summaryrefslogtreecommitdiff
path: root/boost/spirit/home/karma/numeric/detail/numeric_utils.hpp
blob: a36893e57e154dc504b092a3407d2c1baf5f3605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//  Copyright (c) 2001-2011 Hartmut Kaiser
//
//  Distributed under the Boost Software License, Version 1.0. (See accompanying
//  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#if !defined(BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM)
#define BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM

#if defined(_MSC_VER)
#pragma once
#endif

#include <boost/config.hpp>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/limits.hpp>

#include <boost/type_traits/is_integral.hpp>
#include <boost/spirit/home/support/char_class.hpp>
#include <boost/spirit/home/support/unused.hpp>
#include <boost/spirit/home/support/numeric_traits.hpp>
#include <boost/spirit/home/support/detail/pow10.hpp>
#include <boost/spirit/home/support/detail/sign.hpp>
#include <boost/spirit/home/karma/detail/generate_to.hpp>
#include <boost/spirit/home/karma/detail/string_generate.hpp>

///////////////////////////////////////////////////////////////////////////////
//
//  The value BOOST_KARMA_NUMERICS_LOOP_UNROLL specifies, how to unroll the
//  integer string generation loop (see below).
//
//      Set the value to some integer in between 0 (no unrolling) and the
//      largest expected generated integer string length (complete unrolling).
//      If not specified, this value defaults to 6.
//
///////////////////////////////////////////////////////////////////////////////
#if !defined(BOOST_KARMA_NUMERICS_LOOP_UNROLL)
#define BOOST_KARMA_NUMERICS_LOOP_UNROLL 6
#endif

#if BOOST_KARMA_NUMERICS_LOOP_UNROLL < 0
#error "Please set the BOOST_KARMA_NUMERICS_LOOP_UNROLL to a non-negative value!"
#endif

namespace boost { namespace spirit { namespace traits
{
    ///////////////////////////////////////////////////////////////////////
    //
    //  return the absolute value from a given number, avoiding over- and
    //  underflow
    //
    ///////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct absolute_value
    {
        typedef T type;
        static T call (T n)
        {
            // allow for ADL to find the correct overloads for fabs
            using namespace std;
            return fabs(n);
        }
    };

#define BOOST_SPIRIT_ABSOLUTE_VALUE(signedtype, unsignedtype)                 \
        template <>                                                           \
        struct absolute_value<signedtype>                                     \
        {                                                                     \
            typedef unsignedtype type;                                        \
            static type call(signedtype n)                                    \
            {                                                                 \
                return static_cast<unsignedtype>((n >= 0) ? n : -n);          \
            }                                                                 \
        }                                                                     \
    /**/
#define BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsignedtype)                    \
        template <>                                                           \
        struct absolute_value<unsignedtype>                                   \
        {                                                                     \
            typedef unsignedtype type;                                        \
            static type call(unsignedtype n)                                  \
            {                                                                 \
                return n;                                                     \
            }                                                                 \
        }                                                                     \
    /**/

    BOOST_SPIRIT_ABSOLUTE_VALUE(signed char, unsigned char);
    BOOST_SPIRIT_ABSOLUTE_VALUE(char, unsigned char);
    BOOST_SPIRIT_ABSOLUTE_VALUE(short, unsigned short);
    BOOST_SPIRIT_ABSOLUTE_VALUE(int, unsigned int);
    BOOST_SPIRIT_ABSOLUTE_VALUE(long, unsigned long);
    BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned char);
    BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned short);
    BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned int);
    BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned long);
#ifdef BOOST_HAS_LONG_LONG
    BOOST_SPIRIT_ABSOLUTE_VALUE(boost::long_long_type, boost::ulong_long_type);
    BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(boost::ulong_long_type);
#endif

#undef BOOST_SPIRIT_ABSOLUTE_VALUE
#undef BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED

    template <>
    struct absolute_value<float>
    {
        typedef float type;
        static type call(float n)
        {
            return (spirit::detail::signbit)(n) ? -n : n;
        }
    };

    template <>
    struct absolute_value<double>
    {
        typedef double type;
        static type call(double n)
        {
            return (spirit::detail::signbit)(n) ? -n : n;
        }
    };

    template <>
    struct absolute_value<long double>
    {
        typedef long double type;
        static type call(long double n)
        {
            return (spirit::detail::signbit)(n) ? -n : n;
        }
    };

    // specialization for pointers
    template <typename T>
    struct absolute_value<T*>
    {
        typedef std::size_t type;
        static type call (T* p)
        {
            return std::size_t(p);
        }
    };

    template <typename T>
    inline typename absolute_value<T>::type
    get_absolute_value(T n)
    {
        return absolute_value<T>::call(n);
    }

    ///////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct is_negative
    {
        static bool call(T n)
        {
            return (n < 0) ? true : false;
        }
    };

    template <>
    struct is_negative<float>
    {
        static bool call(float n)
        {
            return (spirit::detail::signbit)(n) ? true : false;
        }
    };

    template <>
    struct is_negative<double>
    {
        static bool call(double n)
        {
            return (spirit::detail::signbit)(n) ? true : false;
        }
    };

    template <>
    struct is_negative<long double>
    {
        static bool call(long double n)
        {
            return (spirit::detail::signbit)(n) ? true : false;
        }
    };

    template <typename T>
    inline bool test_negative(T n)
    {
        return is_negative<T>::call(n);
    }

    ///////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct is_zero
    {
        static bool call(T n)
        {
            return (n == 0) ? true : false;
        }
    };

    template <>
    struct is_zero<float>
    {
        static bool call(float n)
        {
            return (math::fpclassify)(n) == FP_ZERO;
        }
    };

    template <>
    struct is_zero<double>
    {
        static bool call(double n)
        {
            return (math::fpclassify)(n) == FP_ZERO;
        }
    };

    template <>
    struct is_zero<long double>
    {
        static bool call(long double n)
        {
            return (math::fpclassify)(n) == FP_ZERO;
        }
    };

    template <typename T>
    inline bool test_zero(T n)
    {
        return is_zero<T>::call(n);
    }

    ///////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct is_nan
    {
        static bool call(T n)
        {
            // NaN numbers are not equal to anything
            return (n != n) ? true : false;
        }
    };

    template <>
    struct is_nan<float>
    {
        static bool call(float n)
        {
            return (math::fpclassify)(n) == FP_NAN;
        }
    };

    template <>
    struct is_nan<double>
    {
        static bool call(double n)
        {
            return (math::fpclassify)(n) == FP_NAN;
        }
    };

    template <>
    struct is_nan<long double>
    {
        static bool call(long double n)
        {
            return (math::fpclassify)(n) == FP_NAN;
        }
    };

    template <typename T>
    inline bool test_nan(T n)
    {
        return is_nan<T>::call(n);
    }

    ///////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct is_infinite
    {
        static bool call(T n)
        {
            if (!std::numeric_limits<T>::has_infinity)
                return false;
            return (n == std::numeric_limits<T>::infinity()) ? true : false;
        }
    };

    template <>
    struct is_infinite<float>
    {
        static bool call(float n)
        {
            return (math::fpclassify)(n) == FP_INFINITE;
        }
    };

    template <>
    struct is_infinite<double>
    {
        static bool call(double n)
        {
            return (math::fpclassify)(n) == FP_INFINITE;
        }
    };

    template <>
    struct is_infinite<long double>
    {
        static bool call(long double n)
        {
            return (math::fpclassify)(n) == FP_INFINITE;
        }
    };

    template <typename T>
    inline bool test_infinite(T n)
    {
        return is_infinite<T>::call(n);
    }

    ///////////////////////////////////////////////////////////////////////
    struct cast_to_long
    {
        static long call(float n, mpl::false_)
        {
            return static_cast<long>(std::floor(n));
        }

        static long call(double n, mpl::false_)
        {
            return static_cast<long>(std::floor(n));
        }

        static long call(long double n, mpl::false_)
        {
            return static_cast<long>(std::floor(n));
        }

        template <typename T>
        static long call(T n, mpl::false_)
        {
            // allow for ADL to find the correct overload for floor and
            // lround
            using namespace std;
            return lround(floor(n));
        }

        template <typename T>
        static long call(T n, mpl::true_)
        {
            return static_cast<long>(n);
        }

        template <typename T>
        static long call(T n)
        {
            return call(n, mpl::bool_<is_integral<T>::value>());
        }
    };

    ///////////////////////////////////////////////////////////////////////
    struct truncate_to_long
    {
        static long call(float n, mpl::false_)
        {
            return test_negative(n) ? static_cast<long>(std::ceil(n)) :
                static_cast<long>(std::floor(n));
        }

        static long call(double n, mpl::false_)
        {
            return test_negative(n) ? static_cast<long>(std::ceil(n)) :
                static_cast<long>(std::floor(n));
        }

        static long call(long double n, mpl::false_)
        {
            return test_negative(n) ? static_cast<long>(std::ceil(n)) :
                static_cast<long>(std::floor(n));
        }

        template <typename T>
        static long call(T n, mpl::false_)
        {
            // allow for ADL to find the correct overloads for ltrunc
            using namespace std;
            return ltrunc(n);
        }

        template <typename T>
        static long call(T n, mpl::true_)
        {
            return static_cast<long>(n);
        }

        template <typename T>
        static long call(T n)
        {
            return call(n, mpl::bool_<is_integral<T>::value>());
        }
    };

    ///////////////////////////////////////////////////////////////////////
    //
    //  Traits class for radix specific number conversion
    //
    //      Convert a digit from binary representation to character
    //      representation:
    //
    //          static int call(unsigned n);
    //
    ///////////////////////////////////////////////////////////////////////
    namespace detail
    {
        template <typename CharEncoding, typename Tag, bool radix_less_than_10>
        struct convert_digit
        {
            static int call(unsigned n)
            {
                if (n <= 9)
                    return n + '0';

                using spirit::char_class::convert;
                return convert<CharEncoding>::to(Tag(), n - 10 + 'a');
            }
        };

        template <>
        struct convert_digit<unused_type, unused_type, false>
        {
            static int call(unsigned n)
            {
                if (n <= 9)
                    return n + '0';
                return n - 10 + 'a';
            }
        };

        template <typename CharEncoding, typename Tag>
        struct convert_digit<CharEncoding, Tag, true>
        {
            static int call(unsigned n)
            {
                return n + '0';
            }
        };
    }

    template <unsigned Radix, typename CharEncoding, typename Tag>
    struct convert_digit
      : detail::convert_digit<CharEncoding, Tag, (Radix <= 10) ? true : false>
    {};

    ///////////////////////////////////////////////////////////////////////
    template <unsigned Radix>
    struct divide
    {
        template <typename T>
        static T call(T& n, mpl::true_)
        {
            return n / Radix;
        }

        template <typename T>
        static T call(T& n, mpl::false_)
        {
            // Allow ADL to find the correct overload for floor
            using namespace std;
            return floor(n / Radix);
        }

        template <typename T>
        static T call(T& n, T const&, int)
        {
            return call(n, mpl::bool_<is_integral<T>::value>());
        }

        template <typename T>
        static T call(T& n)
        {
            return call(n, mpl::bool_<is_integral<T>::value>());
        }
    };

    // specialization for division by 10
    template <>
    struct divide<10>
    {
        template <typename T>
        static T call(T& n, T, int, mpl::true_)
        {
            return n / 10;
        }

        template <typename T>
        static T call(T, T& num, int exp, mpl::false_)
        {
            // Allow ADL to find the correct overload for floor
            using namespace std;
            return floor(num / spirit::traits::pow10<T>(exp));
        }

        template <typename T>
        static T call(T& n, T& num, int exp)
        {
            return call(n, num, exp, mpl::bool_<is_integral<T>::value>());
        }

        template <typename T>
        static T call(T& n)
        {
            return call(n, n, 1, mpl::bool_<is_integral<T>::value>());
        }
    };

    ///////////////////////////////////////////////////////////////////////
    template <unsigned Radix>
    struct remainder
    {
        template <typename T>
        static long call(T n, mpl::true_)
        {
            // this cast is safe since we know the result is not larger
            // than Radix
            return static_cast<long>(n % Radix);
        }

        template <typename T>
        static long call(T n, mpl::false_)
        {
            // Allow ADL to find the correct overload for fmod
            using namespace std;
            return cast_to_long::call(fmod(n, T(Radix)));
        }

        template <typename T>
        static long call(T n)
        {
            return call(n, mpl::bool_<is_integral<T>::value>());
        }
    };
}}}

namespace boost { namespace spirit { namespace karma
{
    ///////////////////////////////////////////////////////////////////////////
    //
    //  The int_inserter template takes care of the integer to string
    //  conversion. If specified, the loop is unrolled for better performance.
    //
    //      Set the value BOOST_KARMA_NUMERICS_LOOP_UNROLL to some integer in
    //      between 0 (no unrolling) and the largest expected generated integer
    //      string length (complete unrolling).
    //      If not specified, this value defaults to 6.
    //
    ///////////////////////////////////////////////////////////////////////////
#define BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX(z, x, data)                    \
        if (!traits::test_zero(n)) {                                          \
            int ch = radix_type::call(remainder_type::call(n));               \
            n = divide_type::call(n, num, ++exp);                             \
    /**/

#define BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX(z, x, data)                    \
            *sink = char(ch);                                                 \
            ++sink;                                                           \
        }                                                                     \
    /**/

    template <
        unsigned Radix, typename CharEncoding = unused_type
      , typename Tag = unused_type>
    struct int_inserter
    {
        typedef traits::convert_digit<Radix, CharEncoding, Tag> radix_type;
        typedef traits::divide<Radix> divide_type;
        typedef traits::remainder<Radix> remainder_type;

        template <typename OutputIterator, typename T>
        static bool
        call(OutputIterator& sink, T n, T& num, int exp)
        {
            // remainder_type::call returns n % Radix
            int ch = radix_type::call(remainder_type::call(n));
            n = divide_type::call(n, num, ++exp);

            BOOST_PP_REPEAT(
                BOOST_KARMA_NUMERICS_LOOP_UNROLL,
                BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX, _);

            if (!traits::test_zero(n))
                call(sink, n, num, exp);

            BOOST_PP_REPEAT(
                BOOST_KARMA_NUMERICS_LOOP_UNROLL,
                BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX, _);

            *sink = char(ch);
            ++sink;
            return true;
        }

        //  Common code for integer string representations
        template <typename OutputIterator, typename T>
        static bool
        call(OutputIterator& sink, T n)
        {
            return call(sink, n, n, 0);
        }

    private:
        // helper function returning the biggest number representable either in
        // a boost::long_long_type (if this does exist) or in a plain long
        // otherwise
#if defined(BOOST_HAS_LONG_LONG)
        typedef boost::long_long_type biggest_long_type;
#else
        typedef long biggest_long_type;
#endif

        static biggest_long_type max_long()
        {
            return (std::numeric_limits<biggest_long_type>::max)();
        }

    public:
        // Specialization for doubles and floats, falling back to long integers
        // for representable values. These specializations speed up formatting
        // of floating point numbers considerably as all the required
        // arithmetics will be executed using integral data types.
        template <typename OutputIterator>
        static bool
        call(OutputIterator& sink, long double n)
        {
            if (std::fabs(n) < max_long())
            {
                biggest_long_type l((biggest_long_type)n);
                return call(sink, l, l, 0);
            }
            return call(sink, n, n, 0);
        }
        template <typename OutputIterator>
        static bool
        call(OutputIterator& sink, double n)
        {
            if (std::fabs(n) < max_long())
            {
                biggest_long_type l((biggest_long_type)n);
                return call(sink, l, l, 0);
            }
            return call(sink, n, n, 0);
        }
        template <typename OutputIterator>
        static bool
        call(OutputIterator& sink, float n)
        {
            if (std::fabs(n) < max_long())
            {
                biggest_long_type l((biggest_long_type)n);
                return call(sink, l, l, 0);
            }
            return call(sink, n, n, 0);
        }
    };

#undef BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX
#undef BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX

    ///////////////////////////////////////////////////////////////////////////
    //
    //  The uint_inserter template takes care of the conversion of any integer
    //  to a string, while interpreting the number as an unsigned type.
    //
    ///////////////////////////////////////////////////////////////////////////
    template <
        unsigned Radix, typename CharEncoding = unused_type
      , typename Tag = unused_type>
    struct uint_inserter : int_inserter<Radix, CharEncoding, Tag>
    {
        typedef int_inserter<Radix, CharEncoding, Tag> base_type;

        //  Common code for integer string representations
        template <typename OutputIterator, typename T>
        static bool
        call(OutputIterator& sink, T const& n)
        {
            typedef typename traits::absolute_value<T>::type type;
            type un = type(n);
            return base_type::call(sink, un, un, 0);
        }
    };

    ///////////////////////////////////////////////////////////////////////////
    //
    //  The sign_inserter template generates a sign for a given numeric value.
    //
    //    The parameter forcesign allows to generate a sign even for positive
    //    numbers.
    //
    ///////////////////////////////////////////////////////////////////////////
    struct sign_inserter
    {
        template <typename OutputIterator>
        static bool
        call_noforce(OutputIterator& sink, bool is_zero, bool is_negative,
            bool sign_if_zero)
        {
            // generate a sign for negative numbers only
            if (is_negative || (is_zero && sign_if_zero)) {
                *sink = '-';
                ++sink;
            }
            return true;
        }

        template <typename OutputIterator>
        static bool
        call_force(OutputIterator& sink, bool is_zero, bool is_negative,
            bool sign_if_zero)
        {
            // generate a sign for all numbers except zero
            if (!is_zero || sign_if_zero)
                *sink = is_negative ? '-' : '+';
            else
                *sink = ' ';

            ++sink;
            return true;
        }

        template <typename OutputIterator>
        static bool
        call(OutputIterator& sink, bool is_zero, bool is_negative
          , bool forcesign, bool sign_if_zero = false)
        {
            return forcesign ?
                call_force(sink, is_zero, is_negative, sign_if_zero) :
                call_noforce(sink, is_zero, is_negative, sign_if_zero);
        }
    };

    ///////////////////////////////////////////////////////////////////////////
    //  These are helper functions for the real policies allowing to generate
    //  a single character and a string
    ///////////////////////////////////////////////////////////////////////////
    template <typename CharEncoding = unused_type, typename Tag = unused_type>
    struct char_inserter
    {
        template <typename OutputIterator, typename Char>
        static bool call(OutputIterator& sink, Char c)
        {
            return detail::generate_to(sink, c, CharEncoding(), Tag());
        }
    };

    template <typename CharEncoding = unused_type, typename Tag = unused_type>
    struct string_inserter
    {
        template <typename OutputIterator, typename String>
        static bool call(OutputIterator& sink, String str)
        {
            return detail::string_generate(sink, str, CharEncoding(), Tag());
        }
    };

}}}

#endif