT</span><span class="special">((</span>
        <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span>
            <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span>
        <span class="special">&gt;::</span><span class="identifier">value</span>
    <span class="special">));</span>

    <span class="comment">// Assert that the arity is 2</span>
    <span class="identifier">BOOST_STATIC_ASSERT</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">arity_of</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">==</span> <span class="number">2</span> <span class="special">);</span>
<span class="special">}</span>

<span class="comment">// Create a binary plus node and use check_plus_node()</span>
<span class="comment">// to verify its tag type and arity:</span>
<span class="identifier">check_plus_node</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
          For a given type <code class="computeroutput"><span class="identifier">Expr</span></code>,
          you could access the tag and arity directly as <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span></code>
          and <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span></code>, where <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span></code>
          is an MPL Integral Constant.
        </p>
<h6>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.h1"></a>
          <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_terminal_values"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_terminal_values">Getting
          Terminal Values</a>
        </h6>
<p>
          There is no simpler expression than a terminal, and no more basic operation
          than extracting its value. As we've already seen, that is what <code class="computeroutput"><a class="link" href="../boost/proto/value_idp731209856.html" title="Function value">proto::value()</a></code> is for.
        </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>

<span class="comment">// Get the value of the cout_ terminal:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="identifier">sout</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">);</span>

<span class="comment">// Assert that we got back what we put in:</span>
<span class="identifier">assert</span><span class="special">(</span> <span class="special">&amp;</span><span class="identifier">sout</span> <span class="special">==</span> <span class="special">&amp;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">);</span>
</pre>
<p>
          To compute the return type of the <code class="computeroutput"><a class="link" href="../boost/proto/value_idp731209856.html" title="Function value">proto::value()</a></code>
          function, you can use <code class="computeroutput"><a class="link" href="../boost/proto/result_of/value.html" title="Struct template value">proto::result_of::value&lt;&gt;</a></code>.
          When the parameter to <code class="computeroutput"><a class="link" href="../boost/proto/result_of/value.html" title="Struct template value">proto::result_of::value&lt;&gt;</a></code>
          is a non-reference type, the result type of the metafunction is the type
          of the value as suitable for storage by value; that is, top-level reference
          and qualifiers are stripped from it. But when instantiated with a reference
          type, the result type has a reference <span class="emphasis"><em>added</em></span> to it,
          yielding a type suitable for storage by reference. If you want to know
          the actual type of the terminal's value including whether it is stored
          by value or reference, you can use <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;::</span><span class="identifier">type</span></code>.
        </p>
<p>
          The following table summarizes the above paragraph.
        </p>
<div class="table">
<a name="boost_proto.users_guide.intermediate_form.left_right_child.t0"></a><p class="title"><b>Table&#160;32.4.&#160;Accessing Value Types</b></p>
<div class="table-contents"><table class="table" summary="Accessing Value Types">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                  <p>
                    Metafunction Invocation
                  </p>
                </th>
<th>
                  <p>
                    When the Value Type Is ...
                  </p>
                </th>
<th>
                  <p>
                    The Result Is ...
                  </p>
                </th>
</tr></thead>
<tbody>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special">&lt;</span>
    <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <a href="#ftn.boost_proto.users_guide.intermediate_form.left_right_child.f0" class="footnote" name="boost_proto.users_guide.intermediate_form.left_right_child.f0"><sup class="footnote">[a]</sup></a></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="special">&amp;&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="keyword">const</span>
                    <span class="special">&amp;&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special">&lt;</span>
    <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span>
                    <span class="number">0</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
</tr>
</tbody>
<tbody class="footnotes"><tr><td colspan="3"><div id="ftn.boost_proto.users_guide.intermediate_form.left_right_child.f0" class="footnote"><p><a href="#boost_proto.users_guide.intermediate_form.left_right_child.f0" class="para"><sup class="para">[a] </sup></a>If <code class="computeroutput"><span class="identifier">T</span></code> is a reference-to-function type, then the result type is simply <code class="computeroutput"><span class="identifier">T</span></code>.</p></div></td></tr></tbody>
</table></div>
</div>
<br class="table-break"><h6>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.h2"></a>
          <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_child_expressions"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_child_expressions">Getting
          Child Expressions</a>
        </h6>
<p>
          Each non-terminal node in an expression tree corresponds to an operator
          in an expression, and the children correspond to the operands, or arguments
          of the operator. To access them, you can use the <code class="computeroutput"><a class="link" href="../boost/proto/child_c_idp731190800.html" title="Function child_c">proto::child_c()</a></code>
          function template, as demonstrated below:
        </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>

<span class="comment">// Get the 0-th operand of an addition operation:</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&amp;</span><span class="identifier">ri</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>

<span class="comment">// Assert that we got back what we put in:</span>
<span class="identifier">assert</span><span class="special">(</span> <span class="special">&amp;</span><span class="identifier">i</span> <span class="special">==</span> <span class="special">&amp;</span><span class="identifier">ri</span> <span class="special">);</span>
</pre>
<p>
          You can use the <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c&lt;&gt;</a></code>
          metafunction to get the type of the Nth child of an expression node. Usually
          you don't care to know whether a child is stored by value or by reference,
          so when you ask for the type of the Nth child of an expression <code class="computeroutput"><span class="identifier">Expr</span></code> (where <code class="computeroutput"><span class="identifier">Expr</span></code>
          is not a reference type), you get the child's type after references and
          cv-qualifiers have been stripped from it.
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">test_result_of_child_c</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">type</span><span class="special">;</span>

    <span class="comment">// Since Expr is not a reference type,</span>
    <span class="comment">// result_of::child_c&lt;Expr, 0&gt;::type is a</span>
    <span class="comment">// non-cv qualified, non-reference type:</span>
    <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span>
        <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span> <span class="identifier">type</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span>
    <span class="special">));</span>
<span class="special">}</span>

<span class="comment">// ...</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>
<span class="identifier">test_result_of_child_c</span><span class="special">(</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
          However, if you ask for the type of the Nth child of <code class="computeroutput"><span class="identifier">Expr</span>
          <span class="special">&amp;</span></code> or <code class="computeroutput"><span class="identifier">Expr</span>
          <span class="keyword">const</span> <span class="special">&amp;</span></code>
          (note the reference), the result type will be a reference, regardless of
          whether the child is actually stored by reference or not. If you need to
          know exactly how the child is stored in the node, whether by reference
          or by value, you can use <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span></code>. The following table summarizes
          the behavior of the <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c&lt;&gt;</a></code>
          metafunction.
        </p>
<div class="table">
<a name="boost_proto.users_guide.intermediate_form.left_right_child.t1"></a><p class="title"><b>Table&#160;32.5.&#160;Accessing Child Types</b></p>
<div class="table-contents"><table class="table" summary="Accessing Child Types">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                  <p>
                    Metafunction Invocation
                  </p>
                </th>
<th>
                  <p>
                    When the Child Is ...
                  </p>
                </th>
<th>
                  <p>
                    The Result Is ...
                  </p>
                </th>
</tr></thead>
<tbody>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span>
                    <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special">&lt;</span>
    <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="special">&amp;,</span>
                    <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="keyword">const</span>
                    <span class="special">&amp;,</span> <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special">&lt;</span>
    <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span></pre>
<p>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span>
                    <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">T</span></code>
                  </p>
                </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><h6>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.h3"></a>
          <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.left_right_child.common_shortcuts"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.common_shortcuts">Common
          Shortcuts</a>
        </h6>
<p>
          Most operators in C++ are unary or binary, so accessing the only operand,
          or the left and right operands, are very common operations. For this reason,
          Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/child_idp731162304.html" title="Function child">proto::child()</a></code>,
          <code class="computeroutput"><a class="link" href="../boost/proto/left_idp731222320.html" title="Function left">proto::left()</a></code>, and <code class="computeroutput"><a class="link" href="../boost/proto/right_idp731236800.html" title="Function right">proto::right()</a></code>
          functions. <code class="computeroutput"><a class="link" href="../boost/proto/child_idp731162304.html" title="Function child">proto::child()</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/left_idp731222320.html" title="Function left">proto::left()</a></code>
          are synonymous with <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;()</span></code>,
          and <code class="computeroutput"><a class="link" href="../boost/proto/right_idp731236800.html" title="Function right">proto::right()</a></code> is synonymous with <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;()</span></code>.
        </p>
<p>
          There are also <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child.html" title="Struct template child">proto::result_of::child&lt;&gt;</a></code>,
          <code class="computeroutput"><a class="link" href="../boost/proto/result_of/left.html" title="Struct template left">proto::result_of::left&lt;&gt;</a></code>, and <code class="computeroutput"><a class="link" href="../boost/proto/result_of/right.html" title="Struct template right">proto::result_of::right&lt;&gt;</a></code>
          metafunctions that merely forward to their <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c&lt;&gt;</a></code>
          counterparts.
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.deep_copying_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.deep_copying_expressions" title="Deep-copying Expressions">Deep-copying
        Expressions</a>
</h4></div></div></div>
<p>
          When you build an expression template with Proto, all the intermediate
          child nodes are held <span class="emphasis"><em>by reference</em></span>. The avoids needless
          copies, which is crucial if you want your EDSL to perform well at runtime.
          Naturally, there is a danger if the temporary objects go out of scope before
          you try to evaluate your expression template. This is especially a problem
          in C++0x with the new <code class="computeroutput"><span class="keyword">decltype</span></code>
          and <code class="computeroutput"><span class="keyword">auto</span></code> keywords. Consider:
        </p>
<pre class="programlisting"><span class="comment">// OOPS: "ex" is left holding dangling references</span>
<span class="keyword">auto</span> <span class="identifier">ex</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span><span class="special">;</span>
</pre>
<p>
          The problem can happen in today's C++ also if you use <code class="computeroutput"><span class="identifier">BOOST_TYPEOF</span><span class="special">()</span></code> or <code class="computeroutput"><span class="identifier">BOOST_AUTO</span><span class="special">()</span></code>, or if you try to pass an expression
          template outside the scope of its constituents.
        </p>
<p>
          In these cases, you want to deep-copy your expression template so that
          all intermediate nodes and the terminals are held <span class="emphasis"><em>by value</em></span>.
          That way, you can safely assign the expression template to a local variable
          or return it from a function without worrying about dangling references.
          You can do this with <code class="computeroutput"><a class="link" href="../boost/proto/deep_copy_idp727047232.html" title="Function template deep_copy">proto::deep_copy()</a></code>
          as fo llows:
        </p>
<pre class="programlisting"><span class="comment">// OK, "ex" has no dangling references</span>
<span class="keyword">auto</span> <span class="identifier">ex</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">deep_copy</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
          If you are using <a href="../../../libs/typeof/index.html" target="_top">Boost.Typeof</a>,
          it would look like this:
        </p>
<pre class="programlisting"><span class="comment">// OK, use BOOST_AUTO() and proto::deep_copy() to</span>
<span class="comment">// store an expression template in a local variable </span>
<span class="identifier">BOOST_AUTO</span><span class="special">(</span> <span class="identifier">ex</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">deep_copy</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">)</span> <span class="special">);</span>
</pre>
<p>
          For the above code to work, you must include the <code class="computeroutput"><a class="link" href="reference.html#header.boost.proto.proto_typeof_hpp" title="Header &lt;boost/proto/proto_typeof.hpp&gt;">boost/proto/proto_typeof.hpp</a></code>
          header, which also defines the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_AUTO.html" title="Macro BOOST_PROTO_AUTO">BOOST_PROTO_AUTO</a></code>()</code>
          macro which automatically deep-copies its argument. With <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_AUTO.html" title="Macro BOOST_PROTO_AUTO">BOOST_PROTO_AUTO</a></code>()</code>, the above
          code can be writen as:
        </p>
<pre class="programlisting"><span class="comment">// OK, BOOST_PROTO_AUTO() automatically deep-copies</span>
<span class="comment">// its argument: </span>
<span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span> <span class="identifier">ex</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
          When deep-copying an expression tree, all intermediate nodes and all terminals
          are stored by value. The only exception is terminals that are function
          references, which are left alone.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            <code class="computeroutput"><a class="link" href="../boost/proto/deep_copy_idp727047232.html" title="Function template deep_copy">proto::deep_copy()</a></code> makes no exception for
            arrays, which it stores by value. That can potentially cause a large
            amount of data to be copied.
          </p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.debugging_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.debugging_expressions" title="Debugging Expressions">Debugging
        Expressions</a>
</h4></div></div></div>
<p>
          Proto provides a utility for pretty-printing expression trees that comes
          in very handy when you're trying to debug your EDSL. It's called <code class="computeroutput"><a class="link" href="../boost/proto/display_expr_idp726944752.html" title="Function display_expr">proto::display_expr()</a></code>, and you pass it the expression
          to print and optionally, an <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>
          to which to send the output. Consider:
        </p>
<pre class="programlisting"><span class="comment">// Use display_expr() to pretty-print an expression tree</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">+</span> <span class="number">42</span>
<span class="special">);</span>
</pre>
<p>
          The above code writes this to <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>:
        </p>
<pre class="programlisting">plus(
    terminal(hello)
  , terminal(42)
)</pre>
<p>
          In order to call <code class="computeroutput"><a class="link" href="../boost/proto/display_expr_idp726944752.html" title="Function display_expr">proto::display_expr()</a></code>,
          all the terminals in the expression must be Streamable (that is, they can
          be written to a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>). In addition, the tag types
          must all be Streamable as well. Here is an example that includes a custom
          terminal type and a custom tag:
        </p>
<pre class="programlisting"><span class="comment">// A custom tag type that is Streamable</span>
<span class="keyword">struct</span> <span class="identifier">MyTag</span>
<span class="special">{</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">MyTag</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">s</span> <span class="special">&lt;&lt;</span> <span class="string">"MyTag"</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Some other Streamable type</span>
<span class="keyword">struct</span> <span class="identifier">MyTerminal</span>
<span class="special">{</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">MyTerminal</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">s</span> <span class="special">&lt;&lt;</span> <span class="string">"MyTerminal"</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Display an expression tree that contains a custom</span>
    <span class="comment">// tag and a user-defined type in a terminal</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">MyTag</span><span class="special">&gt;(</span><span class="identifier">MyTerminal</span><span class="special">())</span> <span class="special">+</span> <span class="number">42</span>
    <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
          The above code prints the following:
        </p>
<pre class="programlisting">plus(
    MyTag(
        terminal(MyTerminal)
    )
  , terminal(42)
)</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.tags_and_metafunctions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.tags_and_metafunctions" title="Operator Tags and Metafunctions">Operator
        Tags and Metafunctions</a>
</h4></div></div></div>
<p>
          The following table lists the overloadable C++ operators, the Proto tag
          types for each, and the name of the metafunctions for generating the corresponding
          Proto expression types. And as we'll see later, the metafunctions are also
          usable as grammars for matching such nodes, as well as pass-through transforms.
        </p>
<div class="table">
<a name="boost_proto.users_guide.intermediate_form.tags_and_metafunctions.t0"></a><p class="title"><b>Table&#160;32.6.&#160;Operators, Tags and Metafunctions</b></p>
<div class="table-contents"><table class="table" summary="Operators, Tags and Metafunctions">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                  <p>
                    Operator
                  </p>
                </th>
<th>
                  <p>
                    Proto Tag
                  </p>
                </th>
<th>
                  <p>
                    Proto Metafunction
                  </p>
                </th>
</tr></thead>
<tbody>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">+</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">unary_plus</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">-</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">*</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">dereference</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">dereference</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">~</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">complement</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">&amp;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">address_of</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary <code class="computeroutput"><span class="special">!</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_not</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_not</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary prefix <code class="computeroutput"><span class="special">++</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">pre_inc</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_inc</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary prefix <code class="computeroutput"><span class="special">--</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">pre_dec</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_dec</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary postfix <code class="computeroutput"><span class="special">++</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">post_inc</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_inc</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    unary postfix <code class="computeroutput"><span class="special">--</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">post_dec</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_dec</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&lt;&lt;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&gt;&gt;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">*</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">/</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">%</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">+</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">-</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&lt;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">less</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&gt;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">greater</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&lt;=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">less_equal</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less_equal</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&gt;=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">greater_equal</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater_equal</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">==</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">equal_to</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">equal_to</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">!=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">not_equal_to</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_equal_to</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">||</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_or</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&amp;&amp;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_and</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&amp;</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">|</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">^</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">,</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">comma</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">comma</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">-&gt;*</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">mem_ptr</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">mem_ptr</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&lt;&lt;=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&gt;&gt;=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">*=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">/=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">%=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">+=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">-=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">&amp;=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">|=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary <code class="computeroutput"><span class="special">^=</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    binary subscript
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">subscript</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">subscript</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    ternary <code class="computeroutput"><span class="special">?:</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">if_else_</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_else_</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    n-ary function call
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code>
                  </p>
                </td>
<td>
                  <p>
                    <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;&gt;</span></code>
                  </p>
                </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences" title="Expressions as Fusion Sequences">Expressions
        as Fusion Sequences</a>
</h4></div></div></div>
<p>
          Boost.Fusion is a library of iterators, algorithms, containers and adaptors
          for manipulating heterogeneous sequences. In essence, a Proto expression
          is just a heterogeneous sequence of its child expressions, and so Proto
          expressions are valid Fusion random-access sequences. That means you can
          apply Fusion algorithms to them, transform them, apply Fusion filters and
          views to them, and access their elements using <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">at</span><span class="special">()</span></code>. The things Fusion can do to heterogeneous
          sequences are beyond the scope of this users' guide, but below is a simple
          example. It takes a lazy function invocation like <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">)</span></code>
          and uses Fusion to print the function arguments in order.
        </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">display</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">t</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">fun_t</span> <span class="special">{};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">fun_t</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">fun</span> <span class="special">=</span> <span class="special">{{}};</span>

<span class="comment">// ...</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
    <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
        <span class="comment">// pop_front() removes the "fun" child</span>
        <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">pop_front</span><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">))</span>
        <span class="comment">// Extract the ints from the terminal nodes</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
    <span class="special">)</span>
  <span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
          Recall from the Introduction that types in the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span></code>
          namespace define function objects that correspond to Proto's free functions.
          So <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code>
          creates a function object that is equivalent to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> function. The above invocation of <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">()</span></code>
          displays the following:
        </p>
<pre class="programlisting">1
2
3
4
</pre>
<p>
          Terminals are also valid Fusion sequences. They contain exactly one element:
          their value.
        </p>
<h6>
<a name="boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences.h0"></a>
          <span class="phrase"><a name="boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences.flattening_proto_expression_tress"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences.flattening_proto_expression_tress">Flattening
          Proto Expression Tress</a>
        </h6>
<p>
          Imagine a slight variation of the above example where, instead of iterating
          over the arguments of a lazy function invocation, we would like to iterate
          over the terminals in an addition expression:
        </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>

<span class="comment">// ERROR: this doesn't work! Why?</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
    <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
        <span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="number">4</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
    <span class="special">)</span>
  <span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
          The reason this doesn't work is because the expression <code class="computeroutput"><span class="identifier">_1</span>
          <span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span>
          <span class="number">4</span></code> does not describe a flat sequence
          of terminals --- it describes a binary tree. We can treat it as a flat
          sequence of terminals, however, using Proto's <code class="computeroutput"><a class="link" href="../boost/proto/flatten_idp728095472.html" title="Function flatten">proto::flatten()</a></code>
          function. <code class="computeroutput"><a class="link" href="../boost/proto/flatten_idp728095472.html" title="Function flatten">proto::flatten()</a></code> returns a view which makes
          a tree appear as a flat Fusion sequence. If the top-most node has a tag
          type <code class="computeroutput"><span class="identifier">T</span></code>, then the elements
          of the flattened sequence are the child nodes that do <span class="emphasis"><em>not</em></span>
          have tag type <code class="computeroutput"><span class="identifier">T</span></code>. This process
          is evaluated recursively. So the above can correctly be written as:
        </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>

<span class="comment">// OK, iterate over a flattened view</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
    <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">flatten</span><span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="number">4</span><span class="special">)</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
    <span class="special">)</span>
  <span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
          The above invocation of <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">()</span></code> displays the following:
        </p>
<pre class="programlisting">1
2
3
4
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection" title="Expression Introspection: Defining a Grammar">Expression
        Introspection: Defining a Grammar</a>
</h4></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.patterns">Finding
          Patterns in Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals">Fuzzy
          and Exact Matches of Terminals</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not"><code class="literal">if_&lt;&gt;</code>,
          <code class="literal">and_&lt;&gt;</code>, and <code class="literal">not_&lt;&gt;</code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.switch">Improving
          Compile Times With <code class="literal">switch_&lt;&gt;</code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions">Matching
          Vararg Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.defining_edsl_grammars">Defining
          EDSL Grammars</a></span></dt>
</dl></div>
<p>
          Expression trees can have a very rich and complicated structure. Often,
          you need to know some things about an expression's structure before you
          can process it. This section describes the tools Proto provides for peering
          inside an expression tree and discovering its structure. And as you'll
          see in later sections, all the really interesting things you can do with
          Proto begin right here.
        </p>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.patterns"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.patterns" title="Finding Patterns in Expressions">Finding
          Patterns in Expressions</a>
</h5></div></div></div>
<p>
            Imagine your EDSL is a miniature I/O facility, with iostream operations
            that execute lazily. You might want expressions representing input operations
            to be processed by one function, and output operations to be processed
            by a different function. How would you do that?
          </p>
<p>
            The answer is to write patterns (a.k.a, <span class="emphasis"><em>grammars</em></span>)
            that match the structure of input and output expressions. Proto provides
            utilities for defining the grammars, and the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code>
            template for checking whether a given expression type matches the grammar.
          </p>
<p>
            First, let's define some terminals we can use in our lazy I/O expressions:
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cin_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cin</span> <span class="special">};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>
</pre>
<p>
            Now, we can use <code class="computeroutput"><span class="identifier">cout_</span></code>
            instead of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>, and get I/O expression trees
            that we can execute later. To define grammars that match input and output
            expressions of the form <code class="computeroutput"><span class="identifier">cin_</span>
            <span class="special">&gt;&gt;</span> <span class="identifier">i</span></code>
            and <code class="computeroutput"><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span>
            <span class="number">1</span></code> we do this:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Input</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&amp;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Output</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            We've seen the template <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;&gt;</span></code> before, but here we're using
            it without accessing the nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>. When used like this, it is a
            very simple grammar, as are <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;&gt;</span></code> and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;&gt;</span></code>. The newcomer here is <code class="computeroutput"><span class="identifier">_</span></code> in the <code class="computeroutput"><span class="identifier">proto</span></code>
            namespace. It is a wildcard that matches anything. The <code class="computeroutput"><span class="identifier">Input</span></code> struct is a grammar that matches
            any right-shift expression that has a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span></code>
            terminal as its left operand.
          </p>
<p>
            We can use these grammars together with the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code>
            template to query at compile time whether a given I/O expression type
            is an input or output operation. Consider the following:
          </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">if</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Input</span> <span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Input!\n"</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">if</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Output</span> <span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Output!\n"</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
    <span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">);</span>
    <span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cin_</span> <span class="special">&gt;&gt;</span> <span class="identifier">i</span> <span class="special">);</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
            This program prints the following:
          </p>
<pre class="programlisting">Output!
Input!
</pre>
<p>
            If we wanted to break the <code class="computeroutput"><span class="identifier">input_output</span><span class="special">()</span></code> function into two functions, one that
            handles input expressions and one for output expressions, we can use
            <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;&gt;</span></code>,
            as follows:
          </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Input</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Input!\n"</span><span class="special">;</span>
<span class="special">}</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Output</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Output!\n"</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
            This works as the previous version did. However, the following does not
            compile at all:
          </p>
<pre class="programlisting"><span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">&lt;&lt;</span> <span class="number">2</span> <span class="special">);</span> <span class="comment">// oops!</span>
</pre>
<p>
            What's wrong? The problem is that this expression does not match our
            grammar. The expression groups as if it were written like <code class="computeroutput"><span class="special">(</span><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="number">1</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="number">2</span></code>. It will not match the <code class="computeroutput"><span class="identifier">Output</span></code> grammar, which expects the left
            operand to be a terminal, not another left-shift operation. We need to
            fix the grammar.
          </p>
<p>
            We notice that in order to verify an expression as input or output, we'll
            need to recurse down to the bottom-left-most leaf and check that it is
            a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span></code> or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>.
            When we get to the terminal, we must stop recursing. We can express this
            in our grammar using <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>.
            Here are the correct <code class="computeroutput"><span class="identifier">Input</span></code>
            and <code class="computeroutput"><span class="identifier">Output</span></code> grammars:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Input</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&amp;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;</span> <span class="identifier">Input</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Output</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span> <span class="identifier">Output</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This may look a little odd at first. We seem to be defining the <code class="computeroutput"><span class="identifier">Input</span></code> and <code class="computeroutput"><span class="identifier">Output</span></code>
            types in terms of themselves. This is perfectly OK, actually. At the
            point in the grammar that the <code class="computeroutput"><span class="identifier">Input</span></code>
            and <code class="computeroutput"><span class="identifier">Output</span></code> types are
            being used, they are <span class="emphasis"><em>incomplete</em></span>, but by the time
            we actually evaluate the grammar with <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code>,
            the types will be complete. These are recursive grammars, and rightly
            so because they must match a recursive data structure!
          </p>
<p>
            Matching an expression such as <code class="computeroutput"><span class="identifier">cout_</span>
            <span class="special">&lt;&lt;</span> <span class="number">1</span>
            <span class="special">&lt;&lt;</span> <span class="number">2</span></code>
            against the <code class="computeroutput"><span class="identifier">Output</span></code> grammar
            procedes as follows:
          </p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
                The first alternate of the <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>
                is tried first. It will fail, because the expression <code class="computeroutput"><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span>
                <span class="number">1</span> <span class="special">&lt;&lt;</span>
                <span class="number">2</span></code> does not match the grammar
                <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span>
                <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span>
                <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span></code>.
              </li>
<li class="listitem">
                Then the second alternate is tried next. We match the expression
                against <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span>
                <span class="identifier">Output</span><span class="special">,</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span></code>.
                The expression is a left-shift, so we next try to match the operands.
              </li>
<li class="listitem">
                The right operand <code class="computeroutput"><span class="number">2</span></code> matches
                <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code> trivially.
              </li>
<li class="listitem">
                To see if the left operand <code class="computeroutput"><span class="identifier">cout_</span>
                <span class="special">&lt;&lt;</span> <span class="number">1</span></code>
                matches <code class="computeroutput"><span class="identifier">Output</span></code>, we
                must recursively evaluate the <code class="computeroutput"><span class="identifier">Output</span></code>
                grammar. This time we succeed, because <code class="computeroutput"><span class="identifier">cout_</span>
                <span class="special">&lt;&lt;</span> <span class="number">1</span></code>
                will match the first alternate of the <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>.
              </li>
</ol></div>
<p>
            We're done -- the grammar matches successfully.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals" title="Fuzzy and Exact Matches of Terminals">Fuzzy
          and Exact Matches of Terminals</a>
</h5></div></div></div>
<p>
            The terminals in an expression tree could be const or non-const references,
            or they might not be references at all. When writing grammars, you usually
            don't have to worry about it because <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code>
            gives you a little wiggle room when matching terminals. A grammar such
            as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>
            will match a terminal of type <code class="computeroutput"><span class="keyword">int</span></code>,
            <code class="computeroutput"><span class="keyword">int</span> <span class="special">&amp;</span></code>,
            or <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
            <span class="special">&amp;</span></code>.
          </p>
<p>
            You can explicitly specify that you want to match a reference type. If
            you do, the type must match exactly. For instance, a grammar such as
            <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="special">&amp;&gt;</span></code>
            will only match an <code class="computeroutput"><span class="keyword">int</span> <span class="special">&amp;</span></code>. It will not match an <code class="computeroutput"><span class="keyword">int</span></code> or an <code class="computeroutput"><span class="keyword">int</span>
            <span class="keyword">const</span> <span class="special">&amp;</span></code>.
          </p>
<p>
            The table below shows how Proto matches terminals. The simple rule is:
            if you want to match only reference types, you must specify the reference
            in your grammar. Otherwise, leave it off and Proto will ignore const
            and references.
          </p>
<div class="table">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals.t0"></a><p class="title"><b>Table&#160;32.7.&#160;proto::matches&lt;&gt; and Reference / CV-Qualification of Terminals</b></p>
<div class="table-contents"><table class="table" summary="proto::matches&lt;&gt; and Reference / CV-Qualification of Terminals">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      Terminal
                    </p>
                  </th>
<th>
                    <p>
                      Grammar
                    </p>
                  </th>
<th>
                    <p>
                      Matches?
                    </p>
                  </th>
</tr></thead>
<tbody>
<tr>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      yes
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      yes
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      yes
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      no
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      yes
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      no
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T
                    </p>
                  </td>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      no
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      no
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      T const &amp;
                    </p>
                  </td>
<td>
                    <p>
                      yes
                    </p>
                  </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
            This begs the question: What if you want to match an <code class="computeroutput"><span class="keyword">int</span></code>,
            but not an <code class="computeroutput"><span class="keyword">int</span> <span class="special">&amp;</span></code>
            or an <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
            <span class="special">&amp;</span></code>? For forcing exact matches,
            Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact&lt;&gt;</a></code>
            template. For instance, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">exact</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="special">&gt;</span></code>
            would only match an <code class="computeroutput"><span class="keyword">int</span></code>
            held by value.
          </p>
<p>
            Proto gives you extra wiggle room when matching array types. Array types
            match themselves or the pointer types they decay to. This is especially
            useful with character arrays. The type returned by <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span></code> is <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]&gt;::</span><span class="identifier">type</span></code>. That's a terminal containing
            a 6-element character array. Naturally, you can match this terminal with
            the grammar <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]&gt;</span></code>,
            but the grammar <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*&gt;</span></code>
            will match it as well, as the following code fragment illustrates.
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">char_array</span><span class="special">;</span>

<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">char_array</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">&gt;</span> <span class="special">));</span>
</pre>
<p>
            What if we only wanted <code class="computeroutput"><span class="identifier">CharString</span></code>
            to match terminals of exactly the type <code class="computeroutput"><span class="keyword">char</span>
            <span class="keyword">const</span> <span class="special">*</span></code>?
            You can use <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact&lt;&gt;</a></code> here to turn off
            the fuzzy matching of terminals, as follows:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">exact</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]&gt;::</span><span class="identifier">type</span> <span class="identifier">char_array</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*&gt;::</span><span class="identifier">type</span>  <span class="identifier">char_string</span><span class="special">;</span>

<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">char_string</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">&gt;</span> <span class="special">));</span>
<span class="identifier">BOOST_MPL_ASSERT_NOT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">char_array</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">&gt;</span> <span class="special">));</span>
</pre>
<p>
            Now, <code class="computeroutput"><span class="identifier">CharString</span></code> does
            not match array types, only character string pointers.
          </p>
<p>
            The inverse problem is a little trickier: what if you wanted to match
            all character arrays, but not character pointers? As mentioned above,
            the expression <code class="computeroutput"><span class="identifier">as_expr</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span></code> has the type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span> <span class="number">6</span> <span class="special">]</span> <span class="special">&gt;::</span><span class="identifier">type</span></code>. If you wanted to match character
            arrays of arbitrary size, you could use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span></code>,
            which is an array-size wildcard. The following grammar would match any
            string literal: <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span> <span class="special">]</span> <span class="special">&gt;</span></code>.
          </p>
<p>
            Sometimes you need even more wiggle room when matching terminals. For
            example, maybe you're building a calculator EDSL and you want to allow
            any terminals that are convertible to <code class="computeroutput"><span class="keyword">double</span></code>.
            For that, Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/convertible_to.html" title="Struct template convertible_to">proto::convertible_to&lt;&gt;</a></code>
            template. You can use it as: <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">convertible_to</span><span class="special">&lt;</span> <span class="keyword">double</span>
            <span class="special">&gt;</span> <span class="special">&gt;</span></code>.
          </p>
<p>
            There is one more way you can perform a fuzzy match on terminals. Consider
            the problem of trying to match a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;&gt;</span></code> terminal. You can easily match
            a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">float</span><span class="special">&gt;</span></code>
            or a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span></code>,
            but how would you match any instantiation of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;&gt;</span></code>? You can use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
            here to solve this problem. Here is the grammar to match any <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;&gt;</span></code>
            instantiation:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">StdComplex</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            When given a grammar like this, Proto will deconstruct the grammar and
            the terminal it is being matched against and see if it can match all
            the constituents.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not" title="if_&lt;&gt;, and_&lt;&gt;, and not_&lt;&gt;"><code class="literal">if_&lt;&gt;</code>,
          <code class="literal">and_&lt;&gt;</code>, and <code class="literal">not_&lt;&gt;</code></a>
</h5></div></div></div>
<p>
            We've already seen how to use expression generators like <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;&gt;</span></code>
            and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;&gt;</span></code>
            as grammars. We've also seen <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>,
            which we can use to express a set of alternate grammars. There are a
            few others of interest; in particular, <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_&lt;&gt;</a></code>,
            <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_&lt;&gt;</a></code>.
          </p>
<p>
            The <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_&lt;&gt;</a></code> template is the simplest.
            It takes a grammar as a template parameter and logically negates it;
            <code class="computeroutput"><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">Grammar</span><span class="special">&gt;</span></code>
            will match any expression that <code class="computeroutput"><span class="identifier">Grammar</span></code>
            does <span class="emphasis"><em>not</em></span> match.
          </p>
<p>
            The <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_&lt;&gt;</a></code> template is used
            together with a Proto transform that is evaluated against expression
            types to find matches. (Proto transforms will be described later.)
          </p>
<p>
            The <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code> template is like
            <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>, except that each
            argument of the <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code> must match in order
            for the <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code> to match. As an example,
            consider the definition of <code class="computeroutput"><span class="identifier">CharString</span></code>
            above that uses <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact&lt;&gt;</a></code>. It could have been
            written without <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact&lt;&gt;</a></code> as follows:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_</span><span class="special">&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">&gt;()</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This says that a <code class="computeroutput"><span class="identifier">CharString</span></code>
            must be a terminal, <span class="emphasis"><em>and</em></span> its value type must be the
            same as <code class="computeroutput"><span class="keyword">char</span> <span class="keyword">const</span>
            <span class="special">*</span></code>. Notice the template argument
            of <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_&lt;&gt;</a></code>: <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">&gt;()</span></code>. This is Proto transform that compares
            the value type of a terminal to <code class="computeroutput"><span class="keyword">char</span>
            <span class="keyword">const</span> <span class="special">*</span></code>.
          </p>
<p>
            The <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_&lt;&gt;</a></code> template has a couple
            of variants. In addition to <code class="computeroutput"><span class="identifier">if_</span><span class="special">&lt;</span><span class="identifier">Condition</span><span class="special">&gt;</span></code> you can also say <code class="computeroutput"><span class="identifier">if_</span><span class="special">&lt;</span><span class="identifier">Condition</span><span class="special">,</span> <span class="identifier">ThenGrammar</span><span class="special">&gt;</span></code> and <code class="computeroutput"><span class="identifier">if_</span><span class="special">&lt;</span><span class="identifier">Condition</span><span class="special">,</span> <span class="identifier">ThenGrammar</span><span class="special">,</span> <span class="identifier">ElseGrammar</span><span class="special">&gt;</span></code>. These let you select one sub-grammar
            or another based on the <code class="computeroutput"><span class="identifier">Condition</span></code>.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.switch"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.switch" title="Improving Compile Times With switch_&lt;&gt;">Improving
          Compile Times With <code class="literal">switch_&lt;&gt;</code></a>
</h5></div></div></div>
<p>
            When your Proto grammar gets large, you'll start to run into some scalability
            problems with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>, the construct you
            use to specify alternate sub-grammars. First, due to limitations in C++,
            <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code> can only accept up
            to a certain number of sub-grammars, controlled by the <code class="computeroutput"><span class="identifier">BOOST_PROTO_MAX_LOGICAL_ARITY</span></code> macro.
            This macro defaults to eight, and you can set it higher, but doing so
            will aggravate another scalability problem: long compile times. With
            <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>, alternate sub-grammars
            are tried in order -- like a series of cascading <code class="computeroutput"><span class="keyword">if</span></code>'s
            -- leading to lots of unnecessary template instantiations. What you would
            prefer instead is something like <code class="computeroutput"><span class="keyword">switch</span></code>
            that avoids the expense of cascading <code class="computeroutput"><span class="keyword">if</span></code>'s.
            That's the purpose of <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>;
            although less convenient than <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>,
            it improves compile times for larger grammars and does not have an arbitrary
            fixed limit on the number of sub-grammars.
          </p>
<p>
            Let's illustrate how to use <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>
            by first writing a big grammar with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>
            and then translating it to an equivalent grammar using <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>:
          </p>
<pre class="programlisting"><span class="comment">// Here is a big, inefficient grammar</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The above might be the grammar to a more elaborate calculator EDSL. Notice
            that since there are more than eight sub-grammars, we had to chain the
            sub-grammars with a nested <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>
            -- not very nice.
          </p>
<p>
            The idea behind <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>
            is to dispatch based on an expression's tag type to a sub-grammar that
            handles expressions of that type. To use <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>,
            you define a struct with a nested <code class="computeroutput"><span class="identifier">case_</span><span class="special">&lt;&gt;</span></code> template, specialized on tag
            types. The above grammar can be expressed using <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code>
            as follows. It is described below.
          </p>
<pre class="programlisting"><span class="comment">// Redefine ABigGrammar more efficiently using proto::switch_&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammar</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
    <span class="comment">// The primary template matches nothing:</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">case_</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
    <span class="special">{};</span>
<span class="special">};</span>

<span class="comment">// Terminal expressions are handled here</span>
<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Non-terminals are handled similarly</span>
<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">complement</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">&lt;</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Define ABigGrammar in terms of ABigGrammarCases</span>
<span class="comment">// using proto::switch_&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special">&lt;</span><span class="identifier">ABigGrammarCases</span><span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Matching an expression type <code class="computeroutput"><span class="identifier">E</span></code>
            against <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special">&lt;</span><span class="identifier">C</span><span class="special">&gt;</span></code>
            is equivalent to matching it against <code class="computeroutput"><span class="identifier">C</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">&gt;</span></code>. By dispatching on the expression's
            tag type, we can jump to the sub-grammar that handles expressions of
            that type, skipping over all the other sub-grammars that couldn't possibly
            match. If there is no specialization of <code class="computeroutput"><span class="identifier">case_</span><span class="special">&lt;&gt;</span></code> for a particular tag type, we
            select the primary template. In this case, the primary template inherits
            from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span></code>
            which matches no expressions.
          </p>
<p>
            Notice the specialization that handles terminals:
          </p>
<pre class="programlisting"><span class="comment">// Terminal expressions are handled here</span>
<span class="keyword">template</span><span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span></code> type by itself isn't enough
            to select an appropriate sub-grammar, so we use <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>
            to list the alternate sub-grammars that match terminals.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              You might be tempted to define your <code class="computeroutput"><span class="identifier">case_</span><span class="special">&lt;&gt;</span></code> specializations <span class="emphasis"><em>in
              situ</em></span> as follows:
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">{};</span>

    <span class="comment">// ERROR: not legal C++</span>
    <span class="keyword">template</span><span class="special">&lt;&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&gt;</span>
      <span class="comment">/* ... */</span>
<span class="special">};</span>
</pre>
<p>
            </p>
<p>
              Unfortunately, for arcane reasons, it is not legal to define an explicit
              nested specialization <span class="emphasis"><em>in situ</em></span> like this. It is,
              however, perfectly legal to define <span class="emphasis"><em>partial</em></span> specializations
              <span class="emphasis"><em>in situ</em></span>, so you can add a extra dummy template
              parameter that has a default, as follows:
            </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
    <span class="comment">// Note extra "Dummy" template parameter here:</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">Dummy</span> <span class="special">=</span> <span class="number">0</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">{};</span>

    <span class="comment">// OK: "Dummy" makes this a partial specialization</span>
    <span class="comment">// instead of an explicit specialization.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">Dummy</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">Dummy</span><span class="special">&gt;</span>
      <span class="comment">/* ... */</span>
<span class="special">};</span>
</pre>
<p>
            </p>
<p>
              You might find this cleaner than defining explicit <code class="computeroutput"><span class="identifier">case_</span><span class="special">&lt;&gt;</span></code> specializations outside of
              their enclosing struct.
            </p>
</td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions" title="Matching Vararg Expressions">Matching
          Vararg Expressions</a>
</h5></div></div></div>
<p>
            Not all of C++'s overloadable operators are unary or binary. There is
            the oddball <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
            -- the function call operator -- which can have any number of arguments.
            Likewise, with Proto you may define your own "operators" that
            could also take more that two arguments. As a result, there may be nodes
            in your Proto expression tree that have an arbitrary number of children
            (up to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>,
            which is configurable). How do you write a grammar to match such a node?
          </p>
<p>
            For such cases, Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg&lt;&gt;</a></code>
            class template. Its template argument is a grammar, and the <code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg&lt;&gt;</a></code> will match the grammar
            zero or more times. Consider a Proto lazy function called <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code>
            that can take zero or more characters as arguments, as follows:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">fun_tag</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">FunTag</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">fun_tag</span> <span class="special">&gt;</span> <span class="special">{};</span>
<span class="identifier">FunTag</span><span class="special">::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">fun</span> <span class="special">=</span> <span class="special">{{}};</span>

<span class="comment">// example usage:</span>
<span class="identifier">fun</span><span class="special">();</span>
<span class="identifier">fun</span><span class="special">(</span><span class="char">'a'</span><span class="special">);</span>
<span class="identifier">fun</span><span class="special">(</span><span class="char">'a'</span><span class="special">,</span> <span class="char">'b'</span><span class="special">);</span>
<span class="special">...</span>
</pre>
<p>
            Below is the grammar that matches all the allowable invocations of <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code>:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">FunCall</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span> <span class="identifier">FunTag</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">char</span> <span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The <code class="computeroutput"><span class="identifier">FunCall</span></code> grammar uses
            <code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg&lt;&gt;</a></code> to match zero or
            more character literals as arguments of the <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code> function.
          </p>
<p>
            As another example, can you guess what the following grammar matches?
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Foo</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span> <span class="identifier">Foo</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Here's a hint: the first template parameter to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;&gt;</span></code> represents the node type, and
            any additional template parameters represent child nodes. The answer
            is that this is a degenerate grammar that matches every possible expression
            tree, from root to leaves.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.defining_edsl_grammars"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.defining_edsl_grammars" title="Defining EDSL Grammars">Defining
          EDSL Grammars</a>
</h5></div></div></div>
<p>
            In this section we'll see how to use Proto to define a grammar for your
            EDSL and use it to validate expression templates, giving short, readable
            compile-time errors for invalid expressions.
          </p>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
              You might think that this is a backwards way of doing things. <span class="quote">&#8220;<span class="quote">If
              Proto let me select which operators to overload, my users wouldn't
              be able to create invalid expressions in the first place, and I wouldn't
              need a grammar at all!</span>&#8221;</span> That may be true, but there are reasons
              for preferring to do things this way.
            </p>
<p>
              First, it lets you develop your EDSL rapidly -- all the operators are
              there for you already! -- and worry about invalid syntax later.
            </p>
<p>
              Second, it might be the case that some operators are only allowed in
              certain contexts within your EDSL. This is easy to express with a grammar,
              and hard to do with straight operator overloading.
            </p>
<p>
              Third, using an EDSL grammar to flag invalid expressions can often
              yield better errors than manually selecting the overloaded operators.
            </p>
<p>
              Fourth, the grammar can be used for more than just validation. You
              can use your grammar to define <span class="emphasis"><em>tree transformations</em></span>
              that convert expression templates into other more useful objects.
            </p>
<p>
              If none of the above convinces you, you actually <span class="emphasis"><em>can</em></span>
              use Proto to control which operators are overloaded within your domain.
              And to do it, you need to define a grammar!
            </p>
</td></tr>
</table></div>
<p>
            In a previous section, we used Proto to define an EDSL for a lazily evaluated
            calculator that allowed any combination of placeholders, floating-point
            literals, addition, subtraction, multiplication, division and grouping.
            If we were to write the grammar for this EDSL in <a href="http://en.wikipedia.org/wiki/Extended_Backus_Naur_Form" target="_top">EBNF</a>,
            it might look like this:
          </p>
<pre class="programlisting">group       ::= '(' expression ')'
factor      ::= double | '_1' | '_2' | group
term        ::= factor (('*' factor) | ('/' factor))*
expression  ::= term (('+' term) | ('-' term))*
</pre>
<p>
            This captures the syntax, associativity and precedence rules of a calculator.
            Writing the grammar for our calculator EDSL using Proto is <span class="emphasis"><em>even
            simpler</em></span>. Since we are using C++ as the host language, we are
            bound to the associativity and precedence rules for the C++ operators.
            Our grammar can assume them. Also, in C++ grouping is already handled
            for us with the use of parenthesis, so we don't have to code that into
            our grammar.
          </p>
<p>
            Let's begin our grammar for forward-declaring it:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span><span class="special">;</span>
</pre>
<p>
            It's an incomplete type at this point, but we'll still be able to use
            it to define the rules of our grammar. Let's define grammar rules for
            the terminals:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Double</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">convertible_to</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Placeholder1</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Placeholder2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Terminal</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span> <span class="identifier">Double</span><span class="special">,</span> <span class="identifier">Placeholder1</span><span class="special">,</span> <span class="identifier">Placeholder2</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Now let's define the rules for addition, subtraction, multiplication
            and division. Here, we can ignore issues of associativity and precedence
            -- the C++ compiler will enforce that for us. We only must enforce that
            the arguments to the operators must themselves conform to the <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code> that we forward-declared
            above.
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Plus</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Minus</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Multiplies</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Divides</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Now that we've defined all the parts of the grammar, we can define <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code>:
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">Terminal</span>
      <span class="special">,</span> <span class="identifier">Plus</span>
      <span class="special">,</span> <span class="identifier">Minus</span>
      <span class="special">,</span> <span class="identifier">Multiplies</span>
      <span class="special">,</span> <span class="identifier">Divides</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            That's it! Now we can use <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code>
            to enforce that an expression template conforms to our grammar. We can
            use <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches&lt;&gt;</a></code> and <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code>
            to issue readable compile-time errors for invalid expressions, as below:
          </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">&gt;</span> <span class="special">));</span>
    <span class="comment">// ...</span>
<span class="special">}</span>
</pre>
</div>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.back_end"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end" title="Back Ends: Making Expression Templates Do Useful Work">Back Ends: Making Expression
      Templates Do Useful Work</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation">Expression
        Evaluation: Imparting Behaviors with a Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation">Expression
        Transformation: Semantic Actions</a></span></dt>
</dl></div>
<p>
        Now that you've written the front end for your EDSL compiler, and you've
        learned a bit about the intermediate form it produces, it's time to think
        about what to <span class="emphasis"><em>do</em></span> with the intermediate form. This is
        where you put your domain-specific algorithms and optimizations. Proto gives
        you two ways to evaluate and manipulate expression templates: contexts and
        transforms.
      </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
            A <span class="emphasis"><em>context</em></span> is like a function object that you pass
            along with an expression to the <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>
            function. It associates behaviors with node types. <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>
            walks the expression and invokes your context at each node.
          </li>
<li class="listitem">
            A <span class="emphasis"><em>transform</em></span> is a way to associate behaviors, not
            with node types in an expression, but with rules in a Proto grammar.
            In this way, they are like semantic actions in other compiler-construction
            toolkits.
          </li>
</ul></div>
<p>
        Two ways to evaluate expressions! How to choose? Since contexts are largely
        procedural, they are a bit simpler to understand and debug so they are a
        good place to start. But although transforms are more advanced, they are
        also more powerful; since they are associated with rules in your grammar,
        you can select the proper transform based on the entire <span class="emphasis"><em>structure</em></span>
        of a sub-expression rather than simply on the type of its top-most node.
      </p>
<p>
        Also, transforms have a concise and declarative syntax that can be confusing
        at first, but highly expressive and fungible once you become accustomed to
        it. And -- this is admittedly very subjective -- the author finds programming
        with Proto transforms to be an inordinate amount of <span class="emphasis"><em>fun!</em></span>
        Your mileage may vary.
      </p>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation" title="Expression Evaluation: Imparting Behaviors with a Context">Expression
        Evaluation: Imparting Behaviors with a Context</a>
</h4></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.proto_eval">Evaluating
          an Expression with <code class="literal">proto::eval()</code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.contexts">Defining
          an Evaluation Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts">Proto's
          Built-In Contexts</a></span></dt>
</dl></div>
<p>
          Once you have constructed a Proto expression tree, either by using Proto's
          operator overloads or with <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_idp728389200.html" title="Function make_expr">proto::make_expr()</a></code>
          and friends, you probably want to actually <span class="emphasis"><em>do</em></span> something
          with it. The simplest option is to use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>, a generic expression evaluator. To use
          <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>, you'll need to define
          a <span class="emphasis"><em>context</em></span> that tells <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>
          how each node should be evaluated. This section goes through the nuts and
          bolts of using <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>, defining evaluation contexts,
          and using the contexts that Proto provides.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
            is a less powerful but easier-to-use evaluation technique than Proto
            transforms, which are covered later. Although very powerful, transforms
            have a steep learning curve and can be more difficult to debug. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
            is a rather weak tree traversal algorithm. Dan Marsden has been working
            on a more general and powerful tree traversal library. When it is ready,
            I anticipate that it will eliminate the need for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>.
          </p></td></tr>
</table></div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.proto_eval"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.proto_eval" title="Evaluating an Expression with proto::eval()">Evaluating
          an Expression with <code class="literal">proto::eval()</code></a>
</h5></div></div></div>
<div class="blockquote"><blockquote class="blockquote"><p>
              <span class="bold"><strong>Synopsis:</strong></span>
            </p></blockquote></div>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
    <span class="keyword">namespace</span> <span class="identifier">result_of</span>
    <span class="special">{</span>
        <span class="comment">// A metafunction for calculating the return</span>
        <span class="comment">// type of proto::eval() given certain Expr</span>
        <span class="comment">// and Context types.</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
        <span class="keyword">struct</span> <span class="identifier">eval</span>
        <span class="special">{</span>
            <span class="keyword">typedef</span>
                <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
            <span class="identifier">type</span><span class="special">;</span>
        <span class="special">};</span>
    <span class="special">}</span>

    <span class="keyword">namespace</span> <span class="identifier">functional</span>
    <span class="special">{</span>
        <span class="comment">// A callable function object type for evaluating</span>
        <span class="comment">// a Proto expression with a certain context.</span>
        <span class="keyword">struct</span> <span class="identifier">eval</span> <span class="special">:</span> <span class="identifier">callable</span>
        <span class="special">{</span>
            <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
            <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

            <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
            <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">&gt;::</span><span class="identifier">type</span>
            <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&amp;</span><span class="identifier">context</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>

            <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
            <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">&gt;::</span><span class="identifier">type</span>
            <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">context</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
        <span class="special">};</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&amp;</span><span class="identifier">context</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">context</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            Given an expression and an evaluation context, using <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>
            is quite simple. Simply pass the expression and the context to <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code> and it does the rest
            and returns the result. You can use the <code class="computeroutput"><span class="identifier">eval</span><span class="special">&lt;&gt;</span></code> metafunction in the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span></code> namespace to compute the
            return type of <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>. The following demonstrates
            a use of <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>:
          </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">MyContext</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="identifier">MyEvaluate</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
    <span class="comment">// Some user-defined context type</span>
    <span class="identifier">MyContext</span> <span class="identifier">ctx</span><span class="special">;</span>

    <span class="comment">// Evaluate an expression with the context</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            What <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code> does is also very simple.
            It defers most of the work to the context itself. Here essentially is
            the implementation of <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code>:
          </p>
<pre class="programlisting"><span class="comment">// eval() dispatches to a nested "eval&lt;&gt;" function</span>
<span class="comment">// object within the Context:</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;</span> <span class="identifier">eval_fun</span><span class="special">;</span>
    <span class="keyword">return</span> <span class="identifier">eval_fun</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            Really, <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code> is nothing more than
            a thin wrapper that dispatches to the appropriate handler within the
            context class. In the next section, we'll see how to implement a context
            class from scratch.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.contexts"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.contexts" title="Defining an Evaluation Context">Defining
          an Evaluation Context</a>
</h5></div></div></div>
<p>
            As we saw in the previous section, there is really not much to the <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code> function. Rather, all
            the interesting expression evaluation goes on within a context class.
            This section shows how to implement one from scratch.
          </p>
<p>
            All context classes have roughly the following form:
          </p>
<pre class="programlisting"><span class="comment">// A prototypical user-defined context.</span>
<span class="keyword">struct</span> <span class="identifier">MyContext</span>
<span class="special">{</span>
    <span class="comment">// A nested eval&lt;&gt; class template</span>
    <span class="keyword">template</span><span class="special">&lt;</span>
        <span class="keyword">typename</span> <span class="identifier">Expr</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">;</span>

    <span class="comment">// Handle terminal nodes here...</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="comment">// Must have a nested result_type typedef.</span>
        <span class="keyword">typedef</span> <span class="special">...</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="comment">// Must have a function call operator that takes</span>
        <span class="comment">// an expression and the context.</span>
        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="special">...;</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="comment">// ... other specializations of struct eval&lt;&gt; ...</span>
<span class="special">};</span>
</pre>
<p>
            Context classes are nothing more than a collection of specializations
            of a nested <code class="computeroutput"><span class="identifier">eval</span><span class="special">&lt;&gt;</span></code>
            class template. Each specialization handles a different expression type.
          </p>
<p>
            In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
            Calculator</a> section, we saw an example of a user-defined context
            class for evaluating calculator expressions. That context class was implemented
            with the help of Proto's <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>.
            If we were to implement it from scratch, it would look something like
            this:
          </p>
<pre class="programlisting"><span class="comment">// The calculator_context from the "Hello Calculator" section,</span>
<span class="comment">// implemented from scratch.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">{</span>
    <span class="comment">// The values with which we'll replace the placeholders</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">args</span><span class="special">;</span>

    <span class="keyword">template</span><span class="special">&lt;</span>
        <span class="keyword">typename</span> <span class="identifier">Expr</span>
        <span class="comment">// defaulted template parameters, so we can</span>
        <span class="comment">// specialize on the expressions that need</span>
        <span class="comment">// special handling.</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">;</span>

    <span class="comment">// Handle placeholder terminals here...</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;,</span> <span class="identifier">MyContext</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="comment">// Handle other terminals here...</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">Arg0</span><span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&amp;)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child</span><span class="special">(</span><span class="identifier">expr</span><span class="special">);</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="comment">// Handle addition here...</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">,</span> <span class="identifier">Arg0</span><span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">left</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">)</span>
                 <span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">right</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="comment">// ... other eval&lt;&gt; specializations for other node types ...</span>
<span class="special">};</span>
</pre>
<p>
            Now we can use <code class="computeroutput"><a class="link" href="../boost/proto/eval_idp727214672.html" title="Function eval">proto::eval()</a></code> with the context class
            above to evaluate calculator expressions as follows:
          </p>
<pre class="programlisting"><span class="comment">// Evaluate an expression with a calculator_context</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">5</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">6</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="identifier">assert</span><span class="special">(</span><span class="number">11</span> <span class="special">==</span> <span class="identifier">d</span><span class="special">);</span>
</pre>
<p>
            Defining a context from scratch this way is tedious and verbose, but
            it gives you complete control over how the expression is evaluated. The
            context class in the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
            Calculator</a> example was much simpler. In the next section we'll
            see the helper class Proto provides to ease the job of implementing context
            classes.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts" title="Proto's Built-In Contexts">Proto's
          Built-In Contexts</a>
</h5></div></div></div>
<p>
            Proto provides some ready-made context classes that you can use as-is,
            or that you can use to help while implementing your own contexts. They
            are:
          </p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context" title="default_context"><code class="literal">default_context</code></a></span></dt>
<dd><p>
                  An evaluation context that assigns the usual C++ meanings to all
                  the operators. For example, addition nodes are handled by evaluating
                  the left and right children and then adding the results. The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>
                  uses Boost.Typeof to deduce the types of the expressions it evaluates.
                </p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context"><code class="literal">null_context</code></a></span></dt>
<dd><p>
                  A simple context that recursively evaluates children but does not
                  combine the results in any way and returns void.
                </p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context" title="callable_context&lt;&gt;"><code class="literal">callable_context&lt;&gt;</code></a></span></dt>
<dd><p>
                  A helper that simplifies the job of writing context classes. Rather
                  than writing template specializations, with <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
                  you write a function object with an overloaded function call operator.
                  Any expressions not handled by an overload are automatically dispatched
                  to a default evaluation context that you can specify.
                </p></dd>
</dl>
</div>
<div class="section">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context" title="default_context"><code class="literal">default_context</code></a>
</h6></div></div></div>
<p>
              The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> is an
              evaluation context that assigns the usual C++ meanings to all the operators.
              For example, addition nodes are handled by evaluating the left and
              right children and then adding the results. The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> uses
              Boost.Typeof to deduce the types of the expressions it evaluates.
            </p>
<p>
              For example, consider the following "Hello World" example:
            </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">;</span>

<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="comment">// Evaluate the expression with default_context,</span>
    <span class="comment">// to give the operators their C++ meanings:</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="string">"hello"</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="string">" world"</span> <span class="special">);</span>
    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
              This program outputs the following:
            </p>
<pre class="programlisting">hello, world
</pre>
<p>
              <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> is trivially
              defined in terms of a <code class="computeroutput"><span class="identifier">default_eval</span><span class="special">&lt;&gt;</span></code> template, as follows:
            </p>
<pre class="programlisting"><span class="comment">// Definition of default_context</span>
<span class="keyword">struct</span> <span class="identifier">default_context</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">default_eval</span><span class="special">&lt;</span>
            <span class="identifier">Expr</span>
          <span class="special">,</span> <span class="identifier">default_context</span> <span class="keyword">const</span>
          <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span>
        <span class="special">&gt;</span>
    <span class="special">{};</span>
<span class="special">};</span>
</pre>
<p>
              There are a bunch of <code class="computeroutput"><span class="identifier">default_eval</span><span class="special">&lt;&gt;</span></code> specializations, each of which
              handles a different C++ operator. Here, for instance, is the specialization
              for binary addition:
            </p>
<pre class="programlisting"><span class="comment">// A default expression evaluator for binary addition</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">default_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
    <span class="keyword">static</span> <span class="identifier">Expr</span>    <span class="special">&amp;</span> <span class="identifier">s_expr</span><span class="special">;</span>
    <span class="keyword">static</span> <span class="identifier">Context</span> <span class="special">&amp;</span> <span class="identifier">s_ctx</span><span class="special">;</span>

<span class="keyword">public</span><span class="special">:</span>
    <span class="keyword">typedef</span>
        <span class="keyword">decltype</span><span class="special">(</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">s_expr</span><span class="special">),</span> <span class="identifier">s_ctx</span><span class="special">)</span>
          <span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">s_expr</span><span class="special">),</span> <span class="identifier">s_ctx</span><span class="special">)</span>
        <span class="special">)</span>
    <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">)</span>
             <span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
              The above code uses <code class="computeroutput"><span class="keyword">decltype</span></code>
              to calculate the return type of the function call operator. <code class="computeroutput"><span class="keyword">decltype</span></code> is a new keyword in the next
              version of C++ that gets the type of any expression. Most compilers
              do not yet support <code class="computeroutput"><span class="keyword">decltype</span></code>
              directly, so <code class="computeroutput"><span class="identifier">default_eval</span><span class="special">&lt;&gt;</span></code> uses the Boost.Typeof library
              to emulate it. On some compilers, that may mean that <code class="computeroutput"><span class="identifier">default_context</span></code> either doesn't work
              or that it requires you to register your types with the Boost.Typeof
              library. Check the documentation for Boost.Typeof to see.
            </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context"><code class="literal">null_context</code></a>
</h6></div></div></div>
<p>
              The <code class="computeroutput"><a class="link" href="../boost/proto/context/null_context.html" title="Struct null_context">proto::null_context&lt;&gt;</a></code>
              is a simple context that recursively evaluates children but does not
              combine the results in any way and returns void. It is useful in conjunction
              with <code class="computeroutput"><span class="identifier">callable_context</span><span class="special">&lt;&gt;</span></code>, or when defining your own
              contexts which mutate an expression tree in-place rather than accumulate
              a result, as we'll see below.
            </p>
<p>
              <code class="computeroutput"><a class="link" href="../boost/proto/context/null_context.html" title="Struct null_context">proto::null_context&lt;&gt;</a></code>
              is trivially implemented in terms of <code class="computeroutput"><span class="identifier">null_eval</span><span class="special">&lt;&gt;</span></code> as follows:
            </p>
<pre class="programlisting"><span class="comment">// Definition of null_context</span>
<span class="keyword">struct</span> <span class="identifier">null_context</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">null_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">null_context</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span><span class="special">::</span><span class="identifier">value</span><span class="special">&gt;</span>
    <span class="special">{};</span>
<span class="special">};</span>
</pre>
<p>
              And <code class="computeroutput"><span class="identifier">null_eval</span><span class="special">&lt;&gt;</span></code>
              is also trivially implemented. Here, for instance is a binary <code class="computeroutput"><span class="identifier">null_eval</span><span class="special">&lt;&gt;</span></code>:
            </p>
<pre class="programlisting"><span class="comment">// Binary null_eval&lt;&gt;</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">null_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
              When would such classes be useful? Imagine you have an expression tree
              with integer terminals, and you would like to increment each integer
              in-place. You might define an evaluation context as follows:
            </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">increment_ints</span>
<span class="special">{</span>
    <span class="comment">// By default, just evaluate all children by delegating</span>
    <span class="comment">// to the null_eval&lt;&gt;</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">null_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">increment_ints</span> <span class="keyword">const</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// Increment integer terminals</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">int</span><span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">increment_ints</span> <span class="keyword">const</span> <span class="special">&amp;)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="special">++</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child</span><span class="special">(</span><span class="identifier">expr</span><span class="special">);</span>
        <span class="special">}</span>
    <span class="special">};</span>
<span class="special">};</span>
</pre>
<p>
              In the next section on <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>,
              we'll see an even simpler way to achieve the same thing.
            </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context" title="callable_context&lt;&gt;"><code class="literal">callable_context&lt;&gt;</code></a>
</h6></div></div></div>
<p>
              The <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              is a helper that simplifies the job of writing context classes. Rather
              than writing template specializations, with <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              you write a function object with an overloaded function call operator.
              Any expressions not handled by an overload are automatically dispatched
              to a default evaluation context that you can specify.
            </p>
<p>
              Rather than an evaluation context in its own right, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              is more properly thought of as a context adaptor. To use it, you must
              define your own context that inherits from <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>.
            </p>
<p>
              In the <a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context"><code class="literal">null_context</code></a>
              section, we saw how to implement an evaluation context that increments
              all the integers within an expression tree. Here is how to do the same
              thing with the <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>:
            </p>
<pre class="programlisting"><span class="comment">// An evaluation context that increments all</span>
<span class="comment">// integer terminals in-place.</span>
<span class="keyword">struct</span> <span class="identifier">increment_ints</span>
  <span class="special">:</span> <span class="identifier">callable_context</span><span class="special">&lt;</span>
        <span class="identifier">increment_ints</span> <span class="keyword">const</span> <span class="comment">// derived context</span>
      <span class="special">,</span> <span class="identifier">null_context</span> <span class="keyword">const</span>  <span class="comment">// fall-back context</span>
    <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Handle int terminals here:</span>
    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="special">&amp;</span><span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="special">++</span><span class="identifier">i</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
              With such a context, we can do the following:
            </p>
<pre class="programlisting"><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">j</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="identifier">i</span> <span class="special">-</span> <span class="identifier">j</span> <span class="special">*</span> <span class="number">3.14</span><span class="special">,</span> <span class="identifier">increment_ints</span><span class="special">()</span> <span class="special">);</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"i = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span><span class="special">.</span><span class="identifier">get</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"j = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">j</span><span class="special">.</span><span class="identifier">get</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
              This program outputs the following, which shows that the integers
              <code class="computeroutput"><span class="identifier">i</span></code> and <code class="computeroutput"><span class="identifier">j</span></code> have been incremented by <code class="computeroutput"><span class="number">1</span></code>:
            </p>
<pre class="programlisting">i = 1
j = 11
</pre>
<p>
              In the <code class="computeroutput"><span class="identifier">increment_ints</span></code>
              context, we didn't have to define any nested <code class="computeroutput"><span class="identifier">eval</span><span class="special">&lt;&gt;</span></code> templates. That's because
              <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              implements them for us. <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              takes two template parameters: the derived context and a fall-back
              context. For each node in the expression tree being evaluated, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code> checks to see if
              there is an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> in the derived context that accepts
              it. Given some expression <code class="computeroutput"><span class="identifier">expr</span></code>
              of type <code class="computeroutput"><span class="identifier">Expr</span></code>, and a
              context <code class="computeroutput"><span class="identifier">ctx</span></code>, it attempts
              to call:
            </p>
<pre class="programlisting"><span class="identifier">ctx</span><span class="special">(</span>
    <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">()</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">...</span>
<span class="special">);</span>
</pre>
<p>
              Using function overloading and metaprogramming tricks, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              can detect at compile-time whether such a function exists or not. If
              so, that function is called. If not, the current expression is passed
              to the fall-back evaluation context to be processed.
            </p>
<p>
              We saw another example of the <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              when we looked at the simple calculator expression evaluator. There,
              we wanted to customize the evaluation of placeholder terminals, and
              delegate the handling of all other nodes to the <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>. We did
              that as follows:
            </p>
<pre class="programlisting"><span class="comment">// An evaluation context for calculator expressions that</span>
<span class="comment">// explicitly handles placeholder terminals, but defers the</span>
<span class="comment">// processing of all other nodes to the default_context.</span>
<span class="keyword">struct</span> <span class="identifier">calculator_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">args</span><span class="special">;</span>

    <span class="comment">// Define the result type of the calculator.</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Handle the placeholders:</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
              In this case, we didn't specify a fall-back context. In that case,
              <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
              uses the <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>. With
              the above <code class="computeroutput"><span class="identifier">calculator_context</span></code>
              and a couple of appropriately defined placeholder terminals, we can
              evaluate calculator expressions, as demonstrated below:
            </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>

<span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="comment">// ...</span>

<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">4</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">5</span><span class="special">);</span>

<span class="keyword">double</span> <span class="identifier">j</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"j = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">j</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
              The above code displays the following:
            </p>
<pre class="programlisting">j = 20
</pre>
</div>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation" title="Expression Transformation: Semantic Actions">Expression
        Transformation: Semantic Actions</a>
</h4></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars"><span class="quote">&#8220;<span class="quote">Activating</span>&#8221;</span>
          Your Grammars</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion">Handling
          Alternation and Recursion</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.callable_transforms">Callable
          Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.object_transforms">Object
          Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity">Example:
          Calculator Arity</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.state">Transforms
          With State Accumulation</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data">Passing
          Auxiliary Data to Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.implicit_params">Implicit
          Parameters to Primitive Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions">Unpacking
          Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.external_transforms">Separating
          Grammars And Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms">Proto's
          Built-In Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.primitives">Building
          Custom Primitive Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable">Making
          Your Transform Callable</a></span></dt>
</dl></div>
<p>
          If you have ever built a parser with the help of a tool like Antlr, yacc
          or Boost.Spirit, you might be familiar with <span class="emphasis"><em>semantic actions</em></span>.
          In addition to allowing you to define the grammar of the language recognized
          by the parser, these tools let you embed code within your grammar that
          executes when parts of the grammar participate in a parse. Proto has the
          equivalent of semantic actions. They are called <span class="emphasis"><em>transforms</em></span>.
          This section describes how to embed transforms within your Proto grammars,
          turning your grammars into function objects that can manipulate or evaluate
          expressions in powerful ways.
        </p>
<p>
          Proto transforms are an advanced topic. We'll take it slow, using examples
          to illustrate the key concepts, starting simple.
        </p>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars" title="&#8220;Activating&#8221; Your Grammars"><span class="quote">&#8220;<span class="quote">Activating</span>&#8221;</span>
          Your Grammars</a>
</h5></div></div></div>
<p>
            The Proto grammars we've seen so far are static. You can check at compile-time
            to see if an expression type matches a grammar, but that's it. Things
            get more interesting when you give them runtime behaviors. A grammar
            with embedded transforms is more than just a static grammar. It is a
            function object that accepts expressions that match the grammar and does
            <span class="emphasis"><em>something</em></span> with them.
          </p>
<p>
            Below is a very simple grammar. It matches terminal expressions.
          </p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span>
</pre>
<p>
            Here is the same grammar with a transform that extracts the value from
            the terminal:
          </p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals</span>
<span class="comment">// *and* a function object that extracts the value from</span>
<span class="comment">// the terminal</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>          <span class="comment">// &lt;-- Look, a transform!</span>
<span class="special">&gt;</span>
</pre>
<p>
            You can read this as follows: when you match a terminal expression, extract
            the value. The type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
            is a so-called transform. Later we'll see what makes it a transform,
            but for now just think of it as a kind of function object. Note the use
            of <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code>: the first template
            parameter is the grammar to match and the second is the transform to
            execute. The result is both a grammar that matches terminal expressions
            and a function object that accepts terminal expressions and extracts
            their values.
          </p>
<p>
            As with ordinary grammars, we can define an empty struct that inherits
            from a grammar+transform to give us an easy way to refer back to the
            thing we're defining, as follows:
          </p>
<pre class="programlisting"><span class="comment">// A grammar and a function object, as before</span>
<span class="keyword">struct</span> <span class="identifier">Value</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// "Value" is a grammar that matches terminal expressions</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span> <span class="identifier">Value</span> <span class="special">&gt;</span> <span class="special">));</span>

<span class="comment">// "Value" also defines a function object that accepts terminals</span>
<span class="comment">// and extracts their value.</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">answer</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>
<span class="identifier">Value</span> <span class="identifier">get_value</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="identifier">get_value</span><span class="special">(</span> <span class="identifier">answer</span> <span class="special">);</span>
</pre>
<p>
            As already mentioned, <code class="computeroutput"><span class="identifier">Value</span></code>
            is a grammar that matches terminal expressions and a function object
            that operates on terminal expressions. It would be an error to pass a
            non-terminal expression to the <code class="computeroutput"><span class="identifier">Value</span></code>
            function object. This is a general property of grammars with transforms;
            when using them as function objects, expressions passed to them must
            match the grammar.
          </p>
<p>
            Proto grammars are valid TR1-style function objects. That means you can
            use <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;&gt;</span></code>
            to ask a grammar what its return type will be, given a particular expression
            type. For instance, we can access the <code class="computeroutput"><span class="identifier">Value</span></code>
            grammar's return type as follows:
          </p>
<pre class="programlisting"><span class="comment">// We can use boost::result_of&lt;&gt; to get the return type</span>
<span class="comment">// of a Proto grammar.</span>
<span class="keyword">typedef</span>
    <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">)&gt;::</span><span class="identifier">type</span>
<span class="identifier">result_type</span><span class="special">;</span>

<span class="comment">// Check that we got the type we expected</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span><span class="identifier">result_type</span><span class="special">,</span> <span class="keyword">int</span><span class="special">&gt;</span> <span class="special">));</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              A grammar with embedded transforms is both a grammar and a function
              object. Calling these things "grammars with transforms" would
              get tedious. We could call them something like "active grammars",
              but as we'll see <span class="emphasis"><em>every</em></span> grammar that you can define
              with Proto is "active"; that is, every grammar has some behavior
              when used as a function object. So we'll continue calling these things
              plain "grammars". The term "transform" is reserved
              for the thing that is used as the second parameter to the <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code> template.
            </p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion" title="Handling Alternation and Recursion">Handling
          Alternation and Recursion</a>
</h5></div></div></div>
<p>
            Most grammars are a little more complicated than the one in the preceding
            section. For the sake of illustration, let's define a rather nonsensical
            grammar that matches any expression and recurses to the leftmost terminal
            and returns its value. It will demonstrate how two key concepts of Proto
            grammars -- alternation and recursion -- interact with transforms. The
            grammar is described below.
          </p>
<pre class="programlisting"><span class="comment">// A grammar that matches any expression, and a function object</span>
<span class="comment">// that returns the value of the leftmost terminal.</span>
<span class="keyword">struct</span> <span class="identifier">LeftmostLeaf</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// If the expression is a terminal, return its value</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
        <span class="special">&gt;</span>
        <span class="comment">// Otherwise, it is a non-terminal. Return the result</span>
        <span class="comment">// of invoking LeftmostLeaf on the 0th (leftmost) child.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">_</span>
          <span class="special">,</span> <span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span> <span class="special">)</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// A Proto terminal wrapping std::cout</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>

<span class="comment">// Create an expression and use LeftmostLeaf to extract the</span>
<span class="comment">// value of the leftmost terminal, which will be std::cout.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="identifier">sout</span> <span class="special">=</span> <span class="identifier">LeftmostLeaf</span><span class="special">()(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="string">"the answer: "</span> <span class="special">&lt;&lt;</span> <span class="number">42</span> <span class="special">&lt;&lt;</span> <span class="char">'\n'</span> <span class="special">);</span>
</pre>
<p>
            We've seen <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;&gt;</span></code>
            before. Here it is serving two roles. First, it is a grammar that matches
            any of its alternate sub-grammars; in this case, either a terminal or
            a non-terminal. Second, it is also a function object that accepts an
            expression, finds the alternate sub-grammar that matches the expression,
            and applies its transform. And since <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>
            inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;&gt;</span></code>,
            <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> is also
            both a grammar and a function object.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              The second alternate uses <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
              as its grammar. Recall that <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
              is the wildcard grammar that matches any expression. Since alternates
              in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;&gt;</span></code>
              are tried in order, and since the first alternate handles all terminals,
              the second alternate handles all (and only) non-terminals. Often enough,
              <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
              <span class="identifier">_</span><span class="special">,</span>
              <em class="replaceable"><code>some-transform</code></em> <span class="special">&gt;</span></code>
              is the last alternate in a grammar, so for improved readability, you
              could use the equivalent <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">otherwise</span><span class="special">&lt;</span> <em class="replaceable"><code>some-transform</code></em>
              <span class="special">&gt;</span></code>.
            </p></td></tr>
</table></div>
<p>
            The next section describes this grammar further.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.callable_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.callable_transforms" title="Callable Transforms">Callable
          Transforms</a>
</h5></div></div></div>
<p>
            In the grammar defined in the preceding section, the transform associated
            with non-terminals is a little strange-looking:
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
    <span class="identifier">_</span>
  <span class="special">,</span> <span class="bold"><strong>LeftmostLeaf( proto::_child0 )</strong></span>   <span class="comment">// &lt;-- a "callable" transform</span>
<span class="special">&gt;</span>
</pre>
<p>
            It has the effect of accepting non-terminal expressions, taking the 0th
            (leftmost) child and recursively invoking the <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>
            function on it. But <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span>
            <span class="special">)</span></code> is actually a <span class="emphasis"><em>function
            type</em></span>. Literally, it is the type of a function that accepts
            an object of type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
            and returns an object of type <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>.
            So how do we make sense of this transform? Clearly, there is no function
            that actually has this signature, nor would such a function be useful.
            The key is in understanding how <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;&gt;</span></code> <span class="emphasis"><em>interprets</em></span>
            its second template parameter.
          </p>
<p>
            When the second template parameter to <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code>
            is a function type, <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code>
            interprets the function type as a transform. In this case, <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> is treated as the type
            of a function object to invoke, and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
            is treated as a transform. First, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
            is applied to the current expression (the non-terminal that matched this
            alternate sub-grammar), and the result (the 0th child) is passed as an
            argument to <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Transforms are a Domain-Specific Language</strong></span>
            </p>
<p>
              <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span>
              <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span> <span class="special">)</span></code>
              <span class="emphasis"><em>looks</em></span> like an invocation of the <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> function object, but
              it's not, but then it actually is! Why this confusing subterfuge? Function
              types give us a natural and concise syntax for composing more complicated
              transforms from simpler ones. The fact that the syntax is suggestive
              of a function invocation is on purpose. It is an embedded domain-specific
              language for defining expression transformations. If the subterfuge
              worked, it may have fooled you into thinking the transform is doing
              exactly what it actually does! And that's the point.
            </p>
</td></tr>
</table></div>
<p>
            The type <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span>
            <span class="special">)</span></code> is an example of a <span class="emphasis"><em>callable
            transform</em></span>. It is a function type that represents a function
            object to call and its arguments. The types <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
            and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code> are <span class="emphasis"><em>primitive transforms</em></span>.
            They are plain structs, not unlike function objects, from which callable
            transforms can be composed. There is one other type of transform, <span class="emphasis"><em>object
            transforms</em></span>, that we'll encounter next.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.object_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.object_transforms" title="Object Transforms">Object
          Transforms</a>
</h5></div></div></div>
<p>
            The very first transform we looked at simply extracted the value of terminals.
            Let's do the same thing, but this time we'll promote all ints to longs
            first. (Please forgive the contrived-ness of the examples so far; they
            get more interesting later.) Here's the grammar:
          </p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals,</span>
<span class="comment">// and a function object that extracts the value from</span>
<span class="comment">// the terminal, promoting ints to longs:</span>
<span class="keyword">struct</span> <span class="identifier">ValueWithPomote</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">int</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>     <span class="comment">// &lt;-- an "object" transform</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">_</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            You can read the above grammar as follows: when you match an int terminal,
            extract the value from the terminal and use it to initialize a long;
            otherwise, when you match another kind of terminal, just extract the
            value. The type <code class="computeroutput"><span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span></code>
            is a so-called <span class="emphasis"><em>object</em></span> transform. It looks like the
            creation of a temporary long, but it's really a function type. Just as
            a callable transform is a function type that represents a function to
            call and its arguments, an object transforms is a function type that
            represents an object to construct and the arguments to its constructor.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Object Transforms vs. Callable Transforms</strong></span>
            </p>
<p>
              When using function types as Proto transforms, they can either represent
              an object to construct or a function to call. It is similar to "normal"
              C++ where the syntax <code class="computeroutput"><span class="identifier">foo</span><span class="special">(</span><span class="string">"arg"</span><span class="special">)</span></code> can either be interpreted as an object
              to construct or a function to call, depending on whether <code class="computeroutput"><span class="identifier">foo</span></code> is a type or a function. But
              consider two of the transforms we've seen so far:
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">LeftmostLeaf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span>  <span class="comment">// &lt;-- a callable transform</span>
<span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>           <span class="comment">// &lt;-- an object transform</span>
</pre>
<p>
            </p>
<p>
              Proto can't know in general which is which, so it uses a trait, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;&gt;</span></code>,
              to differentiate. <code class="computeroutput"><span class="identifier">is_callable</span><span class="special">&lt;</span> <span class="keyword">long</span>
              <span class="special">&gt;::</span><span class="identifier">value</span></code>
              is false so <code class="computeroutput"><span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span></code>
              is an object to construct, but <code class="computeroutput"><span class="identifier">is_callable</span><span class="special">&lt;</span> <span class="identifier">LeftmostLeaf</span>
              <span class="special">&gt;::</span><span class="identifier">value</span></code>
              is true so <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span></code> is a function to call. Later on, we'll
              see how Proto recognizes a type as "callable".
            </p>
</td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity" title="Example: Calculator Arity">Example:
          Calculator Arity</a>
</h5></div></div></div>
<p>
            Now that we have the basics of Proto transforms down, let's consider
            a slightly more realistic example. We can use transforms to improve the
            type-safety of the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">calculator
            EDSL</a>. If you recall, it lets you write infix arithmetic expressions
            involving argument placeholders like <code class="computeroutput"><span class="identifier">_1</span></code>
            and <code class="computeroutput"><span class="identifier">_2</span></code> and pass them
            to STL algorithms as function objects, as follows:
          </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">56</span><span class="special">,</span> <span class="number">84</span><span class="special">,</span> <span class="number">37</span><span class="special">,</span> <span class="number">69</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a2</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">65</span><span class="special">,</span> <span class="number">120</span><span class="special">,</span> <span class="number">60</span><span class="special">,</span> <span class="number">70</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a3</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0</span> <span class="special">};</span>

<span class="comment">// Use std::transform() and a calculator expression</span>
<span class="comment">// to calculate percentages given two input sequences:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">a1</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">a2</span><span class="special">,</span> <span class="identifier">a3</span><span class="special">,</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">);</span>
</pre>
<p>
            This works because we gave calculator expressions an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> that evaluates the expression, replacing
            the placeholders with the arguments to <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>. The overloaded <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;::</span><span class="keyword">operator</span><span class="special">()</span></code> looked like this:
          </p>
<pre class="programlisting"><span class="comment">// Overload operator() to invoke proto::eval() with</span>
<span class="comment">// our calculator_context.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">double</span>
<span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
    <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
    <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
    <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>

    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            Although this works, it's not ideal because it doesn't warn users if
            they supply too many or too few arguments to a calculator expression.
            Consider the following mistakes:
          </p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span><span class="special">)(</span><span class="number">4</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>  <span class="comment">// Oops, too many arguments!</span>
<span class="special">(</span><span class="identifier">_2</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">)(</span><span class="number">42</span><span class="special">);</span>    <span class="comment">// Oops, too few arguments!</span>
</pre>
<p>
            The expression <code class="computeroutput"><span class="identifier">_1</span> <span class="special">*</span>
            <span class="identifier">_1</span></code> defines a unary calculator
            expression; it takes one argument and squares it. If we pass more than
            one argument, the extra arguments will be silently ignored, which might
            be surprising to users. The next expression, <code class="computeroutput"><span class="identifier">_2</span>
            <span class="special">*</span> <span class="identifier">_2</span></code>
            defines a binary calculator expression; it takes two arguments, ignores
            the first and squares the second. If we only pass one argument, the code
            silently fills in <code class="computeroutput"><span class="number">0.0</span></code> for
            the second argument, which is also probably not what users expect. What
            can be done?
          </p>
<p>
            We can say that the <span class="emphasis"><em>arity</em></span> of a calculator expression
            is the number of arguments it expects, and it is equal to the largest
            placeholder in the expression. So, the arity of <code class="computeroutput"><span class="identifier">_1</span>
            <span class="special">*</span> <span class="identifier">_1</span></code>
            is one, and the arity of <code class="computeroutput"><span class="identifier">_2</span>
            <span class="special">*</span> <span class="identifier">_2</span></code>
            is two. We can increase the type-safety of our calculator EDSL by making
            sure the arity of an expression equals the actual number of arguments
            supplied. Computing the arity of an expression is simple with the help
            of Proto transforms.
          </p>
<p>
            It's straightforward to describe in words how the arity of an expression
            should be calculated. Consider that calculator expressions can be made
            of <code class="computeroutput"><span class="identifier">_1</span></code>, <code class="computeroutput"><span class="identifier">_2</span></code>, literals, unary expressions and
            binary expressions. The following table shows the arities for each of
            these 5 constituents.
          </p>
<div class="table">
<a name="boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity.t0"></a><p class="title"><b>Table&#160;32.8.&#160;Calculator Sub-Expression Arities</b></p>
<div class="table-contents"><table class="table" summary="Calculator Sub-Expression Arities">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      Sub-Expression
                    </p>
                  </th>
<th>
                    <p>
                      Arity
                    </p>
                  </th>
</tr></thead>
<tbody>
<tr>
<td>
                    <p>
                      Placeholder 1
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="number">1</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      Placeholder 2
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="number">2</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      Literal
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="number">0</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      Unary Expression
                    </p>
                  </td>
<td>
                    <p>
                      <span class="emphasis"><em>arity of the operand</em></span>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      Binary Expression
                    </p>
                  </td>
<td>
                    <p>
                      <span class="emphasis"><em>max arity of the two operands</em></span>
                    </p>
                  </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
            Using this information, we can write the grammar for calculator expressions
            and attach transforms for computing the arity of each constituent. The
            code below computes the expression arity as a compile-time integer, using
            integral wrappers and metafunctions from the Boost MPL Library. The grammar
            is described below.
          </p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalcArity</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;,</span>
            <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;()</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;,</span>
            <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">2</span><span class="special">&gt;()</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;,</span>
            <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;()</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">&gt;,</span>
            <span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">binary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">&gt;,</span>
            <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span>
                     <span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)&gt;()</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
          </p>
<p>
            When we find a placeholder terminal or a literal, we use an <span class="emphasis"><em>object
            transform</em></span> such as <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;()</span></code>
            to create a (default-constructed) compile-time integer representing the
            arity of that terminal.
          </p>
<p>
            For unary expressions, we use <code class="computeroutput"><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span></code> which is a <span class="emphasis"><em>callable transform</em></span>
            that computes the arity of the expression's child.
          </p>
<p>
            The transform for binary expressions has a few new tricks. Let's look
            more closely:
          </p>
<pre class="programlisting"><span class="comment">// Compute the left and right arities and</span>
<span class="comment">// take the larger of the two.</span>
<span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span>
         <span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)&gt;()</span>
</pre>
<p>
            This is an object transform; it default-constructs ... what exactly?
            The <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;&gt;</span></code>
            template is an MPL metafunction that accepts two compile-time integers.
            It has a nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>
            typedef (not shown) that is the maximum of the two. But here, we appear
            to be passing it two things that are <span class="emphasis"><em>not</em></span> compile-time
            integers; they're Proto callable transforms. Proto is smart enough to
            recognize that fact. It first evaluates the two nested callable transforms,
            computing the arities of the left and right child expressions. Then it
            puts the resulting integers into <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;&gt;</span></code> and evaluates the metafunction
            by asking for the nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>. That is the type of the object
            that gets default-constructed and returned.
          </p>
<p>
            More generally, when evaluating object transforms, Proto looks at the
            object type and checks whether it is a template specialization, like
            <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;&gt;</span></code>.
            If it is, Proto looks for nested transforms that it can evaluate. After
            any nested transforms have been evaluated and substituted back into the
            template, the new template specialization is the result type, unless
            that type has a nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>, in which case that becomes the
            result.
          </p>
<p>
            Now that we can calculate the arity of a calculator expression, let's
            redefine the <code class="computeroutput"><span class="identifier">calculator</span><span class="special">&lt;&gt;</span></code> expression wrapper we wrote in
            the Getting Started guide to use the <code class="computeroutput"><span class="identifier">CalcArity</span></code>
            grammar and some macros from Boost.MPL to issue compile-time errors when
            users specify too many or too few arguments.
          </p>
<pre class="programlisting"><span class="comment">// The calculator expression wrapper, as defined in the Hello</span>
<span class="comment">// Calculator example in the Getting Started guide. It behaves</span>
<span class="comment">// just like the expression it wraps, but with extra operator()</span>
<span class="comment">// member functions that evaluate the expression.</span>
<span class="comment">//   NEW: Use the CalcArity grammar to ensure that the correct</span>
<span class="comment">//   number of arguments are supplied.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
    <span class="identifier">base_type</span><span class="special">;</span>

    <span class="identifier">calculator</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
      <span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="comment">// Use CalcArity to compute the arity of Expr: </span>
    <span class="keyword">static</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="identifier">arity</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">)&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">;</span>

    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
        <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
            Note the use of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;&gt;</span></code> to access the return type of
            the <code class="computeroutput"><span class="identifier">CalcArity</span></code> function
            object. Since we used compile-time integers in our transforms, the arity
            of the expression is encoded in the return type of the <code class="computeroutput"><span class="identifier">CalcArity</span></code> function object. Proto grammars
            are valid TR1-style function objects, so you can use <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;&gt;</span></code> to figure out their return types.
          </p>
<p>
            With our compile-time assertions in place, when users provide too many
            or too few arguments to a calculator expression, as in:
          </p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">_2</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">)(</span><span class="number">42</span><span class="special">);</span> <span class="comment">// Oops, too few arguments!</span>
</pre>
<p>
            ... they will get a compile-time error message on the line with the assertion
            that reads something like this<a href="#ftn.boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity.f0" class="footnote" name="boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity.f0"><sup class="footnote">[29]</sup></a>:
          </p>
<pre class="programlisting">c:\boost\org\trunk\libs\proto\scratch\main.cpp(97) : error C2664: 'boost::mpl::asse
rtion_failed' : cannot convert parameter 1 from 'boost::mpl::failed ************boo
st::mpl::assert_relation&lt;x,y,__formal&gt;::************' to 'boost::mpl::assert&lt;false&gt;
::type'
   with
   [
       x=1,
       y=2,
       __formal=bool boost::mpl::operator==(boost::mpl::failed,boost::mpl::failed)
   ]
</pre>
<p>
            The point of this exercise was to show that we can write a fairly simple
            Proto grammar with embedded transforms that is declarative and readable
            and can compute interesting properties of arbitrarily complicated expressions.
            But transforms can do more than that. Boost.Xpressive uses transforms
            to turn expressions into finite state automata for matching regular expressions,
            and Boost.Spirit uses transforms to build recursive descent parser generators.
            Proto comes with a collection of built-in transforms that you can use
            to perform very sophisticated expression manipulations like these. In
            the next few sections we'll see some of them in action.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.state"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.state" title="Transforms With State Accumulation">Transforms
          With State Accumulation</a>
</h5></div></div></div>
<p>
            So far, we've only seen examples of grammars with transforms that accept
            one argument: the expression to transform. But consider for a moment
            how, in ordinary procedural code, you would turn a binary tree into a
            linked list. You would start with an empty list. Then, you would recursively
            convert the right branch to a list, and use the result as the initial
            state while converting the left branch to a list. That is, you would
            need a function that takes two parameters: the current node and the list
            so far. These sorts of <span class="emphasis"><em>accumulation</em></span> problems are
            quite common when processing trees. The linked list is an example of
            an accumulation variable or <span class="emphasis"><em>state</em></span>. Each iteration
            of the algorithm takes the current element and state, applies some binary
            function to the two and creates a new state. In the STL, this algorithm
            is called <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">accumulate</span><span class="special">()</span></code>.
            In many other languages, it is called <span class="emphasis"><em>fold</em></span>. Let's
            see how to implement a fold algorithm with Proto transforms.
          </p>
<p>
            All Proto grammars can optionally accept a state parameter in addition
            to the expression to transform. If you want to fold a tree to a list,
            you'll need to make use of the state parameter to pass around the list
            you've built so far. As for the list, the Boost.Fusion library provides
            a <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;&gt;</span></code>
            type from which you can build heterogeneous lists. The type <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span></code> represents an empty list.
          </p>
<p>
            Below is a grammar that recognizes output expressions like <code class="computeroutput"><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span>
            <span class="number">42</span> <span class="special">&lt;&lt;</span>
            <span class="char">'\n'</span></code> and puts the arguments into
            a Fusion list. It is explained below.
          </p>
<pre class="programlisting"><span class="comment">// Fold the terminals in output statements like</span>
<span class="comment">// "cout_ &lt;&lt; 42 &lt;&lt; '\n'" into a Fusion cons-list.</span>
<span class="keyword">struct</span> <span class="identifier">FoldToList</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// Don't add the ostream terminal to the list</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
        <span class="special">&gt;</span>
        <span class="comment">// Put all other terminals at the head of the</span>
        <span class="comment">// list that we're building in the "state" parameter</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">&gt;(</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
            <span class="special">)</span>
        <span class="special">&gt;</span>
        <span class="comment">// For left-shift operations, first fold the right</span>
        <span class="comment">// child to a list using the current state. Use</span>
        <span class="comment">// the result as the state parameter when folding</span>
        <span class="comment">// the left child to a list.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span><span class="identifier">FoldToList</span><span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
              <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span>
            <span class="special">)</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Before reading on, see if you can apply what you know already about object,
            callable and primitive transforms to figure out how this grammar works.
          </p>
<p>
            When you use the <code class="computeroutput"><span class="identifier">FoldToList</span></code>
            function, you'll need to pass two arguments: the expression to fold,
            and the initial state: an empty list. Those two arguments get passed
            around to each transform. We learned previously that <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
            is a primitive transform that accepts a terminal expression and extracts
            its value. What we didn't know until now was that it also accepts the
            current state <span class="emphasis"><em>and ignores it</em></span>. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span></code>
            is also a primitive transform. It accepts the current expression, which
            it ignores, and the current state, which it returns.
          </p>
<p>
            When we find a terminal, we stick it at the head of the cons list, using
            the current state as the tail of the list. (The first alternate causes
            the <code class="computeroutput"><span class="identifier">ostream</span></code> to be skipped.
            We don't want <code class="computeroutput"><span class="identifier">cout</span></code> in
            the list.) When we find a shift-left node, we apply the following transform:
          </p>
<pre class="programlisting"><span class="comment">// Fold the right child and use the result as</span>
<span class="comment">// state while folding the right.</span>
<span class="identifier">FoldToList</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
  <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span>
<span class="special">)</span>
</pre>
<p>
            You can read this transform as follows: using the current state, fold
            the right child to a list. Use the new list as the state while folding
            the left child to a list.
          </p>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
              If your compiler is Microsoft Visual C++, you'll find that the above
              transform does not compile. The compiler has bugs with its handling
              of nested function types. You can work around the bug by wrapping the
              inner transform in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;&gt;</span></code> as follows:
            </p>
<p>
</p>
<pre class="programlisting"><span class="identifier">FoldToList</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)&gt;</span>
<span class="special">)</span>
</pre>
<p>
            </p>
<p>
              <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;&gt;</span></code>
              turns a callable transform into a primitive transform, but more on
              that later.
            </p>
</td></tr>
</table></div>
<p>
            Now that we have defined the <code class="computeroutput"><span class="identifier">FoldToList</span></code>
            function object, we can use it to turn output expressions into lists
            as follows:
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>

<span class="comment">// This is the type of the list we build below</span>
<span class="keyword">typedef</span>
    <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
        <span class="keyword">int</span>
      <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
            <span class="keyword">double</span>
          <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
                <span class="keyword">char</span>
              <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span>
            <span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="identifier">result_type</span><span class="special">;</span>

<span class="comment">// Fold an output expression into a Fusion list, using</span>
<span class="comment">// fusion::nil as the initial state of the transformation.</span>
<span class="identifier">FoldToList</span> <span class="identifier">to_list</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="identifier">args</span> <span class="special">=</span> <span class="identifier">to_list</span><span class="special">(</span><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">&lt;&lt;</span> <span class="number">3.14</span> <span class="special">&lt;&lt;</span> <span class="char">'\n'</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span><span class="special">());</span>

<span class="comment">// Now "args" is the list: {1, 3.14, '\n'}</span>
</pre>
<p>
            When writing transforms, "fold" is such a basic operation that
            Proto provides a number of built-in fold transforms. We'll get to them
            later. For now, rest assured that you won't always have to stretch your
            brain so far to do such basic things.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.data"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data" title="Passing Auxiliary Data to Transforms">Passing
          Auxiliary Data to Transforms</a>
</h5></div></div></div>
<p>
            In the last section, we saw that we can pass a second parameter to grammars
            with transforms: an accumulation variable or <span class="emphasis"><em>state</em></span>
            that gets updated as your transform executes. There are times when your
            transforms will need to access auxiliary data that does <span class="emphasis"><em>not</em></span>
            accumulate, so bundling it with the state parameter is impractical. Instead,
            you can pass auxiliary data as a third parameter, known as the <span class="emphasis"><em>data</em></span>
            parameter.
          </p>
<p>
            Let's modify our previous example so that it writes each terminal to
            <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code> before it puts it into a list.
            This could be handy for debugging your transforms, for instance. We can
            make it general by passing a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>
            into the transform in the data parameter. Within the transform itself,
            we can retrieve the <code class="computeroutput"><span class="identifier">ostream</span></code>
            with the <code class="computeroutput"><a class="link" href="../boost/proto/_data.html" title="Struct _data">proto::_data</a></code>
            transform. The strategy is as follows: use the <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code>
            transform to chain two actions. The second action will create the <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;&gt;</span></code>
            node as before. The first action, however, will display the current expression.
            For that, we first construct an instance of <code class="computeroutput"><a class="link" href="../boost/proto/functional/display_expr.html" title="Struct display_expr">proto::functional::display_expr</a></code> and then call
            it.
          </p>
<pre class="programlisting"><span class="comment">// Fold the terminals in output statements like</span>
<span class="comment">// "cout_ &lt;&lt; 42 &lt;&lt; '\n'" into a Fusion cons-list.</span>
<span class="keyword">struct</span> <span class="identifier">FoldToList</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// Don't add the ostream terminal to the list</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
        <span class="special">&gt;</span>
        <span class="comment">// Put all other terminals at the head of the</span>
        <span class="comment">// list that we're building in the "state" parameter</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;</span>
                <span class="comment">// First, write the terminal to an ostream passed</span>
                <span class="comment">// in the data parameter</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lazy</span><span class="special">&lt;</span>
                    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)&gt;(</span><span class="identifier">_</span><span class="special">)</span>
                <span class="special">&gt;</span>
                <span class="comment">// Then, constuct the new cons list.</span>
              <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">&gt;(</span>
                    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
                <span class="special">)</span>
            <span class="special">&gt;</span>
        <span class="special">&gt;</span>
        <span class="comment">// For left-shift operations, first fold the right</span>
        <span class="comment">// child to a list using the current state. Use</span>
        <span class="comment">// the result as the state parameter when folding</span>
        <span class="comment">// the left child to a list.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;</span><span class="identifier">FoldToList</span><span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
              <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
            <span class="special">)</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This is a lot to take in, no doubt. But focus on the second <code class="computeroutput"><span class="identifier">when</span></code> clause above. It says: when you
            find a terminal, first display the terminal using the <code class="computeroutput"><span class="identifier">ostream</span></code>
            you find in the data parameter, then take the value of the terminal and
            the current state to build a new <code class="computeroutput"><span class="identifier">cons</span></code>
            list. The function object <code class="computeroutput"><span class="identifier">display_expr</span></code>
            does the job of printing the terminal, and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;&gt;</span></code> chains the actions together and
            executes them in sequence, returning the result of the last one.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              Also new is <code class="computeroutput"><a class="link" href="../boost/proto/lazy.html" title="Struct template lazy">proto::lazy&lt;&gt;</a></code>. Sometimes you
              don't have a ready-made callable object to execute. Instead, you want
              to first make one and <span class="emphasis"><em>then</em></span> execute it. Above,
              we need to create a <code class="computeroutput"><span class="identifier">display_expr</span></code>,
              initializing it with our <code class="computeroutput"><span class="identifier">ostream</span></code>.
              After that, we want to invoke it by passing it the current expression.
              It's as if we were doing <code class="computeroutput"><span class="identifier">display_expr</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">)(</span><span class="emphasis"><em>the-expr</em></span><span class="special">)</span></code>.
              We achieve this two-phase evaluation using <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lazy</span><span class="special">&lt;&gt;</span></code>. If this doesn't make sense
              yet, don't worry about it.
            </p></td></tr>
</table></div>
<p>
            We can use the above transform as before, but now we can pass an <code class="computeroutput"><span class="identifier">ostream</span></code> as the third parameter and
            get to watch the transform in action. Here's a sample usage:
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>

<span class="comment">// This is the type of the list we build below</span>
<span class="keyword">typedef</span>
    <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
        <span class="keyword">int</span>
      <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
            <span class="keyword">double</span>
          <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special">&lt;</span>
                <span class="keyword">char</span>
              <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span>
            <span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="identifier">result_type</span><span class="special">;</span>

<span class="comment">// Fold an output expression into a Fusion list, using</span>
<span class="comment">// fusion::nil as the initial state of the transformation.</span>
<span class="comment">// Pass std::cout as the data parameter so that we can track</span>
<span class="comment">// the progress of the transform on the console.</span>
<span class="identifier">FoldToList</span> <span class="identifier">to_list</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="identifier">args</span> <span class="special">=</span> <span class="identifier">to_list</span><span class="special">(</span><span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="number">1</span> <span class="special">&lt;&lt;</span> <span class="number">3.14</span> <span class="special">&lt;&lt;</span> <span class="char">'\n'</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span><span class="special">(),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">);</span>

<span class="comment">// Now "args" is the list: {1, 3.14, '\n'}</span>
</pre>
<p>
            This code displays the following:
          </p>
<pre class="programlisting">terminal(
)
terminal(3.14)
terminal(1)</pre>
<p>
            This is a rather round-about way of demonstrating that you can pass extra
            data to a transform as a third parameter. There are no restrictions on
            what this parameter can be, and, unlike the state parameter, Proto will
            never mess with it.
          </p>
<h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.data.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.data.transform_environment_variables"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data.transform_environment_variables">Transform
            Environment Variables</a>
          </h6>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              <span class="emphasis"><em>This is an advanced topic. Feel free to skip if you are new
              to Proto.</em></span>
            </p></td></tr>
</table></div>
<p>
            The example above uses the data parameter as a transport mechanism for
            an unstructured blob of data; in this case, a reference to an <code class="computeroutput"><span class="identifier">ostream</span></code>. As your Proto algorithms become
            more sophisticated, you may find that an unstructured blob of data isn't
            terribly convenient to work with. Different parts of your algorithm may
            be interested in different bits of data. What you want, instead, is a
            way to pass in a collection of <span class="emphasis"><em>environment variables</em></span>
            to a transform, like a collection of key/value pairs. Then, you can easily
            get at the piece of data you want by asking the data parameter for the
            value associated with a particular key. Proto's <span class="emphasis"><em>transform environments</em></span>
            give you just that.
          </p>
<p>
            Let's start by defining a key.
          </p>
<pre class="programlisting"><span class="identifier">BOOST_PROTO_DEFINE_ENV_VAR</span><span class="special">(</span><span class="identifier">mykey_type</span><span class="special">,</span> <span class="identifier">mykey</span><span class="special">);</span>
</pre>
<p>
            This defines a global constant <code class="computeroutput"><span class="identifier">mykey</span></code>
            with the type <code class="computeroutput"><span class="identifier">mykey_type</span></code>.
            We can use <code class="computeroutput"><span class="identifier">mykey</span></code> to store
            a piece of assiciated data in a transform environment, as so:
          </p>
<pre class="programlisting"><span class="comment">// Call the MyEval algorithm with a transform environment containing</span>
<span class="comment">// two key/value pairs: one for proto::data and one for mykey</span>
<span class="identifier">MyEval</span><span class="special">()(</span> <span class="identifier">expr</span><span class="special">,</span> <span class="identifier">state</span><span class="special">,</span> <span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">data</span> <span class="special">=</span> <span class="number">42</span><span class="special">,</span> <span class="identifier">mykey</span> <span class="special">=</span> <span class="string">"hello world"</span><span class="special">)</span> <span class="special">);</span>
</pre>
<p>
            The above means to invoke the <code class="computeroutput"><span class="identifier">MyEval</span></code>
            algorithm with three parameters: an expression, an initial state, and
            a transform environment containing two key/value pairs.
          </p>
<p>
            From within a Proto algorithm, you can access the values associated with
            different keys using the <code class="computeroutput"><a class="link" href="../boost/proto/_env_var.html" title="Struct template _env_var">proto::_env_var&lt;&gt;</a></code>
            transform. For instance, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_env_var</span><span class="special">&lt;</span><span class="identifier">mykey_type</span><span class="special">&gt;</span></code> would fetch the value <code class="computeroutput"><span class="string">"hello world"</span></code> from the transform
            environment created above.
          </p>
<p>
            The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span></code> transform has some additional
            smarts. Rather than always returning the third parameter regarless of
            whether it is a blob or a transform environment, it checks first to see
            if it's a blob or not. If so, that's what gets returned. If not, it returns
            the value associated with the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">data</span></code>
            key. In the above example, that would be the value <code class="computeroutput"><span class="number">42</span></code>.
          </p>
<p>
            There's a small host of functions, metafunction, and classes that you
            can use to create and manipulate transform environments, some for testing
            whether an object is a transform environment, some for coercing an object
            to be a transform environment, and some for querying a transform environment
            whether or not is has a value for a particular key. For an exhaustive
            treatment of the topic, check out the reference for the <code class="computeroutput"><a class="link" href="reference.html#header.boost.proto.transform.env_hpp" title="Header &lt;boost/proto/transform/env.hpp&gt;">boost/proto/transform/env.hpp</a></code>
            header.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.implicit_params"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.implicit_params" title="Implicit Parameters to Primitive Transforms">Implicit
          Parameters to Primitive Transforms</a>
</h5></div></div></div>
<p>
            Let's use <code class="computeroutput"><span class="identifier">FoldToList</span></code>
            example from the previous two sections to illustrate some other niceties
            of Proto transforms. We've seen that grammars, when used as function
            objects, can accept up to 3 parameters, and that when using these grammars
            in callable transforms, you can also specify up to 3 parameters. Let's
            take another look at the transform associated with non-terminals from
            the last section:
          </p>
<pre class="programlisting"><span class="identifier">FoldToList</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
  <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span>
</pre>
<p>
            Here we specify all three parameters to both invocations of the <code class="computeroutput"><span class="identifier">FoldToList</span></code> grammar. But we don't have
            to specify all three. If we don't specify a third parameter, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span></code> is assumed. Likewise for the
            second parameter and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span></code>.
            So the above transform could have been written more simply as:
          </p>
<pre class="programlisting"><span class="identifier">FoldToList</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
  <span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)</span>
<span class="special">)</span>
</pre>
<p>
            The same is true for any primitive transform. The following are all equivalent:
          </p>
<div class="table">
<a name="boost_proto.users_guide.back_end.expression_transformation.implicit_params.t0"></a><p class="title"><b>Table&#160;32.9.&#160;Implicit Parameters to Primitive Transforms</b></p>
<div class="table-contents"><table class="table" summary="Implicit Parameters to Primitive Transforms">
<colgroup><col></colgroup>
<thead><tr><th>
                    <p>
                      Equivalent Transforms
                    </p>
                  </th></tr></thead>
<tbody>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">FoldToList</span><span class="special">&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">FoldToList</span><span class="special">()&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">_</span><span class="special">)&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">_</span><span class="special">,</span>
                      <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span>
                      <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)&gt;</span></code>
                    </p>
                  </td></tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Grammars Are Primitive Transforms Are Function
              Objects</strong></span>
            </p>
<p>
              So far, we've said that all Proto grammars are function objects. But
              it's more accurate to say that Proto grammars are primitive transforms
              -- a special kind of function object that takes between 1 and 3 arguments,
              and that Proto knows to treat specially when used in a callable transform,
              as in the table above.
            </p>
</td></tr>
</table></div>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Not All Function Objects Are Primitive Transforms</strong></span>
            </p>
<p>
              You might be tempted now to drop the <code class="computeroutput"><span class="identifier">_state</span></code>
              and <code class="computeroutput"><span class="identifier">_data</span></code> parameters
              for all your callable transforms. That would be an error. You can only
              do that for primitive transforms, and not all callables are primitive
              transforms. Later on, we'll see what distinguishes ordinary callables
              from their more powerful primitive transfor cousins, but the short
              version is this: primitive transforms inherit from <code class="computeroutput"><a class="link" href="../boost/proto/transform.html" title="Struct template transform">proto::transform&lt;&gt;</a></code>.
            </p>
</td></tr>
</table></div>
<p>
            Once you know that primitive transforms will always receive all three
            parameters -- expression, state, and data -- it makes things possible
            that wouldn't be otherwise. For instance, consider that for binary expressions,
            these two transforms are equivalent. Can you see why?
          </p>
<div class="table">
<a name="boost_proto.users_guide.back_end.expression_transformation.implicit_params.t1"></a><p class="title"><b>Table&#160;32.10.&#160;Two Equivalent Transforms</b></p>
<div class="table-contents"><table class="table" summary="Two Equivalent Transforms">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      Without <code class="literal">proto::reverse_fold&lt;&gt;</code>
                    </p>
                  </th>
<th>
                    <p>
                      With <code class="literal">proto::reverse_fold&lt;&gt;</code>
                    </p>
                  </th>
</tr></thead>
<tbody><tr>
<td>
                    <p>
</p>
<pre class="programlisting"><span class="identifier">FoldToList</span><span class="special">(</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
  <span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
  <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span></pre>
<p>
                    </p>
                  </td>
<td>
                    <p>
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">reverse_fold</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">&gt;</span></pre>
<p>
                    </p>
                  </td>
</tr></tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions" title="Unpacking Expressions">Unpacking
          Expressions</a>
</h5></div></div></div>
<p>
            Processing expressions with an arbitrary number of children can be a
            pain. What if you want to do something to each child, then pass the results
            as arguments to some other function? Can you do it just once without
            worrying about how many children an expression has? Yes. This is where
            Proto's <span class="emphasis"><em>unpacking expressions</em></span> come in handy. Unpacking
            expressions give you a way to write callable and object transforms that
            handle <span class="emphasis"><em>n</em></span>-ary expressions.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Inspired by C++11 Variadic Templates</strong></span>
            </p>
<p>
              Proto's unpacking expressions take inspiration from the C++11 feature
              of the same name. If you are familiar with variadic functions, and
              in particular how to expand a function parameter pack, this discussion
              should seem very familiar. However, this feature doesn't actually use
              any C++11 features, so the code describe here will work with any compliant
              C++98 compiler.
            </p>
</td></tr>
</table></div>
<h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions.example__a_c___expression_evaluator"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.unpacking_expressions.example__a_c___expression_evaluator">Example:
            A C++ Expression Evaluator</a>
          </h6>
<p>
            Proto has the built-in <code class="computeroutput"><a class="link" href="../boost/proto/_default.html" title="Struct template _default">proto::_default&lt;&gt;</a></code>
            transform for evaluating Proto expressions in a C++-ish way. But if it
            didn't, it wouldn't be too hard to implement one from scratch using Proto's
            unpacking patterns. The transform <code class="computeroutput"><span class="identifier">eval</span></code>
            below does just that.
          </p>
<pre class="programlisting"><span class="comment">// A callable polymorphic function object that takes an unpacked expression</span>
<span class="comment">// and a tag, and evaluates the expression. A plus tag and two operands adds</span>
<span class="comment">// them with operator +, for instance.</span>
<span class="keyword">struct</span> <span class="identifier">do_eval</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

<span class="preprocessor">#define</span> <span class="identifier">UNARY_OP</span><span class="special">(</span><span class="identifier">TAG</span><span class="special">,</span> <span class="identifier">OP</span><span class="special">)</span>                                                       <span class="special">\</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">&gt;</span>                                                      <span class="special">\</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">TAG</span><span class="special">,</span> <span class="identifier">Arg</span> <span class="identifier">arg</span><span class="special">)</span> <span class="keyword">const</span>                           <span class="special">\</span>
    <span class="special">{</span>                                                                           <span class="special">\</span>
        <span class="keyword">return</span> <span class="identifier">OP</span> <span class="identifier">arg</span><span class="special">;</span>                                                          <span class="special">\</span>
    <span class="special">}</span>                                                                           <span class="special">\</span>
    <span class="comment">/**/</span>

<span class="preprocessor">#define</span> <span class="identifier">BINARY_OP</span><span class="special">(</span><span class="identifier">TAG</span><span class="special">,</span> <span class="identifier">OP</span><span class="special">)</span>                                                      <span class="special">\</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Left</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Right</span><span class="special">&gt;</span>                                     <span class="special">\</span>
    <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">TAG</span><span class="special">,</span> <span class="identifier">Left</span> <span class="identifier">left</span><span class="special">,</span> <span class="identifier">Right</span> <span class="identifier">right</span><span class="special">)</span> <span class="keyword">const</span>            <span class="special">\</span>
    <span class="special">{</span>                                                                           <span class="special">\</span>
        <span class="keyword">return</span> <span class="identifier">left</span> <span class="identifier">OP</span> <span class="identifier">right</span><span class="special">;</span>                                                   <span class="special">\</span>
    <span class="special">}</span>                                                                           <span class="special">\</span>
    <span class="comment">/**/</span>

    <span class="identifier">UNARY_OP</span><span class="special">(</span><span class="identifier">negate</span><span class="special">,</span> <span class="special">-)</span>
    <span class="identifier">BINARY_OP</span><span class="special">(</span><span class="identifier">plus</span><span class="special">,</span> <span class="special">+)</span>
    <span class="identifier">BINARY_OP</span><span class="special">(</span><span class="identifier">minus</span><span class="special">,</span> <span class="special">-)</span>
    <span class="identifier">BINARY_OP</span><span class="special">(</span><span class="identifier">multiplies</span><span class="special">,</span> <span class="special">*)</span>
    <span class="identifier">BINARY_OP</span><span class="special">(</span><span class="identifier">divides</span><span class="special">,</span> <span class="special">/)</span>
    <span class="comment">/*... others ...*/</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">eval</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// Evaluate terminals by simply returning their value</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">&gt;</span>

        <span class="comment">// Non-terminals are handled by unpacking the expression,</span>
        <span class="comment">// recursively calling eval on each child, and passing</span>
        <span class="comment">// the results along with the expression's tag to do_eval</span>
        <span class="comment">// defined above.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">otherwise</span><span class="special">&lt;</span><span class="identifier">do_eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;(),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pack</span><span class="special">(</span><span class="identifier">_</span><span class="special">))...)&gt;</span>
        <span class="comment">// UNPACKING PATTERN HERE -------------------^^^^^^^^^^^^^^^^^^^^^^^^</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The bulk of the above code is devoted to the <code class="computeroutput"><span class="identifier">do_eval</span></code>
            function object that maps tag types to behaviors, but the interesting
            bit is the definition of the <code class="computeroutput"><span class="identifier">eval</span></code>
            algorithm at the bottom. Terminals are handled quite simply, but non-terminals
            could be unary, binary, ternary, even <span class="emphasis"><em>n</em></span>-ary if we
            consider function call expressions. The <code class="computeroutput"><span class="identifier">eval</span></code>
            algorithm handles this uniformly with the help of an unpacking pattern.
          </p>
<p>
            Non-terminals are evaluated with this callable transform:
          </p>
<pre class="programlisting"><span class="identifier">do_eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;(),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pack</span><span class="special">(</span><span class="identifier">_</span><span class="special">))...)</span>
</pre>
<p>
            You can read this as: call the <code class="computeroutput"><span class="identifier">do_eval</span></code>
            function object with the tag of the current expression and all its children
            after they have each been evaluated with <code class="computeroutput"><span class="identifier">eval</span></code>.
            The unpacking pattern is the bit just before the ellipsis: <code class="computeroutput"><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pack</span><span class="special">(</span><span class="identifier">_</span><span class="special">))</span></code>.
          </p>
<p>
            What's going on here is this. The unpacking expression gets repeated
            once for each child in the expression currently being evaluated. In each
            repetition, the type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pack</span><span class="special">(</span><span class="identifier">_</span><span class="special">)</span></code> gets replaced with <code class="literal">proto::_child_c&lt;<span class="emphasis"><em>N</em></span>&gt;</code>.
            So, if a unary expression is passed to <code class="computeroutput"><span class="identifier">eval</span></code>,
            it actually gets evaluated like this:
          </p>
<pre class="programlisting"><span class="comment">// After the unpacking pattern is expanded for a unary expression</span>
<span class="identifier">do_eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;(),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;))</span>
</pre>
<p>
            And when passed a binary expression, the unpacking pattern expands like
            this:
          </p>
<pre class="programlisting"><span class="comment">// After the unpacking pattern is expanded for a binary expression</span>
<span class="identifier">do_eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;(),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;))</span>
</pre>
<p>
            Although it can't happen in our example, when passed a terminal, the
            unpacking pattern expands such that it extracts the value from the terminal
            instead of the children. So it gets handled like this:
          </p>
<pre class="programlisting"><span class="comment">// If a terminal were passed to this transform, Proto would try</span>
<span class="comment">// to evaluate it like this, which would fail:</span>
<span class="identifier">do_eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;(),</span> <span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">))</span>
</pre>
<p>
            That doesn't make sense. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
            would return something that isn't a Proto expression, and <code class="computeroutput"><span class="identifier">eval</span></code> wouldn't be able to evaluate it.
            Proto algorithms don't work unless you pass them Proto expressions.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
              <span class="bold"><strong>Kickin' It Old School</strong></span>
            </p>
<p>
              You may be thinking, my compiler doesn't support C++11 variadic templates!
              How can this possibly work? The answer is simple: The <code class="computeroutput"><span class="special">...</span></code> above isn't a C++11 pack expansion.
              It's actually an old-school C-style vararg. Remember that callable
              and object transforms are <span class="emphasis"><em>function types</em></span>. A transform
              with one of these pseudo-pack expansions is really just the type of
              a boring, old vararg function. Proto just interprets it differently.
            </p>
</td></tr>
</table></div>
<p>
            Unpacking patterns are very expressive. Any callable or object transform
            can be used as an unpacking pattern, so long as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pack</span><span class="special">(</span><span class="identifier">_</span><span class="special">)</span></code> appears exactly once somewhere within
            it. This gives you a lot of flexibility in how you want to process the
            children of an expression before passing them on to some function object
            or object constructor.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.external_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.external_transforms" title="Separating Grammars And Transforms">Separating
          Grammars And Transforms</a>
</h5></div></div></div>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              This is an advanced topic that is only necessary for people defining
              large EDSLs. Feel free to skip this if you're just getting started
              with Proto.
            </p></td></tr>
</table></div>
<p>
            So far, we've seen examples of grammars with embedded transforms. In
            practice, grammars can get pretty large, and you may want to use them
            to drive several different computations. For instance, you may have a
            grammar for a linear algebra domain, and you may want to use it to compute
            the shape of the result (vector or matrix?) and also to compute the result
            optimally. You don't want to have to copy and paste the whole shebang
            just to tweak one of the embedded transforms. What you want instead is
            to define the grammar once, and specify the transforms later when you're
            ready to evaluate an expression. For that, you use <span class="emphasis"><em>external
            transforms</em></span>. The pattern you'll use is this: replace one or
            more of the transforms in your grammar with the special placeholder
            <code class="computeroutput"><a class="link" href="../boost/proto/external_transform.html" title="Struct external_transform">proto::external_transform</a></code>.
            Then, you'll create a bundle of transforms that you will pass to the
            grammar in the data parameter (the 3rd parameter after the expression
            and state) when evaluating it.
          </p>
<p>
            To illustrate external transforms, we'll build a calculator evaluator
            that can be configured to throw an exception on division by zero. Here
            is a bare-bones front end that defines a domain, a grammar, an expression
            wrapper, and some placeholder terminals.
          </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">container</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">container</span><span class="special">/</span><span class="identifier">generation</span><span class="special">/</span><span class="identifier">make_vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>

<span class="comment">// The argument placeholder type</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">:</span> <span class="identifier">I</span> <span class="special">{};</span>

<span class="comment">// The grammar for valid calculator expressions</span>
<span class="keyword">struct</span> <span class="identifier">calc_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">calc_expr</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">calc_domain</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calc_expr</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calc_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">&gt;,</span> <span class="identifier">calc_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">calc_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">e</span> <span class="special">=</span> <span class="identifier">E</span><span class="special">())</span> <span class="special">:</span> <span class="identifier">calc_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">e</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">};</span>

<span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">_2</span><span class="special">;</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Build a calculator expression, and do nothing with it.</span>
    <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="identifier">_2</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            Now, let's embed transforms into <code class="computeroutput"><span class="identifier">calc_grammar</span></code>
            so that we can use it to evaluate calculator expressions:
          </p>
<pre class="programlisting"><span class="comment">// The calculator grammar with embedded transforms for evaluating expression.</span>
<span class="keyword">struct</span> <span class="identifier">calc_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">at</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            With this definition of <code class="computeroutput"><span class="identifier">calc_grammar</span></code>
            we can evaluate expressions by passing along a Fusion vector containing
            the values to use for the <code class="computeroutput"><span class="identifier">_1</span></code>
            and <code class="computeroutput"><span class="identifier">_2</span></code> placeholders:
          </p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">calc_grammar</span><span class="special">()(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">3</span><span class="special">,</span> <span class="number">4</span><span class="special">));</span>
<span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="identifier">result</span> <span class="special">==</span> <span class="number">7</span><span class="special">);</span>
</pre>
<p>
            We also want an alternative evaluation strategy that checks for division
            by zero and throws an exception. Just how ridiculous would it be to copy
            the entire <code class="computeroutput"><span class="identifier">calc_grammar</span></code>
            just to change the one line that transforms division expressions?! External
            transforms are ideally suited to this problem.
          </p>
<p>
            First, we give the division rule in our grammar a "name"; that
            is, we make it a struct. We'll use this unique type later to dispatch
            to the right transforms.
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">calc_grammar</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">divides_rule</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span> <span class="special">{};</span>
</pre>
<p>
            Next, we change <code class="computeroutput"><span class="identifier">calc_grammar</span></code>
            to make the handling of division expressions external.
          </p>
<pre class="programlisting"><span class="comment">// The calculator grammar with an external transform for evaluating</span>
<span class="comment">// division expressions.</span>
<span class="keyword">struct</span> <span class="identifier">calc_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">/* ... as before ... */</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">divides_rule</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transform</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The use of <code class="computeroutput"><a class="link" href="../boost/proto/external_transform.html" title="Struct external_transform">proto::external_transform</a></code> above
            makes the handling of division expressions externally parameterizeable.
          </p>
<p>
            Next, we use <code class="computeroutput"><a class="link" href="../boost/proto/external_transforms.html" title="Struct template external_transforms">proto::external_transforms&lt;&gt;</a></code>
            (note the trailing 's') to capture our evaluation strategy in a bundle
            that we can pass along to the transform in the data parameter. Read on
            for the explanation.
          </p>
<pre class="programlisting"><span class="comment">// Evaluate division nodes as before</span>
<span class="keyword">struct</span> <span class="identifier">non_checked_division</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transforms</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">divides_rule</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">/* ... */</span>

<span class="identifier">non_checked_division</span> <span class="identifier">non_checked</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">result2</span> <span class="special">=</span> <span class="identifier">calc_grammar</span><span class="special">()(</span><span class="identifier">_1</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">6</span><span class="special">,</span> <span class="number">2</span><span class="special">),</span> <span class="identifier">non_checked</span><span class="special">);</span>
</pre>
<p>
            The struct <code class="computeroutput"><span class="identifier">non_cecked_division</span></code>
            associates the transform <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span></code> with the <code class="computeroutput"><span class="identifier">divides_rule</span></code>
            grammar rule. An instance of that struct is passed along as the third
            parameter when invoking <code class="computeroutput"><span class="identifier">calc_grammar</span></code>.
          </p>
<p>
            Now, let's implement checked division. The rest should be unsurprising.
          </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">division_by_zero</span> <span class="special">:</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">exception</span> <span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">do_checked_divide</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>
    <span class="keyword">int</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">int</span> <span class="identifier">left</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">right</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">if</span> <span class="special">(</span><span class="identifier">right</span> <span class="special">==</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">throw</span> <span class="identifier">division_by_zero</span><span class="special">();</span>
        <span class="keyword">return</span> <span class="identifier">left</span> <span class="special">/</span> <span class="identifier">right</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">checked_division</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transforms</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">divides_rule</span>
          <span class="special">,</span> <span class="identifier">do_checked_divide</span><span class="special">(</span><span class="identifier">calc_grammar</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span> <span class="identifier">calc_grammar</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">))</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">/* ... */</span>

<span class="keyword">try</span>
<span class="special">{</span>
    <span class="identifier">checked_division</span> <span class="identifier">checked</span><span class="special">;</span>
    <span class="keyword">int</span> <span class="identifier">result3</span> <span class="special">=</span> <span class="identifier">calc_grammar_extern</span><span class="special">()(</span><span class="identifier">_1</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">6</span><span class="special">,</span> <span class="number">0</span><span class="special">),</span> <span class="identifier">checked</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">catch</span><span class="special">(</span><span class="identifier">division_by_zero</span><span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"caught division by zero!\n"</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
            The above code demonstrates how a single grammar can be used with different
            transforms specified externally. This makes it possible to reuse a grammar
            to drive several different computations.
          </p>
<h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.external_transforms.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.external_transforms.separating_data_from_external_transforms"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.external_transforms.separating_data_from_external_transforms">Separating
            Data From External Transforms</a>
          </h6>
<p>
            As described above, the external transforms feature usurps the data parameter,
            which is intended to be a place where you can pass arbitrary data, and
            gives it a specific meaning. But what if you are already using the data
            parameter for something else? The answer is to use a transform environment.
            By associating your external transforms with the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transforms</span></code>
            key, you are free to pass arbitrary data in other slots.
          </p>
<p>
            To continue the above example, what if we also needed to pass a piece
            of data into our transform along with the external transforms? It would
            look like this:
          </p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">result3</span> <span class="special">=</span> <span class="identifier">calc_grammar_extern</span><span class="special">()(</span>
    <span class="identifier">_1</span> <span class="special">/</span> <span class="identifier">_2</span>
  <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">6</span><span class="special">,</span> <span class="number">0</span><span class="special">)</span>
  <span class="special">,</span> <span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">data</span> <span class="special">=</span> <span class="number">42</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">transforms</span> <span class="special">=</span> <span class="identifier">checked</span><span class="special">)</span>
<span class="special">);</span>
</pre>
<p>
            In the above invocation of the <code class="computeroutput"><span class="identifier">calc_grammar_extern</span></code>
            algorithm, the map of external transforms is associated with the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transforms</span></code> key and passed to the algorithm
            in a transform environment. Also in the transform environment is a key/value
            pair that associates the value <code class="computeroutput"><span class="number">42</span></code>
            with the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">data</span></code> key.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms" title="Proto's Built-In Transforms">Proto's
          Built-In Transforms</a>
</h5></div></div></div>
<p>
            Primitive transforms are the building blocks for more interesting composite
            transforms. Proto defines a bunch of generally useful primitive transforms.
            They are summarized below.
          </p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_value.html" title="Struct _value">proto::_value</a></code></span></dt>
<dd><p>
                  Given a terminal expression, return the value of the terminal.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_child_c.html" title="Struct template _child_c">proto::_child_c&lt;&gt;</a></code></span></dt>
<dd><p>
                  Given a non-terminal expression, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><em class="replaceable"><code>N</code></em><span class="special">&gt;</span></code> returns the <em class="replaceable"><code>N</code></em>-th
                  child.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._child">proto::_child</a></code></span></dt>
<dd><p>
                  A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span></code>.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._left">proto::_left</a></code></span></dt>
<dd><p>
                  A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span></code>.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._right">proto::_right</a></code></span></dt>
<dd><p>
                  A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span></code>.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_expr.html" title="Struct _expr">proto::_expr</a></code></span></dt>
<dd><p>
                  Returns the current expression unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_state.html" title="Struct _state">proto::_state</a></code></span></dt>
<dd><p>
                  Returns the current state unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_data.html" title="Struct _data">proto::_data</a></code></span></dt>
<dd><p>
                  Returns the current data unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call&lt;&gt;</a></code></span></dt>
<dd><p>
                  For a given callable transform <code class="computeroutput"><em class="replaceable"><code>CT</code></em></code>,
                  <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><em class="replaceable"><code>CT</code></em><span class="special">&gt;</span></code> turns the callable transform
                  into a primitive transform. This is useful for disambiguating callable
                  transforms from object transforms, and also for working around
                  compiler bugs with nested function types.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/make.html" title="Struct template make">proto::make&lt;&gt;</a></code></span></dt>
<dd><p>
                  For a given object transform <code class="computeroutput"><em class="replaceable"><code>OT</code></em></code>,
                  <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">make</span><span class="special">&lt;</span><em class="replaceable"><code>OT</code></em><span class="special">&gt;</span></code> turns the object transform
                  into a primitive transform. This is useful for disambiguating object
                  transforms from callable transforms, and also for working around
                  compiler bugs with nested function types.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_default.html" title="Struct template _default">proto::_default&lt;&gt;</a></code></span></dt>
<dd><p>
                  Given a grammar <em class="replaceable"><code>G</code></em>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><em class="replaceable"><code>G</code></em><span class="special">&gt;</span></code> evaluates the current node
                  according to the standard C++ meaning of the operation the node
                  represents. For instance, if the current node is a binary plus
                  node, the two children will both be evaluated according to <code class="computeroutput"><em class="replaceable"><code>G</code></em></code>
                  and the results will be added and returned. The return type is
                  deduced with the help of the Boost.Typeof library.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/fold.html" title="Struct template fold">proto::fold&lt;&gt;</a></code></span></dt>
<dd><p>
                  Given three transforms <code class="computeroutput"><em class="replaceable"><code>ET</code></em></code>,
                  <code class="computeroutput"><em class="replaceable"><code>ST</code></em></code>, and <code class="computeroutput"><em class="replaceable"><code>FT</code></em></code>,
                  <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special">&lt;</span><em class="replaceable"><code>ET</code></em><span class="special">,</span> <em class="replaceable"><code>ST</code></em><span class="special">,</span> <em class="replaceable"><code>FT</code></em><span class="special">&gt;</span></code> first evaluates <code class="computeroutput"><em class="replaceable"><code>ET</code></em></code>
                  to obtain a Fusion sequence and <code class="computeroutput"><em class="replaceable"><code>ST</code></em></code>
                  to obtain an initial state for the fold, and then evaluates <code class="computeroutput"><em class="replaceable"><code>FT</code></em></code>
                  for each element in the sequence to generate the next state from
                  the previous.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/reverse_fold.html" title="Struct template reverse_fold">proto::reverse_fold&lt;&gt;</a></code></span></dt>
<dd><p>
                  Like <code class="computeroutput"><a class="link" href="../boost/proto/fold.html" title="Struct template fold">proto::fold&lt;&gt;</a></code>, except the
                  elements in the Fusion sequence are iterated in reverse order.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/fold_tree.html" title="Struct template fold_tree">proto::fold_tree&lt;&gt;</a></code></span></dt>
<dd><p>
                  Like <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special">&lt;</span><em class="replaceable"><code>ET</code></em><span class="special">,</span> <em class="replaceable"><code>ST</code></em><span class="special">,</span> <em class="replaceable"><code>FT</code></em><span class="special">&gt;</span></code>, except that the result of
                  the <code class="computeroutput"><em class="replaceable"><code>ET</code></em></code> transform is treated
                  as an expression tree that is <span class="emphasis"><em>flattened</em></span> to
                  generate the sequence to be folded. Flattening an expression tree
                  causes child nodes with the same tag type as the parent to be put
                  into sequence. For instance, <code class="computeroutput"><span class="identifier">a</span>
                  <span class="special">&gt;&gt;</span> <span class="identifier">b</span>
                  <span class="special">&gt;&gt;</span> <span class="identifier">c</span></code>
                  would be flattened to the sequence [<code class="computeroutput"><span class="identifier">a</span></code>,
                  <code class="computeroutput"><span class="identifier">b</span></code>, <code class="computeroutput"><span class="identifier">c</span></code>], and this is the sequence
                  that would be folded.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/reverse_fold_tree.html" title="Struct template reverse_fold_tree">proto::reverse_fold_tree&lt;&gt;</a></code></span></dt>
<dd><p>
                  Like <code class="computeroutput"><a class="link" href="../boost/proto/fold_tree.html" title="Struct template fold_tree">proto::fold_tree&lt;&gt;</a></code>, except that
                  the flattened sequence is iterated in reverse order.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/lazy.html" title="Struct template lazy">proto::lazy&lt;&gt;</a></code></span></dt>
<dd><p>
                  A combination of <code class="computeroutput"><a class="link" href="../boost/proto/make.html" title="Struct template make">proto::make&lt;&gt;</a></code>
                  and <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call&lt;&gt;</a></code> that is useful
                  when the nature of the transform depends on the expression, state
                  and/or data parameters. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lazy</span><span class="special">&lt;</span><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">...</span><span class="identifier">An</span><span class="special">)&gt;</span></code> first evaluates <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">make</span><span class="special">&lt;</span><span class="identifier">R</span><span class="special">()&gt;</span></code>
                  to compute a callable type <code class="computeroutput"><span class="identifier">R2</span></code>.
                  Then, it evaluates <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">R2</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">...</span><span class="identifier">An</span><span class="special">)&gt;</span></code>.
                </p></dd>
</dl>
</div>
<h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.h0"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.all_grammars_are_primitive_transforms"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.all_grammars_are_primitive_transforms">All
            Grammars Are Primitive Transforms</a>
          </h6>
<p>
            In addition to the above primitive transforms, all of Proto's grammar
            elements are also primitive transforms. Their behaviors are described
            below.
          </p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_.html" title="Struct _">proto::_</a></code></span></dt>
<dd><p>
                  Return the current expression unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code></span></dt>
<dd><p>
                  For the specified set of alternate sub-grammars, find the one that
                  matches the given expression and apply its associated transform.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_&lt;&gt;</a></code></span></dt>
<dd><p>
                  For the given set of sub-grammars, apply all the associated transforms
                  and return the result of the last.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_&lt;&gt;</a></code></span></dt>
<dd><p>
                  Return the current expression unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_&lt;&gt;</a></code></span></dt>
<dd><p>
                  Given three transforms, evaluate the first and treat the result
                  as a compile-time Boolean value. If it is true, evaluate the second
                  transform. Otherwise, evaluate the third.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_&lt;&gt;</a></code></span></dt>
<dd><p>
                  As with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_&lt;&gt;</a></code>, find the sub-grammar
                  that matches the given expression and apply its associated transform.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal&lt;&gt;</a></code></span></dt>
<dd><p>
                  Return the current terminal expression unmodified.
                </p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus&lt;&gt;</a></code>, <code class="computeroutput"><a class="link" href="../boost/proto/nary_expr.html" title="Struct template nary_expr">proto::nary_expr&lt;&gt;</a></code>,
              et. al.</span></dt>
<dd><p>
                  A Proto grammar that matches a non-terminal such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><em class="replaceable"><code>G0</code></em><span class="special">,</span> <em class="replaceable"><code>G1</code></em><span class="special">&gt;</span></code>, when used as a primitive transform,
                  creates a new plus node where the left child is transformed according
                  to <code class="computeroutput"><em class="replaceable"><code>G0</code></em></code> and the right child
                  with <code class="computeroutput"><em class="replaceable"><code>G1</code></em></code>.
                </p></dd>
</dl>
</div>
<h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.h1"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_pass_through_transform"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_pass_through_transform">The
            Pass-Through Transform</a>
          </h6>
<p>
            Note the primitive transform associated with grammar elements such as
            <code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus&lt;&gt;</a></code> described above.
            They possess a so-called <span class="emphasis"><em>pass-through</em></span> transform.
            The pass-through transform accepts an expression of a certain tag type
            (say, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>) and creates a new expression
            of the same tag type, where each child expression is transformed according
            to the corresponding child grammar of the pass-through transform. So
            for instance this grammar ...
          </p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span> <span class="identifier">X</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">Y</span><span class="special">&gt;</span> <span class="special">&gt;</span>
</pre>
<p>
            ... matches function expressions where the first child matches the <code class="computeroutput"><span class="identifier">X</span></code> grammar and the rest match the <code class="computeroutput"><span class="identifier">Y</span></code> grammar. When used as a transform,
            the above grammar will create a new function expression where the first
            child is transformed according to <code class="computeroutput"><span class="identifier">X</span></code>
            and the rest are transformed according to <code class="computeroutput"><span class="identifier">Y</span></code>.
          </p>
<p>
            The following class templates in Proto can be used as grammars with pass-through
            transforms:
          </p>
<div class="table">
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.t0"></a><p class="title"><b>Table&#160;32.11.&#160;Class Templates With Pass-Through Transforms</b></p>
<div class="table-contents"><table class="table" summary="Class Templates With Pass-Through Transforms">
<colgroup><col></colgroup>
<thead><tr><th>
                    <p>
                      Templates with Pass-Through Transforms
                    </p>
                  </th></tr></thead>
<tbody>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">dereference</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_not</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_inc</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_dec</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_inc</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_dec</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less_equal</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater_equal</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">equal_to</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_equal_to</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">comma</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">mem_ptr</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">subscript</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_else_</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_expr</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">binary_expr</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
<tr><td>
                    <p>
                      <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;&gt;</span></code>
                    </p>
                  </td></tr>
</tbody>
</table></div>
</div>
<br class="table-break"><h6>
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.h2"></a>
            <span class="phrase"><a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_many_roles_of_proto_operator_metafunctions"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_many_roles_of_proto_operator_metafunctions">The
            Many Roles of Proto Operator Metafunctions</a>
          </h6>
<p>
            We've seen templates such as <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal&lt;&gt;</a></code>,
            <code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus&lt;&gt;</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/nary_expr.html" title="Struct template nary_expr">proto::nary_expr&lt;&gt;</a></code>
            fill many roles. They are metafunction that generate expression types.
            They are grammars that match expression types. And they are primitive
            transforms. The following code samples show examples of each.
          </p>
<p>
            <span class="bold"><strong>As Metafunctions ...</strong></span>
          </p>
<pre class="programlisting"><span class="comment">// proto::terminal&lt;&gt; and proto::plus&lt;&gt; are metafunctions</span>
<span class="comment">// that generate expression types:</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">int_</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">int_</span><span class="special">,</span> <span class="identifier">int_</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">plus_</span><span class="special">;</span>

<span class="identifier">int_</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">},</span> <span class="identifier">j</span> <span class="special">=</span> <span class="special">{</span><span class="number">24</span><span class="special">};</span>
<span class="identifier">plus_</span> <span class="identifier">p</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">i</span><span class="special">,</span> <span class="identifier">j</span><span class="special">};</span>
</pre>
<p>
            <span class="bold"><strong>As Grammars ...</strong></span>
          </p>
<pre class="programlisting"><span class="comment">// proto::terminal&lt;&gt; and proto::plus&lt;&gt; are grammars that</span>
<span class="comment">// match expression types</span>
<span class="keyword">struct</span> <span class="identifier">Int</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Plus</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Int</span><span class="special">,</span> <span class="identifier">Int</span><span class="special">&gt;</span> <span class="special">{};</span>

<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">int_</span><span class="special">,</span> <span class="identifier">Int</span> <span class="special">&gt;</span> <span class="special">));</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span> <span class="identifier">plus_</span><span class="special">,</span> <span class="identifier">Plus</span> <span class="special">&gt;</span> <span class="special">));</span>
</pre>
<p>
            <span class="bold"><strong>As Primitive Transforms ...</strong></span>
          </p>
<pre class="programlisting"><span class="comment">// A transform that removes all unary_plus nodes in an expression</span>
<span class="keyword">struct</span> <span class="identifier">RemoveUnaryPlus</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">&lt;</span><span class="identifier">RemoveUnaryPlus</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">RemoveUnaryPlus</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span>
        <span class="special">&gt;</span>
        <span class="comment">// Use proto::terminal&lt;&gt; and proto::nary_expr&lt;&gt;</span>
        <span class="comment">// both as grammars and as primitive transforms.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">RemoveUnaryPlus</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>

    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
        <span class="special">+</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+(</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">);</span>

    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
        <span class="identifier">RemoveUnaryPlus</span><span class="special">()(</span> <span class="special">+</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+(</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+</span><span class="identifier">i</span><span class="special">)</span> <span class="special">)</span>
    <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
            The above code displays the following, which shows that unary plus nodes
            have been stripped from the expression:
          </p>
<pre class="programlisting">minus(
    unary_plus(
        terminal(0)
    )
  , unary_plus(
        minus(
            terminal(0)
          , unary_plus(
                terminal(0)
            )
        )
    )
)
minus(
    terminal(0)
  , minus(
        terminal(0)
      , terminal(0)
    )
)
</pre>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.primitives"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.primitives" title="Building Custom Primitive Transforms">Building
          Custom Primitive Transforms</a>
</h5></div></div></div>
<p>
            In previous sections, we've seen how to compose larger transforms out
            of smaller transforms using function types. The smaller transforms from
            which larger transforms are composed are <span class="emphasis"><em>primitive transforms</em></span>,
            and Proto provides a bunch of common ones such as <code class="computeroutput"><span class="identifier">_child0</span></code>
            and <code class="computeroutput"><span class="identifier">_value</span></code>. In this section
            we'll see how to author your own primitive transforms.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              There are a few reasons why you might want to write your own primitive
              transforms. For instance, your transform may be complicated, and composing
              it out of primitives becomes unwieldy. You might also need to work
              around compiler bugs on legacy compilers that make composing transforms
              using function types problematic. Finally, you might also decide to
              define your own primitive transforms to improve compile times. Since
              Proto can simply invoke a primitive transform directly without having
              to process arguments or differentiate callable transforms from object
              transforms, primitive transforms are more efficient.
            </p></td></tr>
</table></div>
<p>
            Primitive transforms inherit from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform</span><span class="special">&lt;&gt;</span></code> and have a nested <code class="computeroutput"><span class="identifier">impl</span><span class="special">&lt;&gt;</span></code>
            template that inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform_impl</span><span class="special">&lt;&gt;</span></code>. For example, this is how Proto
            defines the <code class="computeroutput"><span class="identifier">_child_c</span><span class="special">&lt;</span><em class="replaceable"><code>N</code></em><span class="special">&gt;</span></code>
            transform, which returns the <em class="replaceable"><code>N</code></em>-th child of
            the current expression:
          </p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
    <span class="comment">// A primitive transform that returns N-th child</span>
    <span class="comment">// of the current expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">N</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">_child_c</span> <span class="special">:</span> <span class="identifier">transform</span><span class="special">&lt;</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="identifier">N</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">State</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Data</span><span class="special">&gt;</span>
        <span class="keyword">struct</span> <span class="identifier">impl</span> <span class="special">:</span> <span class="identifier">transform_impl</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">State</span><span class="special">,</span> <span class="identifier">Data</span><span class="special">&gt;</span>
        <span class="special">{</span>
            <span class="keyword">typedef</span>
                <span class="keyword">typename</span> <span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">N</span><span class="special">&gt;::</span><span class="identifier">type</span>
            <span class="identifier">result_type</span><span class="special">;</span>

            <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span>
                <span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">expr_param</span> <span class="identifier">expr</span>
              <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">state_param</span> <span class="identifier">state</span>
              <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">data_param</span> <span class="identifier">data</span>
            <span class="special">)</span> <span class="keyword">const</span>
            <span class="special">{</span>
                <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special">&lt;</span><span class="identifier">N</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">);</span>
            <span class="special">}</span>
        <span class="special">};</span>
    <span class="special">};</span>

    <span class="comment">// Note that _child_c&lt;N&gt; is callable, so that</span>
    <span class="comment">// it can be used in callable transforms, as:</span>
    <span class="comment">//   _child_c&lt;0&gt;(_child_c&lt;1&gt;)</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">N</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">is_callable</span><span class="special">&lt;</span><span class="identifier">_child_c</span><span class="special">&lt;</span><span class="identifier">N</span><span class="special">&gt;</span> <span class="special">&gt;</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
    <span class="special">{};</span>
<span class="special">}}</span>
</pre>
<p>
            The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform</span><span class="special">&lt;&gt;</span></code>
            base class provides the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> overloads and the nested <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code>
            template that make your transform a valid function object. These are
            implemented in terms of the nested <code class="computeroutput"><span class="identifier">impl</span><span class="special">&lt;&gt;</span></code> template you define.
          </p>
<p>
            The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform_impl</span><span class="special">&lt;&gt;</span></code>
            base class is a convenience. It provides some nested typedefs that are
            generally useful. They are specified in the table below:
          </p>
<div class="table">
<a name="boost_proto.users_guide.back_end.expression_transformation.primitives.t0"></a><p class="title"><b>Table&#160;32.12.&#160;proto::transform_impl&lt;Expr, State, Data&gt; typedefs</b></p>
<div class="table-contents"><table class="table" summary="proto::transform_impl&lt;Expr, State, Data&gt; typedefs">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                    <p>
                      typedef
                    </p>
                  </th>
<th>
                    <p>
                      Equivalent To
                    </p>
                  </th>
</tr></thead>
<tbody>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">expr</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">state</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">State</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">data</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">Data</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">expr_param</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special">&lt;</span><span class="keyword">typename</span>
                      <span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">state_param</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special">&lt;</span><span class="keyword">typename</span>
                      <span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">State</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
<tr>
<td>
                    <p>
                      <code class="computeroutput"><span class="identifier">data_param</span></code>
                    </p>
                  </td>
<td>
                    <p>
                      <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special">&lt;</span><span class="keyword">typename</span>
                      <span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">Data</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;::</span><span class="identifier">type</span></code>
                    </p>
                  </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
            You'll notice that <code class="computeroutput"><span class="identifier">_child_c</span><span class="special">::</span><span class="identifier">impl</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> takes arguments of types <code class="computeroutput"><span class="identifier">expr_param</span></code>, <code class="computeroutput"><span class="identifier">state_param</span></code>,
            and <code class="computeroutput"><span class="identifier">data_param</span></code>. The typedefs
            make it easy to accept arguments by reference or const reference accordingly.
          </p>
<p>
            The only other interesting bit is the <code class="computeroutput"><span class="identifier">is_callable</span><span class="special">&lt;&gt;</span></code> specialization, which will be
            described in the <a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable" title="Making Your Transform Callable">next
            section</a>.
          </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.is_callable"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable" title="Making Your Transform Callable">Making
          Your Transform Callable</a>
</h5></div></div></div>
<p>
            Transforms are typically of the form <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">Something</span><span class="special">,</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span> <span class="special">&gt;</span></code>.
            The question is whether <code class="computeroutput"><span class="identifier">R</span></code>
            represents a function to call or an object to construct, and the answer
            determines how <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code> evaluates the transform.
            <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when&lt;&gt;</a></code> uses the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;&gt;</span></code>
            trait to disambiguate between the two. Proto does its best to guess whether
            a type is callable or not, but it doesn't always get it right. It's best
            to know the rules Proto uses, so that you know when you need to be more
            explicit.
          </p>
<p>
            For most types <code class="computeroutput"><span class="identifier">R</span></code>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;</span><span class="identifier">R</span><span class="special">&gt;</span></code>
            checks for inheritance from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
            However, if the type <code class="computeroutput"><span class="identifier">R</span></code>
            is a template specialization, Proto assumes that it is <span class="emphasis"><em>not</em></span>
            callable <span class="emphasis"><em>even if the template inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code></em></span>.
            We'll see why in a minute. Consider the following erroneous callable
            object:
          </p>
<pre class="programlisting"><span class="comment">// Proto can't tell this defines something callable!</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">times2</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="number">2</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// ERROR! This is not going to multiply the int by 2:</span>
<span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            The problem is that Proto doesn't know that <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code> is callable, so rather that invoking
            the <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>
            function object, Proto will try to construct a <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code> object and initialize it will an
            <code class="computeroutput"><span class="keyword">int</span></code>. That will not compile.
          </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
              Why can't Proto tell that <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code> is callable? After all, it inherits
              from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>, and that is detectable,
              right? The problem is that merely asking whether some type <code class="computeroutput"><span class="identifier">X</span><span class="special">&lt;</span><span class="identifier">Y</span><span class="special">&gt;</span></code>
              inherits from <code class="computeroutput"><span class="identifier">callable</span></code>
              will cause the template <code class="computeroutput"><span class="identifier">X</span><span class="special">&lt;</span><span class="identifier">Y</span><span class="special">&gt;</span></code> to be instantiated. That's a problem
              for a type like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">_child1</span><span class="special">)&gt;</span></code>. <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;&gt;</span></code> will not suffer to be instantiated
              with <code class="computeroutput"><span class="identifier">_value</span><span class="special">(</span><span class="identifier">_child1</span><span class="special">)</span></code>
              as a template parameter. Since merely asking the question will sometimes
              result in a hard error, Proto can't ask; it has to assume that <code class="computeroutput"><span class="identifier">X</span><span class="special">&lt;</span><span class="identifier">Y</span><span class="special">&gt;</span></code>
              represents an object to construct and not a function to call.
            </p></td></tr>
</table></div>
<p>
            There are a couple of solutions to the <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code> problem. One solution is to wrap
            the transform in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;&gt;</span></code>. This forces Proto to treat
            <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>
            as callable:
          </p>
<pre class="programlisting"><span class="comment">// OK, calls times2&lt;int&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This can be a bit of a pain, because we need to wrap every use of <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span></code>,
            which can be tedious and error prone, and makes our grammar cluttered
            and harder to read.
          </p>
<p>
            Another solution is to specialize <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;&gt;</span></code> on our <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;&gt;</span></code> template:
          </p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
    <span class="comment">// Tell Proto that times2&lt;&gt; is callable</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">is_callable</span><span class="special">&lt;</span><span class="identifier">times2</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
    <span class="special">{};</span>
<span class="special">}}</span>

<span class="comment">// OK, times2&lt;&gt; is callable</span>
<span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This is better, but still a pain because of the need to open Proto's
            namespace.
          </p>
<p>
            You could simply make sure that the callable type is not a template specialization.
            Consider the following:
          </p>
<pre class="programlisting"><span class="comment">// No longer a template specialization!</span>
<span class="keyword">struct</span> <span class="identifier">times2int</span> <span class="special">:</span> <span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="special">{};</span>

<span class="comment">// OK, times2int is callable</span>
<span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">times2int</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            This works because now Proto can tell that <code class="computeroutput"><span class="identifier">times2int</span></code>
            inherits (indirectly) from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
            Any non-template types can be safely checked for inheritance because,
            as they are not templates, there is no worry about instantiation errors.
          </p>
<p>
            There is one last way to tell Proto that <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;&gt;</span></code> is callable. You could add an
            extra dummy template parameter that defaults to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>:
          </p>
<pre class="programlisting"><span class="comment">// Proto will recognize this as callable</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Callable</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">times2</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="number">2</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// OK, this works!</span>
<span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">times2</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
            Note that in addition to the extra template parameter, <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;&gt;</span></code>
            still inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
            That's not necessary in this example but it is good style because any
            types derived from <code class="computeroutput"><span class="identifier">times2</span><span class="special">&lt;&gt;</span></code> (as <code class="computeroutput"><span class="identifier">times2int</span></code>
            defined above) will still be considered callable.
          </p>
</div>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.examples"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples" title="Examples">Examples</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.hello_world">Hello
        World: Building an Expression Template and Evaluating It</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc1">Calc1: Defining
        an Evaluation Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc2">Calc2: Adding
        Members Using <code class="literal">proto::extends&lt;&gt;</code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc3">Calc3: Defining
        a Simple Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.lazy_vector">Lazy
        Vector: Controlling Operator Overloads</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.rgb">RGB: Type Manipulations
        with Proto Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.tarray">TArray: A
        Simple Linear Algebra Library</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.vec3">Vec3: Computing
        With Transforms and Contexts</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.vector">Vector: Adapting
        a Non-Proto Terminal Type</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.mixed">Mixed: Adapting
        Several Non-Proto Terminal Types</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.map_assign">Map Assign:
        An Intermediate Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.future_group">Future
        Group: A More Advanced Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.lambda">Lambda: A
        Simple Lambda Library with Proto</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.checked_calc">Checked
        Calculator: A Simple Example of External Transforms</a></span></dt>
</dl></div>
<p>
        A code example is worth a thousand words ...
      </p>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.hello_world"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.hello_world" title="Hello World: Building an Expression Template and Evaluating It">Hello
        World: Building an Expression Template and Evaluating It</a>
</h4></div></div></div>
<p>
          A trivial example which builds and expression template and evaluates it.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="comment">// This #include is only needed for compilers that use typeof emulation:</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>

<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">&lt;&lt;</span> <span class="string">"hello"</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="string">" world"</span> <span class="special">);</span>
    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc1"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc1" title="Calc1: Defining an Evaluation Context">Calc1: Defining
        an Evaluation Context</a>
</h4></div></div></div>
<p>
          A simple example that builds a miniature embedded domain-specific language
          for lazy arithmetic expressions, with TR1 bind-style argument placeholders.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is a simple example of how to build an arithmetic expression</span>
<span class="comment">// evaluator with placeholders.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">{};</span>

<span class="comment">// Define some placeholders</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="number">1</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="number">2</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>

<span class="comment">// Define a calculator context, for evaluating arithmetic expressions</span>
<span class="keyword">struct</span> <span class="identifier">calculator_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// The values bound to the placeholders</span>
    <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>

    <span class="comment">// The result of evaluating arithmetic expressions</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Handle the evaluation of the placeholder terminals</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span> <span class="special">)</span>
<span class="special">{</span>
    <span class="comment">// Create a calculator context with d1 and d2 substituted for _1 and _2</span>
    <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>

    <span class="comment">// Evaluate the calculator expression with the calculator_context</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Displays "5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">,</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "6"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">,</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "0.5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc2"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc2" title="Calc2: Adding Members Using proto::extends&lt;&gt;">Calc2: Adding
        Members Using <code class="literal">proto::extends&lt;&gt;</code></a>
</h4></div></div></div>
<p>
          An extension of the Calc1 example that uses <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends&lt;&gt;</a></code>
          to make calculator expressions valid function objects that can be used
          with STL algorithms.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This example enhances the simple arithmetic expression evaluator</span>
<span class="comment">// in calc1.cpp by using proto::extends to make arithmetic</span>
<span class="comment">// expressions immediately evaluable with operator (), a-la a</span>
<span class="comment">// function object</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span><span class="special">;</span>

<span class="comment">// Tell proto how to generate expressions in the calculator_domain</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calculator_expression</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Will be used to define the placeholders _1 and _2</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">{};</span>

<span class="comment">// Define a calculator context, for evaluating arithmetic expressions</span>
<span class="comment">// (This is as before, in calc1.cpp)</span>
<span class="keyword">struct</span> <span class="identifier">calculator_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// The values bound to the placeholders</span>
    <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>

    <span class="comment">// The result of evaluating arithmetic expressions</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Handle the evaluation of the placeholder terminals</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Wrap all calculator expressions in this type, which defines</span>
<span class="comment">// operator () to evaluate the expression.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">calculator_expression</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
      <span class="special">:</span> <span class="identifier">calculator_expression</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="identifier">BOOST_PROTO_EXTENDS_USING_ASSIGN</span><span class="special">(</span><span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;)</span>

    <span class="comment">// Override operator () to evaluate the expression</span>
    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Define some placeholders (notice they're wrapped in calculator_expression&lt;&gt;)</span>
<span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="number">1</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="number">2</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>

<span class="comment">// Now, our arithmetic expressions are immediately executable function objects:</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Displays "5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">)(</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "6"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "0.5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc3"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc3" title="Calc3: Defining a Simple Transform">Calc3: Defining
        a Simple Transform</a>
</h4></div></div></div>
<p>
          An extension of the Calc2 example that uses a Proto transform to calculate
          the arity of a calculator expression and statically assert that the correct
          number of arguments are passed.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This example enhances the arithmetic expression evaluator</span>
<span class="comment">// in calc2.cpp by using a proto transform to calculate the</span>
<span class="comment">// number of arguments an expression requires and using a</span>
<span class="comment">// compile-time assert to guarantee that the right number of</span>
<span class="comment">// arguments are actually specified.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">min_max</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="comment">// Will be used to define the placeholders _1 and _2</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">:</span> <span class="identifier">I</span> <span class="special">{};</span>

<span class="comment">// This grammar basically says that a calculator expression is one of:</span>
<span class="comment">//   - A placeholder terminal</span>
<span class="comment">//   - Some other terminal</span>
<span class="comment">//   - Some non-terminal whose children are calculator expressions</span>
<span class="comment">// In addition, it has transforms that say how to calculate the</span>
<span class="comment">// expression arity for each of the three cases.</span>
<span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>

        <span class="comment">// placeholders have a non-zero arity ...</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span> <span class="special">&gt;</span>

        <span class="comment">// Any other terminals have arity 0 ...</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;()</span> <span class="special">&gt;</span>

        <span class="comment">// For any non-terminals, find the arity of the children and</span>
        <span class="comment">// take the maximum. This is recursive.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
             <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(),</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;</span><span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">&gt;()</span> <span class="special">&gt;</span> <span class="special">&gt;</span>

    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Simple wrapper for calculating a calculator expression's arity.</span>
<span class="comment">// It specifies mpl::int_&lt;0&gt; as the initial state. The data, which</span>
<span class="comment">// is not used, is mpl::void_.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator_arity</span>
  <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">CalculatorGrammar</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">)&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span><span class="special">;</span>

<span class="comment">// Tell proto how to generate expressions in the calculator_domain</span>
<span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calculator_expression</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Define a calculator context, for evaluating arithmetic expressions</span>
<span class="comment">// (This is as before, in calc1.cpp and calc2.cpp)</span>
<span class="keyword">struct</span> <span class="identifier">calculator_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="comment">// The values bound to the placeholders</span>
    <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>

    <span class="comment">// The result of evaluating arithmetic expressions</span>
    <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
        <span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Handle the evaluation of the placeholder terminals</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span><span class="special">()</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Wrap all calculator expressions in this type, which defines</span>
<span class="comment">// operator () to evaluate the expression.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">calculator_domain</span><span class="special">&gt;</span>
    <span class="identifier">base_type</span><span class="special">;</span>

    <span class="keyword">explicit</span> <span class="identifier">calculator_expression</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
      <span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="identifier">BOOST_PROTO_EXTENDS_USING_ASSIGN</span><span class="special">(</span><span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;)</span>

    <span class="comment">// Override operator () to evaluate the expression</span>
    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">// Assert that the expression has arity 0</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">// Assert that the expression has arity 1</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="comment">// Assert that the expression has arity 2</span>
        <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
        <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Define some placeholders (notice they're wrapped in calculator_expression&lt;&gt;)</span>
<span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator_expression</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">2</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>

<span class="comment">// Now, our arithmetic expressions are immediately executable function objects:</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Displays "5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">)(</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "6"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Displays "0.5"</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// This won't compile because the arity of the</span>
    <span class="comment">// expression doesn't match the number of arguments</span>
    <span class="comment">// ( (_1 - _2) / _2 )( 3.0 );</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.lazy_vector"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.lazy_vector" title="Lazy Vector: Controlling Operator Overloads">Lazy
        Vector: Controlling Operator Overloads</a>
</h4></div></div></div>
<p>
          This example constructs a mini-library for linear algebra, using expression
          templates to eliminate the need for temporaries when adding vectors of
          numbers.
        </p>
<p>
          This example uses a domain with a grammar to prune the set of overloaded
          operators. Only those operators that produce valid lazy vector expressions
          are allowed.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This example constructs a mini-library for linear algebra, using</span>
<span class="comment">// expression templates to eliminate the need for temporaries when</span>
<span class="comment">// adding vectors of numbers.</span>
<span class="comment">//</span>
<span class="comment">// This example uses a domain with a grammar to prune the set</span>
<span class="comment">// of overloaded operators. Only those operators that produce</span>
<span class="comment">// valid lazy vector expressions are allowed.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector_expr</span><span class="special">;</span>

<span class="comment">// This grammar describes which lazy vector expressions</span>
<span class="comment">// are allowed; namely, vector terminals and addition</span>
<span class="comment">// and subtraction of lazy vector expressions.</span>
<span class="keyword">struct</span> <span class="identifier">LazyVectorGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span> <span class="identifier">LazyVectorGrammar</span><span class="special">,</span> <span class="identifier">LazyVectorGrammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span> <span class="identifier">LazyVectorGrammar</span><span class="special">,</span> <span class="identifier">LazyVectorGrammar</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Tell proto that in the lazy_vector_domain, all</span>
<span class="comment">// expressions should be wrapped in laxy_vector_expr&lt;&gt;</span>
<span class="comment">// and must conform to the lazy vector grammar.</span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">lazy_vector_expr</span><span class="special">&gt;,</span> <span class="identifier">LazyVectorGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is an evaluation context that indexes into a lazy vector</span>
<span class="comment">// expression, and combines the result.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Size</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lazy_subscript_context</span>
<span class="special">{</span>
    <span class="identifier">lazy_subscript_context</span><span class="special">(</span><span class="identifier">Size</span> <span class="identifier">subscript</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">subscript_</span><span class="special">(</span><span class="identifier">subscript</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Use default_eval for all the operations ...</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// ... except for terminals, which we index with our subscript</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span> <span class="special">&amp;</span> <span class="identifier">ctx</span> <span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)[</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">subscript_</span> <span class="special">];</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="identifier">Size</span> <span class="identifier">subscript_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// Here is the domain-specific expression wrapper, which overrides</span>
<span class="comment">// operator [] to evaluate the expression using the lazy_subscript_context.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_vector_expr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">lazy_vector_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">lazy_vector_expr</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
      <span class="special">:</span> <span class="identifier">lazy_vector_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Use the lazy_subscript_context&lt;&gt; to implement subscripting</span>
    <span class="comment">// of a lazy vector expression tree.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Size</span> <span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span><span class="special">&lt;</span><span class="identifier">Size</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">Size</span> <span class="identifier">subscript</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">lazy_subscript_context</span><span class="special">&lt;</span><span class="identifier">Size</span><span class="special">&gt;</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">subscript</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Here is our lazy_vector terminal, implemented in terms of lazy_vector_expr</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector</span>
  <span class="special">:</span> <span class="identifier">lazy_vector_expr</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">expr_type</span><span class="special">;</span>

    <span class="identifier">lazy_vector</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">value</span> <span class="special">=</span> <span class="identifier">T</span><span class="special">()</span> <span class="special">)</span>
      <span class="special">:</span> <span class="identifier">lazy_vector_expr</span><span class="special">&lt;</span><span class="identifier">expr_type</span><span class="special">&gt;(</span> <span class="identifier">expr_type</span><span class="special">::</span><span class="identifier">make</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span> <span class="identifier">size</span><span class="special">,</span> <span class="identifier">value</span> <span class="special">)</span> <span class="special">)</span> <span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Here we define a += operator for lazy vector terminals that</span>
    <span class="comment">// takes a lazy vector expression and indexes it. expr[i] here</span>
    <span class="comment">// uses lazy_subscript_context&lt;&gt; under the covers.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
    <span class="identifier">lazy_vector</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">+=</span> <span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">).</span><span class="identifier">size</span><span class="special">();</span>
        <span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">size</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
        <span class="special">{</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+=</span> <span class="identifier">expr</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
        <span class="special">}</span>
        <span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// lazy_vectors with 4 elements each.</span>
    <span class="identifier">lazy_vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">v1</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">),</span> <span class="identifier">v2</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">),</span> <span class="identifier">v3</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">3.0</span> <span class="special">);</span>

    <span class="comment">// Add two vectors lazily and get the 2nd element.</span>
    <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">v2</span> <span class="special">+</span> <span class="identifier">v3</span> <span class="special">)[</span> <span class="number">2</span> <span class="special">];</span>   <span class="comment">// Look ma, no temporaries!</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">d1</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// Subtract two vectors and add the result to a third vector.</span>
    <span class="identifier">v1</span> <span class="special">+=</span> <span class="identifier">v2</span> <span class="special">-</span> <span class="identifier">v3</span><span class="special">;</span>                  <span class="comment">// Still no temporaries!</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="char">'{'</span> <span class="special">&lt;&lt;</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">1</span><span class="special">]</span>
              <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">','</span> <span class="special">&lt;&lt;</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">'}'</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="comment">// This expression is disallowed because it does not conform</span>
    <span class="comment">// to the LazyVectorGrammar</span>
    <span class="comment">//(v2 + v3) += v1;</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.rgb"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.rgb" title="RGB: Type Manipulations with Proto Transforms">RGB: Type Manipulations
        with Proto Transforms</a>
</h4></div></div></div>
<p>
          This is a simple example of doing arbitrary type manipulations with Proto
          transforms. It takes some expression involving primary colors and combines
          the colors according to arbitrary rules. It is a port of the RGB example
          from <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is a simple example of doing arbitrary type manipulations with proto</span>
<span class="comment">// transforms. It takes some expression involving primary colors and combines</span>
<span class="comment">// the colors according to arbitrary rules. It is a port of the RGB example</span>
<span class="comment">// from PETE (http://www.codesourcery.com/pooma/download.html).</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">RedTag</span>
<span class="special">{</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">RedTag</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">sout</span> <span class="special">&lt;&lt;</span> <span class="string">"This expression is red."</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">BlueTag</span>
<span class="special">{</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">BlueTag</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">sout</span> <span class="special">&lt;&lt;</span> <span class="string">"This expression is blue."</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">GreenTag</span>
<span class="special">{</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">GreenTag</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">sout</span> <span class="special">&lt;&lt;</span> <span class="string">"This expression is green."</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">RedTag</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">RedT</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">BlueTag</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">BlueT</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">GreenTag</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">GreenT</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">Red</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">Blue</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">Green</span><span class="special">;</span>

<span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">// A transform that produces new colors according to some arbitrary rules:</span>
<span class="comment">// red &amp; green give blue, red &amp; blue give green, blue and green give red.</span>
<span class="keyword">struct</span> <span class="identifier">Red</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">RedTag</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Green</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">GreenTag</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">Blue</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">BlueTag</span><span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">RGB</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">Red</span><span class="special">,</span> <span class="identifier">RedTag</span><span class="special">()</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">BlueTag</span><span class="special">()</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">Green</span><span class="special">,</span> <span class="identifier">GreenTag</span><span class="special">()</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">printColor</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
    <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="comment">// dummy state and data parameter, not used</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">RGB</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">i</span><span class="special">,</span> <span class="identifier">i</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">GreenT</span><span class="special">());</span>
    <span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">GreenT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">BlueT</span><span class="special">());</span>
    <span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">GreenT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">BlueT</span><span class="special">()));</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.tarray"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.tarray" title="TArray: A Simple Linear Algebra Library">TArray: A
        Simple Linear Algebra Library</a>
</h4></div></div></div>
<p>
          This example constructs a mini-library for linear algebra, using expression
          templates to eliminate the need for temporaries when adding arrays of numbers.
          It duplicates the TArray example from <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This example constructs a mini-library for linear algebra, using</span>
<span class="comment">// expression templates to eliminate the need for temporaries when</span>
<span class="comment">// adding arrays of numbers. It duplicates the TArray example from</span>
<span class="comment">// PETE (http://www.codesourcery.com/pooma/download.html)</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="comment">// This grammar describes which TArray expressions</span>
<span class="comment">// are allowed; namely, int and array terminals</span>
<span class="comment">// plus, minus, multiplies and divides of TArray expressions.</span>
<span class="keyword">struct</span> <span class="identifier">TArrayGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">int</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">TArrayExpr</span><span class="special">;</span>

<span class="comment">// Tell proto that in the TArrayDomain, all</span>
<span class="comment">// expressions should be wrapped in TArrayExpr&lt;&gt; and</span>
<span class="comment">// must conform to the TArrayGrammar</span>
<span class="keyword">struct</span> <span class="identifier">TArrayDomain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">TArrayExpr</span><span class="special">&gt;,</span> <span class="identifier">TArrayGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is an evaluation context that indexes into a TArray</span>
<span class="comment">// expression, and combines the result.</span>
<span class="keyword">struct</span> <span class="identifier">TArraySubscriptCtx</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">TArraySubscriptCtx</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">TArraySubscriptCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Index array terminals with our subscript. Everything</span>
    <span class="comment">// else will be handled by the default evaluation context.</span>
    <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&amp;</span><span class="identifier">data</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">data</span><span class="special">[</span><span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">i_</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// Here is an evaluation context that prints a TArray expression.</span>
<span class="keyword">struct</span> <span class="identifier">TArrayPrintCtx</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">TArrayPrintCtx</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">TArrayPrintCtx</span><span class="special">()</span> <span class="special">{}</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&amp;</span><span class="identifier">arr</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="char">'{'</span> <span class="special">&lt;&lt;</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">'}'</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="char">'('</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span> <span class="special">&lt;&lt;</span> <span class="string">" + "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="char">')'</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="char">'('</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span> <span class="special">&lt;&lt;</span> <span class="string">" - "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="char">')'</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span> <span class="special">&lt;&lt;</span> <span class="string">" * "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">l</span> <span class="special">&lt;&lt;</span> <span class="string">" / "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Here is the domain-specific expression wrapper, which overrides</span>
<span class="comment">// operator [] to evaluate the expression using the TArraySubscriptCtx.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">TArrayExpr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">TArrayDomain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">TArrayDomain</span><span class="special">&gt;</span> <span class="identifier">base_type</span><span class="special">;</span>

    <span class="identifier">TArrayExpr</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
      <span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Use the TArraySubscriptCtx to implement subscripting</span>
    <span class="comment">// of a TArray expression tree.</span>
    <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">TArraySubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="comment">// Use the TArrayPrintCtx to display a TArray expression tree.</span>
    <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&amp;</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">TArrayPrintCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Here is our TArray terminal, implemented in terms of TArrayExpr</span>
<span class="comment">// It is basically just an array of 3 integers.</span>
<span class="keyword">struct</span> <span class="identifier">TArray</span>
  <span class="special">:</span> <span class="identifier">TArrayExpr</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">TArray</span><span class="special">(</span> <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">j</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">k</span> <span class="special">=</span> <span class="number">0</span> <span class="special">)</span>
    <span class="special">{</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">i</span><span class="special">;</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">j</span><span class="special">;</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">k</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Here we override operator [] to give read/write access to</span>
    <span class="comment">// the elements of the array. (We could use the TArrayExpr</span>
    <span class="comment">// operator [] if we made the subscript context smarter about</span>
    <span class="comment">// returning non-const reference when appropriate.)</span>
    <span class="keyword">int</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">[](</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">[](</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="comment">// Here we define a operator = for TArray terminals that</span>
    <span class="comment">// takes a TArray expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
    <span class="identifier">TArray</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">=(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="comment">// proto::as_expr&lt;TArrayDomain&gt;(expr) is the same as</span>
        <span class="comment">// expr unless expr is an integer, in which case it</span>
        <span class="comment">// is made into a TArrayExpr terminal first.</span>
        <span class="keyword">return</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">TArrayDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">));</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
    <span class="identifier">TArray</span> <span class="special">&amp;</span><span class="identifier">printAssign</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="special">*</span><span class="keyword">this</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">;</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="special">*</span><span class="keyword">this</span> <span class="special">&lt;&lt;</span> <span class="string">" = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">expr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
    <span class="special">}</span>

<span class="keyword">private</span><span class="special">:</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
    <span class="identifier">TArray</span> <span class="special">&amp;</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="comment">// expr[i] here uses TArraySubscriptCtx under the covers.</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
        <span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">TArray</span> <span class="identifier">a</span><span class="special">(</span><span class="number">3</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">);</span>

    <span class="identifier">TArray</span> <span class="identifier">b</span><span class="special">;</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">a</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">b</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">b</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">7</span><span class="special">;</span> <span class="identifier">b</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">33</span><span class="special">;</span> <span class="identifier">b</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">99</span><span class="special">;</span>

    <span class="identifier">TArray</span> <span class="identifier">c</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">c</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">a</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">a</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">b</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">c</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">;</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">a</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">a</span><span class="special">.</span><span class="identifier">printAssign</span><span class="special">(</span><span class="identifier">b</span><span class="special">+</span><span class="identifier">c</span><span class="special">*(</span><span class="identifier">b</span> <span class="special">+</span> <span class="number">3</span><span class="special">*</span><span class="identifier">c</span><span class="special">));</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.vec3"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.vec3" title="Vec3: Computing With Transforms and Contexts">Vec3: Computing
        With Transforms and Contexts</a>
</h4></div></div></div>
<p>
          This is a simple example using <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;&gt;</span></code> to extend a terminal type with
          additional behaviors, and using custom contexts and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code> for evaluating expressions. It is a port
          of the Vec3 example from <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is a simple example using proto::extends to extend a terminal type with</span>
<span class="comment">// additional behaviors, and using custom contexts and proto::eval for</span>
<span class="comment">// evaluating expressions. It is a port of the Vec3 example</span>
<span class="comment">// from PETE (http://www.codesourcery.com/pooma/download.html).</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">functional</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto_typeof</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="comment">// Here is an evaluation context that indexes into a Vec3</span>
<span class="comment">// expression, and combines the result.</span>
<span class="keyword">struct</span> <span class="identifier">Vec3SubscriptCtx</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">Vec3SubscriptCtx</span> <span class="keyword">const</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>

    <span class="identifier">Vec3SubscriptCtx</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Index array terminals with our subscript. Everything</span>
    <span class="comment">// else will be handled by the default evaluation context.</span>
    <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&amp;</span><span class="identifier">arr</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">[</span><span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">i_</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="keyword">int</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// Here is an evaluation context that counts the number</span>
<span class="comment">// of Vec3 terminals in an expression.</span>
<span class="keyword">struct</span> <span class="identifier">CountLeavesCtx</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span> <span class="identifier">CountLeavesCtx</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_context</span> <span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">CountLeavesCtx</span><span class="special">()</span>
      <span class="special">:</span> <span class="identifier">count</span><span class="special">(</span><span class="number">0</span><span class="special">)</span>
      <span class="special">{}</span>

      <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

      <span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span><span class="special">(&amp;)[</span><span class="number">3</span><span class="special">])</span>
      <span class="special">{</span>
          <span class="special">++</span><span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">count</span><span class="special">;</span>
      <span class="special">}</span>

      <span class="keyword">int</span> <span class="identifier">count</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">iplus</span> <span class="special">:</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span> <span class="special">{};</span>

<span class="comment">// Here is a transform that does the same thing as the above context.</span>
<span class="comment">// It demonstrates the use of the std::plus&lt;&gt; function object</span>
<span class="comment">// with the fold transform. With minor modifications, this</span>
<span class="comment">// transform could be used to calculate the leaf count at compile</span>
<span class="comment">// time, rather than at runtime.</span>
<span class="keyword">struct</span> <span class="identifier">CountLeaves</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// match a Vec3 terminal, return 1</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]&gt;,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;()</span> <span class="special">&gt;</span>
        <span class="comment">// match a terminal, return int() (which is 0)</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;,</span> <span class="keyword">int</span><span class="special">()</span> <span class="special">&gt;</span>
        <span class="comment">// fold everything else, using std::plus&lt;&gt; to add</span>
        <span class="comment">// the leaf count of each child to the accumulated state.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">otherwise</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="keyword">int</span><span class="special">(),</span> <span class="identifier">iplus</span><span class="special">(</span><span class="identifier">CountLeaves</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is the Vec3 struct, which is a vector of 3 integers.</span>
<span class="keyword">struct</span> <span class="identifier">Vec3</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]&gt;::</span><span class="identifier">type</span><span class="special">,</span> <span class="identifier">Vec3</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">Vec3</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">j</span><span class="special">=</span><span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">k</span><span class="special">=</span><span class="number">0</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">i</span><span class="special">;</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">j</span><span class="special">;</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">k</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">int</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">[](</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">[](</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="comment">// Here we define a operator = for Vec3 terminals that</span>
    <span class="comment">// takes a Vec3 expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">&gt;</span>
    <span class="identifier">Vec3</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">=(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="identifier">Vec3SubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">;</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">0</span><span class="special">));</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">1</span><span class="special">));</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">2</span><span class="special">));</span>
        <span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// This copy-assign is needed because a template is never</span>
    <span class="comment">// considered for copy assignment.</span>
    <span class="identifier">Vec3</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">=(</span><span class="identifier">Vec3</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">that</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">that</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">that</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
        <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">that</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
        <span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="keyword">void</span> <span class="identifier">print</span><span class="special">()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="char">'{'</span> <span class="special">&lt;&lt;</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span>
                  <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span>
                  <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span>
                  <span class="special">&lt;&lt;</span> <span class="char">'}'</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// The count_leaves() function uses the CountLeaves transform and</span>
<span class="comment">// to count the number of leaves in an expression.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">int</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
    <span class="comment">// Count the number of Vec3 terminals using the</span>
    <span class="comment">// CountLeavesCtx evaluation context.</span>
    <span class="identifier">CountLeavesCtx</span> <span class="identifier">ctx</span><span class="special">;</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>

    <span class="comment">// This is another way to count the leaves using a transform.</span>
    <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
    <span class="identifier">BOOST_ASSERT</span><span class="special">(</span> <span class="identifier">CountLeaves</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">i</span><span class="special">,</span> <span class="identifier">i</span><span class="special">)</span> <span class="special">==</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">count</span> <span class="special">);</span>

    <span class="keyword">return</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">count</span><span class="special">;</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">Vec3</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">;</span>

    <span class="identifier">c</span> <span class="special">=</span> <span class="number">4</span><span class="special">;</span>

    <span class="identifier">b</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">1</span><span class="special">;</span>
    <span class="identifier">b</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">2</span><span class="special">;</span>
    <span class="identifier">b</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">3</span><span class="special">;</span>

    <span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">;</span>

    <span class="identifier">a</span><span class="special">.</span><span class="identifier">print</span><span class="special">();</span>

    <span class="identifier">Vec3</span> <span class="identifier">d</span><span class="special">;</span>
    <span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr1</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">expr1</span><span class="special">;</span>
    <span class="identifier">d</span><span class="special">.</span><span class="identifier">print</span><span class="special">();</span>

    <span class="keyword">int</span> <span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr1</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">num</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="number">3</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">num</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr3</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span> <span class="special">*</span> <span class="identifier">d</span><span class="special">);</span>
    <span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr3</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">num</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.vector"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.vector" title="Vector: Adapting a Non-Proto Terminal Type">Vector: Adapting
        a Non-Proto Terminal Type</a>
</h4></div></div></div>
<p>
          This is an example of using <code class="computeroutput"><span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">()</span></code> to Protofy expressions using <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;&gt;</span></code>,
          a non-Proto type. It is a port of the Vector example from <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is an example of using BOOST_PROTO_DEFINE_OPERATORS to Protofy</span>
<span class="comment">// expressions using std::vector&lt;&gt;, a non-proto type. It is a port of the</span>
<span class="comment">// Vector example from PETE (http://www.codesourcery.com/pooma/download.html).</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">stdexcept</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">bool</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">debug</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">utility</span><span class="special">/</span><span class="identifier">enable_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">VectorExpr</span><span class="special">;</span>

<span class="comment">// Here is an evaluation context that indexes into a std::vector</span>
<span class="comment">// expression and combines the result.</span>
<span class="keyword">struct</span> <span class="identifier">VectorSubscriptCtx</span>
<span class="special">{</span>
    <span class="identifier">VectorSubscriptCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Unless this is a vector terminal, use the</span>
    <span class="comment">// default evaluation context</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// Index vector terminals with our subscript.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span>
        <span class="identifier">Expr</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
        <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">ctx</span><span class="special">.</span><span class="identifier">i_</span><span class="special">];</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// Here is an evaluation context that verifies that all the</span>
<span class="comment">// vectors in an expression have the same size.</span>
<span class="keyword">struct</span> <span class="identifier">VectorSizeCtx</span>
<span class="special">{</span>
    <span class="identifier">VectorSizeCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">size_</span><span class="special">(</span><span class="identifier">size</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Unless this is a vector terminal, use the</span>
    <span class="comment">// null evaluation context</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// Index array terminals with our subscript. Everything</span>
    <span class="comment">// else will be handled by the default evaluation context.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span>
        <span class="identifier">Expr</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
        <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">if</span><span class="special">(</span><span class="identifier">ctx</span><span class="special">.</span><span class="identifier">size_</span> <span class="special">!=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">size</span><span class="special">())</span>
            <span class="special">{</span>
                <span class="keyword">throw</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">runtime_error</span><span class="special">(</span><span class="string">"LHS and RHS are not compatible"</span><span class="special">);</span>
            <span class="special">}</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// A grammar which matches all the assignment operators,</span>
<span class="comment">// so we can easily disable them.</span>
<span class="keyword">struct</span> <span class="identifier">AssignOps</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special">&lt;</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here are the cases used by the switch_ above.</span>
<span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span> <span class="special">=</span> <span class="number">0</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span>  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>         <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>        <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>      <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>      <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="special">};</span>

<span class="comment">// A vector grammar is a terminal or some op that is not an</span>
<span class="comment">// assignment op. (Assignment will be handled specially.)</span>
<span class="keyword">struct</span> <span class="identifier">VectorGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">VectorGrammar</span><span class="special">&gt;</span> <span class="special">&gt;,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">AssignOps</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Expressions in the vector domain will be wrapped in VectorExpr&lt;&gt;</span>
<span class="comment">// and must conform to the VectorGrammar</span>
<span class="keyword">struct</span> <span class="identifier">VectorDomain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">VectorExpr</span><span class="special">&gt;,</span> <span class="identifier">VectorGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is VectorExpr, which extends a proto expr type by</span>
<span class="comment">// giving it an operator [] which uses the VectorSubscriptCtx</span>
<span class="comment">// to evaluate an expression with a given index.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">VectorExpr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">VectorDomain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">VectorExpr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">VectorDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="comment">// Use the VectorSubscriptCtx to implement subscripting</span>
    <span class="comment">// of a Vector expression tree.</span>
    <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">Expr</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Define a trait type for detecting vector terminals, to</span>
<span class="comment">// be used by the BOOST_PROTO_DEFINE_OPERATORS macro below.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IsVector</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IsVector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>

<span class="keyword">namespace</span> <span class="identifier">VectorOps</span>
<span class="special">{</span>
    <span class="comment">// This defines all the overloads to make expressions involving</span>
    <span class="comment">// std::vector to build expression templates.</span>
    <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">IsVector</span><span class="special">,</span> <span class="identifier">VectorDomain</span><span class="special">)</span>

    <span class="keyword">typedef</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">CVectorSubscriptCtx</span><span class="special">;</span>

    <span class="comment">// Assign to a vector from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="identifier">size</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">());</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">VectorDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">size</span><span class="special">);</span> <span class="comment">// will throw if the sizes don't match</span>
        <span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">();</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
        <span class="special">{</span>
            <span class="identifier">arr</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">VectorDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
        <span class="special">}</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Add-assign to a vector from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="identifier">size</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">());</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">VectorDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">size</span><span class="special">);</span> <span class="comment">// will throw if the sizes don't match</span>
        <span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">();</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
        <span class="special">{</span>
            <span class="identifier">arr</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">VectorDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
        <span class="special">}</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">VectorOps</span><span class="special">;</span>

    <span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
    <span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">,</span><span class="identifier">d</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">e</span><span class="special">(</span><span class="identifier">n</span><span class="special">);</span>

    <span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">a</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">b</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">2</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">c</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">3</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">d</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">b</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>
    <span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">a</span> <span class="special">+=</span> <span class="identifier">if_else</span><span class="special">(</span><span class="identifier">d</span> <span class="special">&lt;</span> <span class="number">30</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>

    <span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">e</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">e</span> <span class="special">+=</span> <span class="identifier">e</span> <span class="special">-</span> <span class="number">4</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">c</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>

    <span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
            <span class="special">&lt;&lt;</span> <span class="string">" a("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">a</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" b("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">b</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" c("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">c</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" d("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">d</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" e("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">e</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.mixed"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.mixed" title="Mixed: Adapting Several Non-Proto Terminal Types">Mixed: Adapting
        Several Non-Proto Terminal Types</a>
</h4></div></div></div>
<p>
          This is an example of using <code class="computeroutput"><span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">()</span></code> to Protofy expressions using <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;&gt;</span></code>
          and <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;&gt;</span></code>,
          non-Proto types. It is a port of the Mixed example from <a href="http://acts.nersc.gov/formertools/pete/index.html" target="_top">PETE</a>.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is an example of using BOOST_PROTO_DEFINE_OPERATORS to Protofy</span>
<span class="comment">// expressions using std::vector&lt;&gt; and std::list, non-proto types. It is a port</span>
<span class="comment">// of the Mixed example from PETE.</span>
<span class="comment">// (http://www.codesourcery.com/pooma/download.html).</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">list</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">cmath</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">complex</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">stdexcept</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">debug</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">utility</span><span class="special">/</span><span class="identifier">enable_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">list</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">complex</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">remove_reference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">MixedExpr</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Iter</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">iterator_wrapper</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">Iter</span> <span class="identifier">iterator</span><span class="special">;</span>

    <span class="keyword">explicit</span> <span class="identifier">iterator_wrapper</span><span class="special">(</span><span class="identifier">Iter</span> <span class="identifier">iter</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">it</span><span class="special">(</span><span class="identifier">iter</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="keyword">mutable</span> <span class="identifier">Iter</span> <span class="identifier">it</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">begin</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Cont</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Cont</span><span class="special">)&gt;</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span>
            <span class="identifier">iterator_wrapper</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">Cont</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">const_iterator</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Cont</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">begin</span><span class="special">(</span><span class="identifier">Cont</span> <span class="keyword">const</span> <span class="special">&amp;)&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Cont</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">cont</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">iterator_wrapper</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Cont</span><span class="special">::</span><span class="identifier">const_iterator</span><span class="special">&gt;</span> <span class="identifier">it</span><span class="special">(</span><span class="identifier">cont</span><span class="special">.</span><span class="identifier">begin</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">it</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Here is a grammar that replaces vector and list terminals with their</span>
<span class="comment">// begin iterators</span>
<span class="keyword">struct</span> <span class="identifier">Begin</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;,</span> <span class="identifier">begin</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;,</span> <span class="identifier">begin</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">Begin</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is an evaluation context that dereferences iterator</span>
<span class="comment">// terminals.</span>
<span class="keyword">struct</span> <span class="identifier">DereferenceCtx</span>
<span class="special">{</span>
    <span class="comment">// Unless this is an iterator terminal, use the</span>
    <span class="comment">// default evaluation context</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">DereferenceCtx</span> <span class="keyword">const</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// Dereference iterator terminals.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span>
        <span class="identifier">Expr</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">iterator_wrapper</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
        <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">IteratorWrapper</span><span class="special">;</span>
        <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">IteratorWrapper</span><span class="special">::</span><span class="identifier">iterator</span> <span class="identifier">iterator</span><span class="special">;</span>
        <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">iterator_traits</span><span class="special">&lt;</span><span class="identifier">iterator</span><span class="special">&gt;::</span><span class="identifier">reference</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">DereferenceCtx</span> <span class="keyword">const</span> <span class="special">&amp;)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="special">*</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">it</span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>
<span class="special">};</span>

<span class="comment">// Here is an evaluation context that increments iterator</span>
<span class="comment">// terminals.</span>
<span class="keyword">struct</span> <span class="identifier">IncrementCtx</span>
<span class="special">{</span>
    <span class="comment">// Unless this is an iterator terminal, use the</span>
    <span class="comment">// default evaluation context</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_eval</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">IncrementCtx</span> <span class="keyword">const</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// advance iterator terminals.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">&lt;</span>
        <span class="identifier">Expr</span>
      <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">iterator_wrapper</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
        <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;</span>
    <span class="special">{</span>
        <span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>

        <span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">IncrementCtx</span> <span class="keyword">const</span> <span class="special">&amp;)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="special">++</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">it</span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>
<span class="special">};</span>

<span class="comment">// A grammar which matches all the assignment operators,</span>
<span class="comment">// so we can easily disable them.</span>
<span class="keyword">struct</span> <span class="identifier">AssignOps</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special">&lt;</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here are the cases used by the switch_ above.</span>
<span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span> <span class="special">=</span> <span class="number">0</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span>  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>         <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>        <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>      <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>      <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">&gt;</span>  <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="special">};</span>

<span class="comment">// An expression conforms to the MixedGrammar if it is a terminal or some</span>
<span class="comment">// op that is not an assignment op. (Assignment will be handled specially.)</span>
<span class="keyword">struct</span> <span class="identifier">MixedGrammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">MixedGrammar</span><span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special">&lt;</span><span class="identifier">AssignOps</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Expressions in the MixedDomain will be wrapped in MixedExpr&lt;&gt;</span>
<span class="comment">// and must conform to the MixedGrammar</span>
<span class="keyword">struct</span> <span class="identifier">MixedDomain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">MixedExpr</span><span class="special">&gt;,</span> <span class="identifier">MixedGrammar</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Here is MixedExpr, a wrapper for expression types in the MixedDomain.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">MixedExpr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MixedExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">MixedDomain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">MixedExpr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">MixedExpr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{}</span>
<span class="keyword">private</span><span class="special">:</span>
    <span class="comment">// hide this:</span>
    <span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MixedExpr</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">&gt;,</span> <span class="identifier">MixedDomain</span><span class="special">&gt;::</span><span class="keyword">operator</span> <span class="special">[];</span>
<span class="special">};</span>

<span class="comment">// Define a trait type for detecting vector and list terminals, to</span>
<span class="comment">// be used by the BOOST_PROTO_DEFINE_OPERATORS macro below.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>

<span class="keyword">namespace</span> <span class="identifier">MixedOps</span>
<span class="special">{</span>
    <span class="comment">// This defines all the overloads to make expressions involving</span>
    <span class="comment">// std::vector to build expression templates.</span>
    <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">IsMixed</span><span class="special">,</span> <span class="identifier">MixedDomain</span><span class="special">)</span>

    <span class="keyword">struct</span> <span class="identifier">assign_op</span>
    <span class="special">{</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">&gt;</span>
        <span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="identifier">t</span> <span class="special">=</span> <span class="identifier">u</span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="keyword">struct</span> <span class="identifier">plus_assign_op</span>
    <span class="special">{</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">&gt;</span>
        <span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="identifier">t</span> <span class="special">+=</span> <span class="identifier">u</span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="keyword">struct</span> <span class="identifier">minus_assign_op</span>
    <span class="special">{</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">&gt;</span>
        <span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="identifier">t</span> <span class="special">-=</span> <span class="identifier">u</span><span class="special">;</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="keyword">struct</span> <span class="identifier">sin_</span>
    <span class="special">{</span>
        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
        <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">&gt;</span>
        <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Arg</span><span class="special">)&gt;</span>
          <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special">&lt;</span><span class="identifier">Arg</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span>
        <span class="special">{};</span>

        <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">&gt;</span>
        <span class="identifier">Arg</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a</span><span class="special">)</span> <span class="keyword">const</span>
        <span class="special">{</span>
            <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
        <span class="special">}</span>
    <span class="special">};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">A</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>
      <span class="special">,</span> <span class="identifier">MixedDomain</span>
      <span class="special">,</span> <span class="identifier">sin_</span> <span class="keyword">const</span>
      <span class="special">,</span> <span class="identifier">A</span> <span class="keyword">const</span> <span class="special">&amp;</span>
    <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">sin</span><span class="special">(</span><span class="identifier">A</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">,</span> <span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">sin_</span><span class="special">(),</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a</span><span class="special">));</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">FwdIter</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Op</span><span class="special">&gt;</span>
    <span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">FwdIter</span> <span class="identifier">begin</span><span class="special">,</span> <span class="identifier">FwdIter</span> <span class="identifier">end</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Op</span> <span class="identifier">op</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">IncrementCtx</span> <span class="keyword">const</span> <span class="identifier">inc</span> <span class="special">=</span> <span class="special">{};</span>
        <span class="identifier">DereferenceCtx</span> <span class="keyword">const</span> <span class="identifier">deref</span> <span class="special">=</span> <span class="special">{};</span>
        <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">Begin</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;)&gt;::</span><span class="identifier">type</span> <span class="identifier">expr2</span> <span class="special">=</span> <span class="identifier">Begin</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">);</span>
        <span class="keyword">for</span><span class="special">(;</span> <span class="identifier">begin</span> <span class="special">!=</span> <span class="identifier">end</span><span class="special">;</span> <span class="special">++</span><span class="identifier">begin</span><span class="special">)</span>
        <span class="special">{</span>
            <span class="identifier">op</span><span class="special">(*</span><span class="identifier">begin</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">deref</span><span class="special">));</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">inc</span><span class="special">);</span>
        <span class="special">}</span>
    <span class="special">}</span>

    <span class="comment">// Add-assign to a vector from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Add-assign to a list from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Add-assign to a vector from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">plus_assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Add-assign to a list from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">plus_assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Minus-assign to a vector from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">-=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">minus_assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>

    <span class="comment">// Minus-assign to a list from some expression.</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="keyword">operator</span> <span class="special">-=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">expr</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">&lt;</span><span class="identifier">MixedDomain</span><span class="special">&gt;(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">minus_assign_op</span><span class="special">());</span>
        <span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">MixedOps</span><span class="special">;</span>

    <span class="keyword">int</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">,</span><span class="identifier">d</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">e</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">f</span><span class="special">;</span>

    <span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
    <span class="keyword">for</span><span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span><span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">a</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">b</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">2</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">c</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">3</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">d</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
        <span class="identifier">e</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">0.0</span><span class="special">);</span>
        <span class="identifier">f</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">1.0</span><span class="special">,</span> <span class="number">1.0</span><span class="special">));</span>
    <span class="special">}</span>

    <span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">b</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>
    <span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">a</span> <span class="special">+=</span> <span class="identifier">if_else</span><span class="special">(</span><span class="identifier">d</span> <span class="special">&lt;</span> <span class="number">30</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>

    <span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">e</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
    <span class="identifier">e</span> <span class="special">+=</span> <span class="identifier">e</span> <span class="special">-</span> <span class="number">4</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">c</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>

    <span class="identifier">f</span> <span class="special">-=</span> <span class="identifier">sin</span><span class="special">(</span><span class="number">0.1</span> <span class="special">*</span> <span class="identifier">e</span> <span class="special">*</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">0.2</span><span class="special">,</span> <span class="number">1.2</span><span class="special">));</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">const_iterator</span> <span class="identifier">ei</span> <span class="special">=</span> <span class="identifier">e</span><span class="special">.</span><span class="identifier">begin</span><span class="special">();</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">const_iterator</span> <span class="identifier">fi</span> <span class="special">=</span> <span class="identifier">f</span><span class="special">.</span><span class="identifier">begin</span><span class="special">();</span>
    <span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special">&lt;</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
            <span class="special">&lt;&lt;</span> <span class="string">"a("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">a</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" b("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">b</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" c("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">c</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" d("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">d</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
            <span class="special">&lt;&lt;</span> <span class="string">" e("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="special">*</span><span class="identifier">ei</span><span class="special">++</span>
            <span class="special">&lt;&lt;</span> <span class="string">" f("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="special">*</span><span class="identifier">fi</span><span class="special">++</span>
            <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.map_assign"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.map_assign" title="Map Assign: An Intermediate Transform">Map Assign:
        An Intermediate Transform</a>
</h4></div></div></div>
<p>
          A demonstration of how to implement <code class="computeroutput"><span class="identifier">map_list_of</span><span class="special">()</span></code> from the Boost.Assign library using Proto.
          <code class="computeroutput"><span class="identifier">map_list_assign</span><span class="special">()</span></code>
          is used to conveniently initialize a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;&gt;</span></code>. By using Proto, we can avoid any
          dynamic allocation while building the intermediate representation.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is a port of map_list_of() from the Boost.Assign library.</span>
<span class="comment">// It has the advantage of being more efficient at runtime by not</span>
<span class="comment">// building any temporary container that requires dynamic allocation.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">map</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">string</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">add_reference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">map_list_of_tag</span>
<span class="special">{};</span>

<span class="comment">// A simple callable function object that inserts a</span>
<span class="comment">// (key,value) pair into a map.</span>
<span class="keyword">struct</span> <span class="identifier">insert</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Map</span><span class="special">,</span> <span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">)&gt;</span>
      <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special">&lt;</span><span class="identifier">Map</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">&gt;</span>
    <span class="identifier">Map</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Map</span> <span class="special">&amp;</span><span class="identifier">map</span><span class="special">,</span> <span class="identifier">Key</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">key</span><span class="special">,</span> <span class="identifier">Value</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">value</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">map</span><span class="special">.</span><span class="identifier">insert</span><span class="special">(</span><span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">(</span><span class="identifier">key</span><span class="special">,</span> <span class="identifier">value</span><span class="special">));</span>
        <span class="keyword">return</span> <span class="identifier">map</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Work-arounds for Microsoft Visual C++ 7.1</span>
<span class="preprocessor">#if</span> <span class="identifier">BOOST_WORKAROUND</span><span class="special">(</span><span class="identifier">BOOST_MSVC</span><span class="special">,</span> <span class="special">==</span> <span class="number">1310</span><span class="special">)</span>
<span class="preprocessor">#define</span> <span class="identifier">MapListOf</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">MapListOf</span><span class="special">(</span><span class="identifier">x</span><span class="special">)&gt;</span>
<span class="preprocessor">#define</span> <span class="identifier">_value</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">x</span><span class="special">)&gt;</span>
<span class="preprocessor">#endif</span>

<span class="comment">// The grammar for valid map-list expressions, and a</span>
<span class="comment">// transform that populates the map.</span>
<span class="keyword">struct</span> <span class="identifier">MapListOf</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="comment">// map_list_of(a,b)</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">map_list_of_tag</span><span class="special">&gt;</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
            <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">insert</span><span class="special">(</span>
                <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child1</span><span class="special">)</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child2</span><span class="special">)</span>
            <span class="special">)</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="comment">// map_list_of(a,b)(c,d)...</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special">&lt;</span>
                <span class="identifier">MapListOf</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
            <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">insert</span><span class="special">(</span>
                <span class="identifier">MapListOf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child1</span><span class="special">)</span>
              <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child2</span><span class="special">)</span>
            <span class="special">)</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="preprocessor">#if</span> <span class="identifier">BOOST_WORKAROUND</span><span class="special">(</span><span class="identifier">BOOST_MSVC</span><span class="special">,</span> <span class="special">==</span> <span class="number">1310</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">MapListOf</span>
<span class="preprocessor">#undef</span> <span class="identifier">_value</span>
<span class="preprocessor">#endif</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_expr</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">map_list_of_dom</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special">&lt;</span><span class="identifier">map_list_of_expr</span><span class="special">&gt;,</span> <span class="identifier">MapListOf</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// An expression wrapper that provides a conversion to a</span>
<span class="comment">// map that uses the MapListOf</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_expr</span>
<span class="special">{</span>
    <span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">map_list_of_expr</span><span class="special">,</span> <span class="identifier">map_list_of_dom</span><span class="special">)</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_FUNCTION</span><span class="special">()</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Al</span><span class="special">&gt;</span>
    <span class="keyword">operator</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">,</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="identifier">Al</span><span class="special">&gt;</span> <span class="special">()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MapListOf</span><span class="special">&gt;));</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">,</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="identifier">Al</span><span class="special">&gt;</span> <span class="identifier">map</span><span class="special">;</span>
        <span class="keyword">return</span> <span class="identifier">MapListOf</span><span class="special">()(*</span><span class="keyword">this</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">map</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="identifier">map_list_of_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">map_list_of_tag</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">map_list_of</span> <span class="special">=</span> <span class="special">{{{}}};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Initialize a map:</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">,</span> <span class="keyword">int</span><span class="special">&gt;</span> <span class="identifier">op</span> <span class="special">=</span>
        <span class="identifier">map_list_of</span>
            <span class="special">(</span><span class="string">"&lt;"</span><span class="special">,</span> <span class="number">1</span><span class="special">)</span>
            <span class="special">(</span><span class="string">"&lt;="</span><span class="special">,</span><span class="number">2</span><span class="special">)</span>
            <span class="special">(</span><span class="string">"&gt;"</span><span class="special">,</span> <span class="number">3</span><span class="special">)</span>
            <span class="special">(</span><span class="string">"&gt;="</span><span class="special">,</span><span class="number">4</span><span class="special">)</span>
            <span class="special">(</span><span class="string">"="</span><span class="special">,</span> <span class="number">5</span><span class="special">)</span>
            <span class="special">(</span><span class="string">"&lt;&gt;"</span><span class="special">,</span><span class="number">6</span><span class="special">)</span>
        <span class="special">;</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"&lt;\"  --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"&lt;"</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"&lt;=\" --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"&lt;="</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"&gt;\"  --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"&gt;"</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"&gt;=\" --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"&gt;="</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"=\"  --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"="</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\"&lt;&gt;\" --&gt; "</span> <span class="special">&lt;&lt;</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"&lt;&gt;"</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.future_group"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.future_group" title="Future Group: A More Advanced Transform">Future
        Group: A More Advanced Transform</a>
</h4></div></div></div>
<p>
          An advanced example of a Proto transform that implements Howard Hinnant's
          design for <span class="emphasis"><em>future groups</em></span> that block for all or some
          asynchronous operations to complete and returns their results in a tuple
          of the appropriate type.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is an example of using Proto transforms to implement</span>
<span class="comment">// Howard Hinnant's future group proposal.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">as_vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">joint_view</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">single_view</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">L</span><span class="special">,</span><span class="keyword">class</span> <span class="identifier">R</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">pick_left</span>
<span class="special">{</span>
    <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special">&lt;</span><span class="identifier">L</span><span class="special">,</span> <span class="identifier">R</span><span class="special">&gt;));</span>
    <span class="keyword">typedef</span> <span class="identifier">L</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// Work-arounds for Microsoft Visual C++ 7.1</span>
<span class="preprocessor">#if</span> <span class="identifier">BOOST_WORKAROUND</span><span class="special">(</span><span class="identifier">BOOST_MSVC</span><span class="special">,</span> <span class="special">==</span> <span class="number">1310</span><span class="special">)</span>
<span class="preprocessor">#define</span> <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">x</span><span class="special">)&gt;</span>
<span class="preprocessor">#endif</span>

<span class="comment">// Define the grammar of future group expression, as well as a</span>
<span class="comment">// transform to turn them into a Fusion sequence of the correct</span>
<span class="comment">// type.</span>
<span class="keyword">struct</span> <span class="identifier">FutureGroup</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="comment">// terminals become a single-element Fusion sequence</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">single_view</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">&gt;(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
        <span class="special">&gt;</span>
        <span class="comment">// (a &amp;&amp; b) becomes a concatenation of the sequence</span>
        <span class="comment">// from 'a' and the one from 'b':</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">joint_view</span><span class="special">&lt;</span>
                <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">)</span> <span class="special">&gt;</span>
              <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)</span> <span class="special">&gt;</span>
            <span class="special">&gt;(</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span> <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">))</span>
        <span class="special">&gt;</span>
        <span class="comment">// (a || b) becomes the sequence for 'a', so long</span>
        <span class="comment">// as it is the same as the sequence for 'b'.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">pick_left</span><span class="special">&lt;</span>
                <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">)</span>
              <span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)</span>
            <span class="special">&gt;(</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">))</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="preprocessor">#if</span> <span class="identifier">BOOST_WORKAROUND</span><span class="special">(</span><span class="identifier">BOOST_MSVC</span><span class="special">,</span> <span class="special">==</span> <span class="number">1310</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">FutureGroup</span>
<span class="preprocessor">#endif</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">future_expr</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">future_dom</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">future_expr</span><span class="special">&gt;,</span> <span class="identifier">FutureGroup</span><span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// Expressions in the future group domain have a .get()</span>
<span class="comment">// member function that (ostensibly) blocks for the futures</span>
<span class="comment">// to complete and returns the results in an appropriate</span>
<span class="comment">// tuple.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">future_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">future_expr</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">&gt;,</span> <span class="identifier">future_dom</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="keyword">explicit</span> <span class="identifier">future_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">e</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">future_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">e</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="keyword">typename</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_vector</span><span class="special">&lt;</span>
        <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">E</span><span class="special">)&gt;::</span><span class="identifier">type</span>
    <span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">as_vector</span><span class="special">(</span><span class="identifier">FutureGroup</span><span class="special">()(*</span><span class="keyword">this</span><span class="special">));</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// The future&lt;&gt; type has an even simpler .get()</span>
<span class="comment">// member function.</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">future</span>
  <span class="special">:</span> <span class="identifier">future_expr</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">future</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">=</span> <span class="identifier">T</span><span class="special">())</span>
      <span class="special">:</span> <span class="identifier">future</span><span class="special">::</span><span class="identifier">proto_derived_expr</span><span class="special">(</span><span class="identifier">future</span><span class="special">::</span><span class="identifier">proto_base_expr</span><span class="special">::</span><span class="identifier">make</span><span class="special">(</span><span class="identifier">t</span><span class="special">))</span>
    <span class="special">{}</span>

    <span class="identifier">T</span> <span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// TEST CASES</span>
<span class="keyword">struct</span> <span class="identifier">A</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">B</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">C</span> <span class="special">{};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="keyword">using</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">vector</span><span class="special">;</span>
    <span class="identifier">future</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">&gt;</span> <span class="identifier">a</span><span class="special">;</span>
    <span class="identifier">future</span><span class="special">&lt;</span><span class="identifier">B</span><span class="special">&gt;</span> <span class="identifier">b</span><span class="special">;</span>
    <span class="identifier">future</span><span class="special">&lt;</span><span class="identifier">C</span><span class="special">&gt;</span> <span class="identifier">c</span><span class="special">;</span>
    <span class="identifier">future</span><span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">,</span><span class="identifier">B</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">ab</span><span class="special">;</span>

    <span class="comment">// Verify that various future groups have the</span>
    <span class="comment">// correct return types.</span>
    <span class="identifier">A</span>                       <span class="identifier">t0</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">get</span><span class="special">();</span>
    <span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">,</span> <span class="identifier">C</span><span class="special">&gt;</span>         <span class="identifier">t1</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&amp;&amp;</span> <span class="identifier">b</span> <span class="special">&amp;&amp;</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
    <span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">C</span><span class="special">&gt;</span>            <span class="identifier">t2</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">a</span> <span class="special">||</span> <span class="identifier">a</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
    <span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">,</span> <span class="identifier">C</span><span class="special">&gt;</span>         <span class="identifier">t3</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">a</span> <span class="special">&amp;&amp;</span> <span class="identifier">b</span> <span class="special">||</span> <span class="identifier">a</span> <span class="special">&amp;&amp;</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
    <span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">&gt;,</span> <span class="identifier">C</span><span class="special">&gt;</span> <span class="identifier">t4</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">ab</span> <span class="special">||</span> <span class="identifier">ab</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>

    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.lambda"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.lambda" title="Lambda: A Simple Lambda Library with Proto">Lambda: A
        Simple Lambda Library with Proto</a>
</h4></div></div></div>
<p>
          This is an advanced example that shows how to implement a simple lambda
          EDSL with Proto, like the Boost.Lambda_library. It uses contexts, transforms
          and expression extension.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////</span>
<span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost</span>
<span class="comment">// Software License, Version 1.0. (See accompanying file</span>
<span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This example builds a simple but functional lambda library using Proto.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">algorithm</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">min_max</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">eval_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">identity</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">next_prior</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">tuple</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">iostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>

<span class="comment">// Forward declaration of the lambda expression wrapper</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lambda</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">lambda_domain</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special">&lt;</span><span class="identifier">lambda</span><span class="special">&gt;</span> <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">I</span> <span class="identifier">arity</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">placeholder_arity</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">arity</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// The lambda grammar, with the transforms for calculating the max arity</span>
<span class="keyword">struct</span> <span class="identifier">lambda_arity</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">next</span><span class="special">&lt;</span><span class="identifier">placeholder_arity</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">&gt;</span> <span class="special">&gt;()</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;()</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special">&lt;</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(),</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special">&lt;</span><span class="identifier">lambda_arity</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">&gt;()&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="comment">// The lambda context is the same as the default context</span>
<span class="comment">// with the addition of special handling for lambda placeholders</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Tuple</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lambda_context</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special">&lt;</span><span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">Tuple</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">lambda_context</span><span class="special">(</span><span class="identifier">Tuple</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">args</span><span class="special">)</span>
      <span class="special">:</span> <span class="identifier">args_</span><span class="special">(</span><span class="identifier">args</span><span class="special">)</span>
    <span class="special">{}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;)&gt;</span>
      <span class="special">:</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">at</span><span class="special">&lt;</span><span class="identifier">Tuple</span><span class="special">,</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">at</span><span class="special">&lt;</span><span class="identifier">Tuple</span><span class="special">,</span> <span class="identifier">I</span><span class="special">&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">at</span><span class="special">&lt;</span><span class="identifier">I</span><span class="special">&gt;(</span><span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">args_</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="identifier">Tuple</span> <span class="identifier">args_</span><span class="special">;</span>
<span class="special">};</span>

<span class="comment">// The lambda&lt;&gt; expression wrapper makes expressions polymorphic</span>
<span class="comment">// function objects</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">lambda</span>
<span class="special">{</span>
    <span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;,</span> <span class="identifier">lambda_domain</span><span class="special">)</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_ASSIGN</span><span class="special">()</span>
    <span class="identifier">BOOST_PROTO_EXTENDS_SUBSCRIPT</span><span class="special">()</span>

    <span class="comment">// Calculate the arity of this lambda expression</span>
    <span class="keyword">static</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="identifier">arity</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">&lt;</span><span class="identifier">lambda_arity</span><span class="special">(</span><span class="identifier">T</span><span class="special">)&gt;::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">;</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>

    <span class="comment">// Define nested result&lt;&gt; specializations to calculate the return</span>
    <span class="comment">// type of this lambda expression. But be careful not to evaluate</span>
    <span class="comment">// the return type of the nullary function unless we have a nullary</span>
    <span class="comment">// lambda!</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">()&gt;</span>
      <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">eval_if_c</span><span class="special">&lt;</span>
            <span class="number">0</span> <span class="special">==</span> <span class="identifier">arity</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">identity</span><span class="special">&lt;</span><span class="keyword">void</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">A0</span><span class="special">)&gt;</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">&gt;</span>
    <span class="keyword">struct</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span> <span class="identifier">A1</span><span class="special">)&gt;</span>
      <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special">&lt;</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span><span class="special">,</span> <span class="identifier">A1</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">{};</span>

    <span class="comment">// Define our operator () that evaluates the lambda expression.</span>
    <span class="keyword">typename</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">lambda</span><span class="special">()&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;&gt;</span> <span class="identifier">args</span><span class="special">;</span>
        <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;&gt;</span> <span class="special">&gt;</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">lambda</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;)&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a0</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;&gt;</span> <span class="identifier">args</span><span class="special">(</span><span class="identifier">a0</span><span class="special">);</span>
        <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;&gt;</span> <span class="special">&gt;</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">&gt;</span>
    <span class="keyword">typename</span> <span class="identifier">result</span><span class="special">&lt;</span><span class="identifier">lambda</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;)&gt;::</span><span class="identifier">type</span>
    <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">a1</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;&gt;</span> <span class="identifier">args</span><span class="special">(</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">);</span>
        <span class="identifier">lambda_context</span><span class="special">&lt;</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&amp;,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&amp;&gt;</span> <span class="special">&gt;</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
        <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Define some lambda placeholders</span>
<span class="identifier">lambda</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">lambda</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">lambda</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">val</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">lambda</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">that</span> <span class="special">=</span> <span class="special">{{</span><span class="identifier">t</span><span class="special">}};</span>
    <span class="keyword">return</span> <span class="identifier">that</span><span class="special">;</span>
<span class="special">}</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">lambda</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">T</span> <span class="special">&amp;&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="identifier">var</span><span class="special">(</span><span class="identifier">T</span> <span class="special">&amp;</span><span class="identifier">t</span><span class="special">)</span>
<span class="special">{</span>
    <span class="identifier">lambda</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">T</span> <span class="special">&amp;&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">that</span> <span class="special">=</span> <span class="special">{{</span><span class="identifier">t</span><span class="special">}};</span>
    <span class="keyword">return</span> <span class="identifier">that</span><span class="special">;</span>
<span class="special">}</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">construct_helper</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span> <span class="comment">// for TR1 result_of</span>

    <span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()()</span> <span class="keyword">const</span>
    <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">T</span><span class="special">();</span> <span class="special">}</span>

    <span class="comment">// Generate BOOST_PROTO_MAX_ARITY overloads of the</span>
    <span class="comment">// following function call operator.</span>
<span class="preprocessor">#define</span> <span class="identifier">BOOST_PROTO_LOCAL_MACRO</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">a</span><span class="special">)\</span>
    <span class="keyword">template</span><span class="special">&lt;</span><span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)&gt;</span>                                       <span class="special">\</span>
    <span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span> <span class="keyword">const</span>                          <span class="special">\</span>
    <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">a</span><span class="special">(</span><span class="identifier">N</span><span class="special">));</span> <span class="special">}</span>
<span class="preprocessor">#define</span> <span class="identifier">BOOST_PROTO_LOCAL_a</span> <span class="identifier">BOOST_PROTO_a</span>
<span class="preprocessor">#include</span> <span class="identifier">BOOST_PROTO_LOCAL_ITERATE</span><span class="special">()</span>
<span class="special">};</span>

<span class="comment">// Generate BOOST_PROTO_MAX_ARITY-1 overloads of the</span>
<span class="comment">// following construct() function template.</span>
<span class="preprocessor">#define</span> <span class="identifier">M0</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">ref_a</span><span class="special">)</span>      <span class="special">\</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)&gt;</span>                               <span class="special">\</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>                             <span class="special">\</span>
    <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>                                          <span class="special">\</span>
  <span class="special">,</span> <span class="identifier">lambda_domain</span>                                                 <span class="special">\</span>
  <span class="special">,</span> <span class="identifier">construct_helper</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>                                           <span class="special">\</span>
  <span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span>                                                <span class="special">\</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span>                                                     <span class="special">\</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span>                                       <span class="special">\</span>
<span class="special">{</span>                                                                 <span class="special">\</span>
    <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special">&lt;</span>                                      <span class="special">\</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>                                      <span class="special">\</span>
      <span class="special">,</span> <span class="identifier">lambda_domain</span>                                             <span class="special">\</span>
    <span class="special">&gt;(</span>                                                            <span class="special">\</span>
        <span class="identifier">construct_helper</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;()</span>                                     <span class="special">\</span>
      <span class="special">,</span> <span class="identifier">ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span>                                                  <span class="special">\</span>
    <span class="special">);</span>                                                            <span class="special">\</span>
<span class="special">}</span>
<span class="identifier">BOOST_PROTO_REPEAT_FROM_TO</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">BOOST_PROTO_MAX_ARITY</span><span class="special">,</span> <span class="identifier">M0</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">M0</span>

<span class="keyword">struct</span> <span class="identifier">S</span>
<span class="special">{</span>
    <span class="identifier">S</span><span class="special">()</span> <span class="special">{}</span>
    <span class="identifier">S</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">char</span> <span class="identifier">c</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"S("</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="string">","</span> <span class="special">&lt;&lt;</span> <span class="identifier">c</span> <span class="special">&lt;&lt;</span> <span class="string">")\n"</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="comment">// Create some lambda objects and immediately</span>
    <span class="comment">// invoke them by applying their operator():</span>
    <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span><span class="special">)</span> <span class="special">/</span> <span class="number">4</span> <span class="special">)(</span><span class="number">42</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">i</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 11</span>

    <span class="keyword">int</span> <span class="identifier">j</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(-(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span><span class="special">))</span> <span class="special">/</span> <span class="number">4</span> <span class="special">)(</span><span class="number">42</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">j</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints -11</span>

    <span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(</span><span class="number">4</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">*</span> <span class="number">3</span> <span class="special">)(</span><span class="number">42</span><span class="special">,</span> <span class="number">3.14</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">d</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 2.58</span>

    <span class="comment">// check non-const ref terminals</span>
    <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">_1</span> <span class="special">&lt;&lt;</span> <span class="string">" -- "</span> <span class="special">&lt;&lt;</span> <span class="identifier">_2</span> <span class="special">&lt;&lt;</span> <span class="char">'\n'</span><span class="special">)(</span><span class="number">42</span><span class="special">,</span> <span class="string">"Life, the Universe and Everything!"</span><span class="special">);</span>
    <span class="comment">// prints "42 -- Life, the Universe and Everything!"</span>

    <span class="comment">// "Nullary" lambdas work too</span>
    <span class="keyword">int</span> <span class="identifier">k</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">val</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">val</span><span class="special">(</span><span class="number">2</span><span class="special">))();</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">k</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 3</span>

    <span class="comment">// check array indexing for kicks</span>
    <span class="keyword">int</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">5</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">};</span>
    <span class="special">(</span><span class="identifier">var</span><span class="special">(</span><span class="identifier">integers</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="number">2</span><span class="special">)();</span>
    <span class="special">(</span><span class="identifier">var</span><span class="special">(</span><span class="identifier">integers</span><span class="special">)[</span><span class="identifier">_1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">_1</span><span class="special">)(</span><span class="number">3</span><span class="special">);</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 2</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 3</span>

    <span class="comment">// Now use a lambda with an STL algorithm!</span>
    <span class="keyword">int</span> <span class="identifier">rgi</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">};</span>
    <span class="keyword">char</span> <span class="identifier">rgc</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="char">'a'</span><span class="special">,</span><span class="char">'b'</span><span class="special">,</span><span class="char">'c'</span><span class="special">,</span><span class="char">'d'</span><span class="special">};</span>
    <span class="identifier">S</span> <span class="identifier">rgs</span><span class="special">[</span><span class="number">4</span><span class="special">];</span>

    <span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">rgi</span><span class="special">,</span> <span class="identifier">rgi</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">rgc</span><span class="special">,</span> <span class="identifier">rgs</span><span class="special">,</span> <span class="identifier">construct</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">&gt;(</span><span class="identifier">_1</span><span class="special">,</span> <span class="identifier">_2</span><span class="special">));</span>
    <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.checked_calc"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.checked_calc" title="Checked Calculator: A Simple Example of External Transforms">Checked
        Calculator: A Simple Example of External Transforms</a>
</h4></div></div></div>
<p>
          This is an advanced example that shows how to externally parameterize a
          grammar's transforms. It defines a calculator EDSL with a grammar that
          can perform either checked or unchecked arithmetic.
        </p>
<p>
</p>
<pre class="programlisting"><span class="comment">//  Copyright 2011 Eric Niebler. Distributed under the Boost</span>
<span class="comment">//  Software License, Version 1.0. (See accompanying file</span>
<span class="comment">//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)</span>
<span class="comment">//</span>
<span class="comment">// This is an example of how to specify a transform externally so</span>
<span class="comment">// that a single grammar can be used to drive multiple differnt</span>
<span class="comment">// calculations. In particular, it defines a calculator grammar</span>
<span class="comment">// that computes the result of an expression with either checked</span>
<span class="comment">// or non-checked division.</span>

<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">iostream</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">next</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">min_max</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">container</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">container</span><span class="special">/</span><span class="identifier">generation</span><span class="special">/</span><span class="identifier">make_vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>

<span class="comment">// The argument placeholder type</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">:</span> <span class="identifier">I</span> <span class="special">{};</span>

<span class="comment">// Give each rule in the grammar a "name". This is so that we</span>
<span class="comment">// can easily dispatch on it later.</span>
<span class="keyword">struct</span> <span class="identifier">calc_grammar</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">divides_rule</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span> <span class="special">{};</span>

<span class="comment">// Use external transforms in calc_gramar</span>
<span class="keyword">struct</span> <span class="identifier">calc_grammar</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">&gt;</span> <span class="special">&gt;</span>
            <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">at</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">convertible_to</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">,</span> <span class="identifier">calc_grammar</span><span class="special">&gt;</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span>
        <span class="special">&gt;</span>
        <span class="comment">// Note that we don't specify how division nodes are</span>
        <span class="comment">// handled here. Proto::external_transform is a placeholder</span>
        <span class="comment">// for an actual transform.</span>
      <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">divides_rule</span>
          <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transform</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">calc_expr</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">calc_domain</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special">&lt;</span><span class="identifier">calc_expr</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">E</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">calc_expr</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">E</span><span class="special">&gt;,</span> <span class="identifier">calc_domain</span><span class="special">&gt;</span>
<span class="special">{</span>
    <span class="identifier">calc_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">e</span> <span class="special">=</span> <span class="identifier">E</span><span class="special">())</span> <span class="special">:</span> <span class="identifier">calc_expr</span><span class="special">::</span><span class="identifier">proto_extends</span><span class="special">(</span><span class="identifier">e</span><span class="special">)</span> <span class="special">{}</span>
<span class="special">};</span>

<span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calc_expr</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">&lt;</span><span class="identifier">placeholder</span><span class="special">&lt;</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span><span class="special">&gt;</span> <span class="identifier">_2</span><span class="special">;</span>

<span class="comment">// Use proto::external_transforms to map from named grammar rules to</span>
<span class="comment">// transforms.</span>
<span class="keyword">struct</span> <span class="identifier">non_checked_division</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transforms</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span> <span class="identifier">divides_rule</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special">&lt;</span><span class="identifier">calc_grammar</span><span class="special">&gt;</span> <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">division_by_zero</span> <span class="special">:</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">exception</span> <span class="special">{};</span>

<span class="keyword">struct</span> <span class="identifier">do_checked_divide</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
    <span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>
    <span class="keyword">int</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">int</span> <span class="identifier">left</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">right</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">if</span> <span class="special">(</span><span class="identifier">right</span> <span class="special">==</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">throw</span> <span class="identifier">division_by_zero</span><span class="special">();</span>
        <span class="keyword">return</span> <span class="identifier">left</span> <span class="special">/</span> <span class="identifier">right</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="comment">// Use proto::external_transforms again, this time to map the divides_rule</span>
<span class="comment">// to a transforms that performs checked division.</span>
<span class="keyword">struct</span> <span class="identifier">checked_division</span>
  <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">external_transforms</span><span class="special">&lt;</span>
        <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span>
            <span class="identifier">divides_rule</span>
          <span class="special">,</span> <span class="identifier">do_checked_divide</span><span class="special">(</span><span class="identifier">calc_grammar</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span> <span class="identifier">calc_grammar</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">))</span>
        <span class="special">&gt;</span>
    <span class="special">&gt;</span>
<span class="special">{};</span>

<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
    <span class="identifier">non_checked_division</span> <span class="identifier">non_checked</span><span class="special">;</span>
    <span class="keyword">int</span> <span class="identifier">result2</span> <span class="special">=</span> <span class="identifier">calc_grammar</span><span class="special">()(</span><span class="identifier">_1</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">6</span><span class="special">,</span> <span class="number">2</span><span class="special">),</span> <span class="identifier">non_checked</span><span class="special">);</span>
    <span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="identifier">result2</span> <span class="special">==</span> <span class="number">3</span><span class="special">);</span>

    <span class="keyword">try</span>
    <span class="special">{</span>
        <span class="identifier">checked_division</span> <span class="identifier">checked</span><span class="special">;</span>
        <span class="comment">// This should throw</span>
        <span class="keyword">int</span> <span class="identifier">result3</span> <span class="special">=</span> <span class="identifier">calc_grammar</span><span class="special">()(</span><span class="identifier">_1</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span><span class="number">6</span><span class="special">,</span> <span class="number">0</span><span class="special">),</span> <span class="identifier">checked</span><span class="special">);</span>
        <span class="identifier">BOOST_ASSERT</span><span class="special">(</span><span class="keyword">false</span><span class="special">);</span> <span class="comment">// shouldn't get here!</span>
    <span class="special">}</span>
    <span class="keyword">catch</span><span class="special">(</span><span class="identifier">division_by_zero</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"caught division by zero!\n"</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
        </p>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.resources"></a><a class="link" href="users_guide.html#boost_proto.users_guide.resources" title="Background and Resources">Background and Resources</a>
</h3></div></div></div>
<p>
        Proto was initially developed as part of <a href="../../../libs/xpressive/index.html" target="_top">Boost.Xpressive</a>
        to simplify the job of transforming an expression template into an executable
        finite state machine capable of matching a regular expression. Since then,
        Proto has found application in the redesigned and improved Spirit-2 and the
        related Karma library. As a result of these efforts, Proto evolved into a
        generic and abstract grammar and tree transformation framework applicable
        in a wide variety of EDSL scenarios.
      </p>
<p>
        The grammar and tree transformation framework is modeled on Spirit's grammar
        and semantic action framework. The expression tree data structure is similar
        to Fusion data structures in many respects, and is interoperable with Fusion's
        iterators and algorithms.
      </p>
<p>
        The syntax for the grammar-matching features of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> is inspired by MPL's lambda expressions.
      </p>
<p>
        The idea for using function types for Proto's composite transforms is inspired
        by Aleksey Gurtovoy's <a href="http://lists.boost.org/Archives/boost/2002/11/39718.php" target="_top">"round"
        lambda</a> notation.
      </p>
<h5>
<a name="boost_proto.users_guide.resources.h0"></a>
        <span class="phrase"><a name="boost_proto.users_guide.resources.references"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.resources.references">References</a>
      </h5>
<div class="blockquote"><blockquote class="blockquote"><p>
          <a name="boost_proto.users_guide.resources.SYB"></a>Ren, D. and Erwig,
          M. 2006. A generic recursion toolbox for Haskell or: scrap your boilerplate
          systematically. In <span class="emphasis"><em>Proceedings of the 2006 ACM SIGPLAN Workshop
          on Haskell</em></span> (Portland, Oregon, USA, September 17 - 17, 2006).
          Haskell '06. ACM, New York, NY, 13-24. DOI=<a href="http://doi.acm.org/10.1145/1159842.1159845" target="_top">http://doi.acm.org/10.1145/1159842.1159845</a>
        </p></blockquote></div>
<h5>
<a name="boost_proto.users_guide.resources.h1"></a>
        <span class="phrase"><a name="boost_proto.users_guide.resources.further_reading"></a></span><a class="link" href="users_guide.html#boost_proto.users_guide.resources.further_reading">Further
        Reading</a>
      </h5>
<p>
        A technical paper about an earlier version of Proto was accepted into the
        <a href="http://lcsd.cs.tamu.edu/2007/" target="_top">ACM SIGPLAN Symposium on Library-Centric
        Software Design LCSD'07</a>, and can be found at <a href="http://lcsd.cs.tamu.edu/2007/final/1/1_Paper.pdf" target="_top">http://lcsd.cs.tamu.edu/2007/final/1/1_Paper.pdf</a>.
        The tree transforms described in that paper differ from what exists today.
      </p>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.glossary"></a><a class="link" href="users_guide.html#boost_proto.users_guide.glossary" title="Glossary">Glossary</a>
</h3></div></div></div>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.callable_transform"></a> callable transform</span></dt>
<dd><p>
              A transform of the form <code class="computeroutput"><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span></code> (i.e., a function type) where
              <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;</span><span class="identifier">R</span><span class="special">&gt;::</span><span class="identifier">value</span></code> is <code class="computeroutput"><span class="keyword">true</span></code>.
              <code class="computeroutput"><span class="identifier">R</span></code> is treated as a polymorphic
              function object and the arguments are treated as transforms that yield
              the arguments to the function object.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.context"></a> context</span></dt>
<dd><p>
              In Proto, the term <span class="emphasis"><em>context</em></span> refers to an object
              that can be passed, along with an expression to evaluate, to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
              function. The context determines how the expression is evaluated. All
              context structs define a nested <code class="computeroutput"><span class="identifier">eval</span><span class="special">&lt;&gt;</span></code> template that, when instantiated
              with a node tag type (e.g., <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>),
              is a binary polymorphic function object that accepts an expression
              of that type and the context object. In this way, contexts associate
              behaviors with expression nodes.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.domain"></a> domain</span></dt>
<dd><p>
              In Proto, the term <span class="emphasis"><em>domain</em></span> refers to a type that
              associates expressions within that domain with a <span class="emphasis"><em>generator</em></span>
              for that domain and optionally a <span class="emphasis"><em>grammar</em></span> for the
              domain. Domains are used primarily to imbue expressions within that
              domain with additional members and to restrict Proto's operator overloads
              such that expressions not conforming to the domain's grammar are never
              created. Domains are empty structs that inherit from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special">&lt;&gt;</span></code>.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.dsl"></a> domain-specific language</span></dt>
<dd><p>
              A programming language that targets a particular problem space by providing
              programming idioms, abstractions and constructs that match the constructs
              within that problem space.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.edsl"></a> embedded domain-specific language</span></dt>
<dd><p>
              A domain-specific language implemented as a library. The language in
              which the library is written is called the "host" language,
              and the language implemented by the library is called the "embedded"
              language.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.expression"></a> expression</span></dt>
<dd><p>
              In Proto, an <span class="emphasis"><em>expression</em></span> is a heterogeneous tree
              where each node is either an instantiation of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special">&lt;&gt;</span></code>, <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">basic_expr</span><span class="special">&lt;&gt;</span></code> or some type that is an extension
              (via <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special">&lt;&gt;</span></code>
              or <code class="computeroutput"><span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">()</span></code>) of such an instantiation.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.expression_template"></a> expression template</span></dt>
<dd><p>
              A C++ technique using templates and operator overloading to cause expressions
              to build trees that represent the expression for lazy evaluation later,
              rather than evaluating the expression eagerly. Some C++ libraries use
              expression templates to build embedded domain-specific languages.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.generator"></a> generator</span></dt>
<dd><p>
              In Proto, a <span class="emphasis"><em>generator</em></span> is a unary polymorphic function
              object that you specify when defining a <span class="emphasis"><em>domain</em></span>.
              After constructing a new expression, Proto passes the expression to
              your domain's generator for further processing. Often, the generator
              wraps the expression in an extension wrapper that adds additional members
              to it.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.grammar"></a> grammar</span></dt>
<dd><p>
              In Proto, a <span class="emphasis"><em>grammar</em></span> is a type that describes a
              subset of Proto expression types. Expressions in a domain must conform
              to that domain's grammar. The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> metafunction evaluates whether
              an expression type matches a grammar. Grammars are either primitives
              such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>, composites such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special">&lt;&gt;</span></code>,
              control structures such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special">&lt;&gt;</span></code>, or some type derived from
              a grammar.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.object_transform"></a> object transform</span></dt>
<dd><p>
              A transform of the form <code class="computeroutput"><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span></code> (i.e., a function type) where
              <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special">&lt;</span><span class="identifier">R</span><span class="special">&gt;::</span><span class="identifier">value</span></code> is <code class="computeroutput"><span class="keyword">false</span></code>.
              <code class="computeroutput"><span class="identifier">R</span></code> is treated as the
              type of an object to construct and the arguments are treated as transforms
              that yield the parameters to the constructor.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.polymorphic_function_object"></a> polymorphic function object</span></dt>
<dd><p>
              An instance of a class type with an overloaded function call operator
              and a nested <code class="computeroutput"><span class="identifier">result_type</span></code>
              typedef or <code class="computeroutput"><span class="identifier">result</span><span class="special">&lt;&gt;</span></code>
              template for calculating the return type of the function call operator.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.primitive_transform"></a> primitive transform</span></dt>
<dd><p>
              A type that defines a kind of polymorphic function object that takes
              three arguments: expression, state, and data. Primitive transforms
              can be used to compose callable transforms and object transforms.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.subdomain"></a> sub-domain</span></dt>
<dd><p>
              A sub-domain is a domain that declares another domain as its super-domain.
              Expressions in sub-domains can be combined with expressions in the
              super-domain, and the resulting expression is in the super-domain.
            </p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.transform"></a> transform</span></dt>
<dd><p>
              Transforms are used to manipulate expression trees. They come in three
              flavors: primitive transforms, callable transforms, or object transforms.
              A transform <code class="computeroutput"><em class="replaceable"><code>T</code></em></code> can be made into
              a ternary polymorphic function object with <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;&gt;</span></code>, as in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <em class="replaceable"><code>T</code></em><span class="special">&gt;</span></code>.
              Such a function object accepts <span class="emphasis"><em>expression</em></span>, <span class="emphasis"><em>state</em></span>,
              and <span class="emphasis"><em>data</em></span> parameters, and computes a result from
              them.
            </p></dd>
</dl>
</div>
</div>
<div class="footnotes">
<br><hr style="width:100; text-align:left;margin-left: 0">
<div id="ftn.boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.f0" class="footnote"><p><a href="#boost_proto.users_guide.front_end.customizing_expressions_in_your_domain.per_domain_as_child.f0" class="para"><sup class="para">[28] </sup></a>
              It's not always possible to hold something by value. By default, <code class="computeroutput"><a class="link" href="../boost/proto/as_expr_idp731118320.html" title="Function as_expr">proto::as_expr()</a></code> makes an exception
              for functions, abstract types, and iostreams (types derived from <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ios_base</span></code>). These objects are held
              by reference. All others are held by value, even arrays.
            </p></div>
<div id="ftn.boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity.f0" class="footnote"><p><a href="#boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity.f0" class="para"><sup class="para">[29] </sup></a>
              This error message was generated with Microsoft Visual C++ 9.0. Different
              compilers will emit different messages with varying degrees of readability.
            </p></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2008 Eric Niebler<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../proto.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>