summaryrefslogtreecommitdiff
path: root/boost/sort/spreadsort/detail/float_sort.hpp
blob: 03dcbaf4f6e2de68a6a4306487161235d46fc35c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// Details for templated Spreadsort-based float_sort.

//          Copyright Steven J. Ross 2001 - 2014.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

// See http://www.boost.org/libs/sort for library home page.

/*
Some improvements suggested by:
Phil Endecott and Frank Gennari
float_mem_cast fix provided by:
Scott McMurray
*/

#ifndef BOOST_SORT_SPREADSORT_DETAIL_FLOAT_SORT_HPP
#define BOOST_SORT_SPREADSORT_DETAIL_FLOAT_SORT_HPP
#include <algorithm>
#include <vector>
#include <limits>
#include <functional>
#include <boost/static_assert.hpp>
#include <boost/serialization/static_warning.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/sort/spreadsort/detail/constants.hpp>
#include <boost/sort/spreadsort/detail/integer_sort.hpp>
#include <boost/sort/spreadsort/detail/spreadsort_common.hpp>
#include <boost/cstdint.hpp>

namespace boost {
namespace sort {
namespace spreadsort {
  namespace detail {
    //Casts a RandomAccessIter to the specified integer type
    template<class Cast_type, class RandomAccessIter>
    inline Cast_type
    cast_float_iter(const RandomAccessIter & floatiter)
    {
      typedef typename std::iterator_traits<RandomAccessIter>::value_type
        Data_type;
      //Only cast IEEE floating-point numbers, and only to same-sized integers
      BOOST_STATIC_ASSERT(sizeof(Cast_type) == sizeof(Data_type));
      BOOST_STATIC_ASSERT(std::numeric_limits<Data_type>::is_iec559);
      BOOST_STATIC_ASSERT(std::numeric_limits<Cast_type>::is_integer);
      Cast_type result;
      std::memcpy(&result, &(*floatiter), sizeof(Data_type));
      return result;
    }

    // Return true if the list is sorted.  Otherwise, find the minimum and
    // maximum.  Values are Right_shifted 0 bits before comparison.
    template <class RandomAccessIter, class Div_type, class Right_shift>
    inline bool
    is_sorted_or_find_extremes(RandomAccessIter current, RandomAccessIter last,
                  Div_type & max, Div_type & min, Right_shift rshift)
    {
      min = max = rshift(*current, 0);
      RandomAccessIter prev = current;
      bool sorted = true;
      while (++current < last) {
        Div_type value = rshift(*current, 0);
        sorted &= *current >= *prev;
        prev = current;
        if (max < value)
          max = value;
        else if (value < min)
          min = value;
      }
      return sorted;
    }

    // Return true if the list is sorted.  Otherwise, find the minimum and
    // maximum.  Uses comp to check if the data is already sorted.
    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare>
    inline bool
    is_sorted_or_find_extremes(RandomAccessIter current, RandomAccessIter last,
                               Div_type & max, Div_type & min, 
                               Right_shift rshift, Compare comp)
    {
      min = max = rshift(*current, 0);
      RandomAccessIter prev = current;
      bool sorted = true;
      while (++current < last) {
        Div_type value = rshift(*current, 0);
        sorted &= !comp(*current, *prev);
        prev = current;
        if (max < value)
          max = value;
        else if (value < min)
          min = value;
      }
      return sorted;
    }

    //Specialized swap loops for floating-point casting
    template <class RandomAccessIter, class Div_type>
    inline void inner_float_swap_loop(RandomAccessIter * bins,
                        const RandomAccessIter & nextbinstart, unsigned ii
                        , const unsigned log_divisor, const Div_type div_min)
    {
      RandomAccessIter * local_bin = bins + ii;
      for (RandomAccessIter current = *local_bin; current < nextbinstart;
          ++current) {
        for (RandomAccessIter * target_bin =
            (bins + ((cast_float_iter<Div_type, RandomAccessIter>(current) >>
                      log_divisor) - div_min));  target_bin != local_bin;
          target_bin = bins + ((cast_float_iter<Div_type, RandomAccessIter>
                               (current) >> log_divisor) - div_min)) {
          typename std::iterator_traits<RandomAccessIter>::value_type tmp;
          RandomAccessIter b = (*target_bin)++;
          RandomAccessIter * b_bin = bins + ((cast_float_iter<Div_type,
                              RandomAccessIter>(b) >> log_divisor) - div_min);
          //Three-way swap; if the item to be swapped doesn't belong in the
          //current bin, swap it to where it belongs
          if (b_bin != local_bin) {
            RandomAccessIter c = (*b_bin)++;
            tmp = *c;
            *c = *b;
          }
          else
            tmp = *b;
          *b = *current;
          *current = tmp;
        }
      }
      *local_bin = nextbinstart;
    }

    template <class RandomAccessIter, class Div_type>
    inline void float_swap_loop(RandomAccessIter * bins,
                          RandomAccessIter & nextbinstart, unsigned ii,
                          const size_t *bin_sizes,
                          const unsigned log_divisor, const Div_type div_min)
    {
      nextbinstart += bin_sizes[ii];
      inner_float_swap_loop<RandomAccessIter, Div_type>
        (bins, nextbinstart, ii, log_divisor, div_min);
    }

    // Return true if the list is sorted.  Otherwise, find the minimum and
    // maximum.  Values are cast to Cast_type before comparison.
    template <class RandomAccessIter, class Cast_type>
    inline bool
    is_sorted_or_find_extremes(RandomAccessIter current, RandomAccessIter last,
                  Cast_type & max, Cast_type & min)
    {
      min = max = cast_float_iter<Cast_type, RandomAccessIter>(current);
      RandomAccessIter prev = current;
      bool sorted = true;
      while (++current < last) {
        Cast_type value = cast_float_iter<Cast_type, RandomAccessIter>(current);
        sorted &= *current >= *prev;
        prev = current;
        if (max < value)
          max = value;
        else if (value < min)
          min = value;
      }
      return sorted;
    }

    //Special-case sorting of positive floats with casting
    template <class RandomAccessIter, class Div_type, class Size_type>
    inline void
    positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last,
              std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
              , size_t *bin_sizes)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes<RandomAccessIter, Div_type>(first, last, 
                                                                max, min))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned((cast_float_iter<Div_type, RandomAccessIter>(
            current++) >> log_divisor) - div_min)]++;
      bins[0] = first;
      for (unsigned u = 0; u < bin_count - 1; u++)
        bins[u + 1] = bins[u] + bin_sizes[u];


      //Swap into place
      RandomAccessIter nextbinstart = first;
      for (unsigned u = 0; u < bin_count - 1; ++u)
        float_swap_loop<RandomAccessIter, Div_type>
          (bins, nextbinstart, u, bin_sizes, log_divisor, div_min);
      bins[bin_count - 1] = last;

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Recursing
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u],
          ++u) {
        size_t count = bin_cache[u] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[u]);
        else
          positive_float_sort_rec<RandomAccessIter, Div_type, Size_type>
            (lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
      }
    }

    //Sorting negative floats
    //Bins are iterated in reverse because max_neg_float = min_neg_int
    template <class RandomAccessIter, class Div_type, class Size_type>
    inline void
    negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last,
                        std::vector<RandomAccessIter> &bin_cache,
                        unsigned cache_offset, size_t *bin_sizes)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes<RandomAccessIter, Div_type>(first, last, 
                                                                 max, min))
        return;

      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned((cast_float_iter<Div_type, RandomAccessIter>(
            current++) >> log_divisor) - div_min)]++;
      bins[bin_count - 1] = first;
      for (int ii = bin_count - 2; ii >= 0; --ii)
        bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];

      //Swap into place
      RandomAccessIter nextbinstart = first;
      //The last bin will always have the correct elements in it
      for (int ii = bin_count - 1; ii > 0; --ii)
        float_swap_loop<RandomAccessIter, Div_type>
          (bins, nextbinstart, ii, bin_sizes, log_divisor, div_min);
      //Update the end position because we don't process the last bin
      bin_cache[cache_offset] = last;

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Recursing
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_end - 1; ii >= static_cast<int>(cache_offset);
          lastPos = bin_cache[ii], --ii) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii]);
        else
          negative_float_sort_rec<RandomAccessIter, Div_type, Size_type>
            (lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
      }
    }

    //Sorting negative floats
    //Bins are iterated in reverse order because max_neg_float = min_neg_int
    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Size_type>
    inline void
    negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last,
              std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
              , size_t *bin_sizes, Right_shift rshift)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes(first, last, max, min, rshift))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned(rshift(*(current++), log_divisor) - div_min)]++;
      bins[bin_count - 1] = first;
      for (int ii = bin_count - 2; ii >= 0; --ii)
        bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];

      //Swap into place
      RandomAccessIter nextbinstart = first;
      //The last bin will always have the correct elements in it
      for (int ii = bin_count - 1; ii > 0; --ii)
        swap_loop<RandomAccessIter, Div_type, Right_shift>
          (bins, nextbinstart, ii, rshift, bin_sizes, log_divisor, div_min);
      //Update the end position of the unprocessed last bin
      bin_cache[cache_offset] = last;

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Recursing
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_end - 1; ii >= static_cast<int>(cache_offset);
          lastPos = bin_cache[ii], --ii) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii]);
        else
          negative_float_sort_rec<RandomAccessIter, Div_type, Right_shift,
                                  Size_type>
            (lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, rshift);
      }
    }

    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare, class Size_type>
    inline void
    negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last,
            std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset,
            size_t *bin_sizes, Right_shift rshift, Compare comp)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes(first, last, max, min, rshift, comp))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned(rshift(*(current++), log_divisor) - div_min)]++;
      bins[bin_count - 1] = first;
      for (int ii = bin_count - 2; ii >= 0; --ii)
        bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];

      //Swap into place
      RandomAccessIter nextbinstart = first;
      //The last bin will always have the correct elements in it
      for (int ii = bin_count - 1; ii > 0; --ii)
        swap_loop<RandomAccessIter, Div_type, Right_shift>
          (bins, nextbinstart, ii, rshift, bin_sizes, log_divisor, div_min);
      //Update the end position of the unprocessed last bin
      bin_cache[cache_offset] = last;

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Recursing
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_end - 1; ii >= static_cast<int>(cache_offset);
          lastPos = bin_cache[ii], --ii) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii], comp);
        else
          negative_float_sort_rec<RandomAccessIter, Div_type, Right_shift,
                                  Compare, Size_type>(lastPos, bin_cache[ii],
                                                      bin_cache, cache_end,
                                                      bin_sizes, rshift, comp);
      }
    }

    //Casting special-case for floating-point sorting
    template <class RandomAccessIter, class Div_type, class Size_type>
    inline void
    float_sort_rec(RandomAccessIter first, RandomAccessIter last,
                std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
                , size_t *bin_sizes)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes<RandomAccessIter, Div_type>(first, last, 
                                                                max, min))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned((cast_float_iter<Div_type, RandomAccessIter>(
            current++) >> log_divisor) - div_min)]++;
      //The index of the first positive bin
      //Must be divided small enough to fit into an integer
      unsigned first_positive = (div_min < 0) ? unsigned(-div_min) : 0;
      //Resetting if all bins are negative
      if (cache_offset + first_positive > cache_end)
        first_positive = cache_end - cache_offset;
      //Reversing the order of the negative bins
      //Note that because of the negative/positive ordering direction flip
      //We can not depend upon bin order and positions matching up
      //so bin_sizes must be reused to contain the end of the bin
      if (first_positive > 0) {
        bins[first_positive - 1] = first;
        for (int ii = first_positive - 2; ii >= 0; --ii) {
          bins[ii] = first + bin_sizes[ii + 1];
          bin_sizes[ii] += bin_sizes[ii + 1];
        }
        //Handling positives following negatives
        if (first_positive < bin_count) {
          bins[first_positive] = first + bin_sizes[0];
          bin_sizes[first_positive] += bin_sizes[0];
        }
      }
      else
        bins[0] = first;
      for (unsigned u = first_positive; u < bin_count - 1; u++) {
        bins[u + 1] = first + bin_sizes[u];
        bin_sizes[u + 1] += bin_sizes[u];
      }

      //Swap into place
      RandomAccessIter nextbinstart = first;
      for (unsigned u = 0; u < bin_count; ++u) {
        nextbinstart = first + bin_sizes[u];
        inner_float_swap_loop<RandomAccessIter, Div_type>
          (bins, nextbinstart, u, log_divisor, div_min);
      }

      if (!log_divisor)
        return;

      //Handling negative values first
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_offset + first_positive - 1; 
           ii >= static_cast<int>(cache_offset);
           lastPos = bin_cache[ii--]) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii]);
        //sort negative values using reversed-bin spreadsort
        else
          negative_float_sort_rec<RandomAccessIter, Div_type, Size_type>
            (lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
      }

      for (unsigned u = cache_offset + first_positive; u < cache_end;
          lastPos = bin_cache[u], ++u) {
        size_t count = bin_cache[u] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[u]);
        //sort positive values using normal spreadsort
        else
          positive_float_sort_rec<RandomAccessIter, Div_type, Size_type>
            (lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
      }
    }

    //Functor implementation for recursive sorting
    template <class RandomAccessIter, class Div_type, class Right_shift
      , class Size_type>
    inline void
    float_sort_rec(RandomAccessIter first, RandomAccessIter last,
              std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
              , size_t *bin_sizes, Right_shift rshift)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes(first, last, max, min, rshift))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned(rshift(*(current++), log_divisor) - div_min)]++;
      //The index of the first positive bin
      unsigned first_positive = (div_min < 0) ? unsigned(-div_min) : 0;
      //Resetting if all bins are negative
      if (cache_offset + first_positive > cache_end)
        first_positive = cache_end - cache_offset;
      //Reversing the order of the negative bins
      //Note that because of the negative/positive ordering direction flip
      //We can not depend upon bin order and positions matching up
      //so bin_sizes must be reused to contain the end of the bin
      if (first_positive > 0) {
        bins[first_positive - 1] = first;
        for (int ii = first_positive - 2; ii >= 0; --ii) {
          bins[ii] = first + bin_sizes[ii + 1];
          bin_sizes[ii] += bin_sizes[ii + 1];
        }
        //Handling positives following negatives
        if (static_cast<unsigned>(first_positive) < bin_count) {
          bins[first_positive] = first + bin_sizes[0];
          bin_sizes[first_positive] += bin_sizes[0];
        }
      }
      else
        bins[0] = first;
      for (unsigned u = first_positive; u < bin_count - 1; u++) {
        bins[u + 1] = first + bin_sizes[u];
        bin_sizes[u + 1] += bin_sizes[u];
      }

      //Swap into place
      RandomAccessIter next_bin_start = first;
      for (unsigned u = 0; u < bin_count; ++u) {
        next_bin_start = first + bin_sizes[u];
        inner_swap_loop<RandomAccessIter, Div_type, Right_shift>
          (bins, next_bin_start, u, rshift, log_divisor, div_min);
      }

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Handling negative values first
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_offset + first_positive - 1; 
           ii >= static_cast<int>(cache_offset);
           lastPos = bin_cache[ii--]) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii]);
        //sort negative values using reversed-bin spreadsort
        else
          negative_float_sort_rec<RandomAccessIter, Div_type,
            Right_shift, Size_type>(lastPos, bin_cache[ii], bin_cache,
                                    cache_end, bin_sizes, rshift);
      }

      for (unsigned u = cache_offset + first_positive; u < cache_end;
          lastPos = bin_cache[u], ++u) {
        size_t count = bin_cache[u] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[u]);
        //sort positive values using normal spreadsort
        else
          spreadsort_rec<RandomAccessIter, Div_type, Right_shift, Size_type,
                          float_log_mean_bin_size, float_log_min_split_count,
                          float_log_finishing_count>
            (lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, rshift);
      }
    }

    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare, class Size_type>
    inline void
    float_sort_rec(RandomAccessIter first, RandomAccessIter last,
            std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset,
            size_t *bin_sizes, Right_shift rshift, Compare comp)
    {
      Div_type max, min;
      if (is_sorted_or_find_extremes(first, last, max, min, rshift, comp))
        return;
      unsigned log_divisor = get_log_divisor<float_log_mean_bin_size>(
          last - first, rough_log_2_size(Size_type(max - min)));
      Div_type div_min = min >> log_divisor;
      Div_type div_max = max >> log_divisor;
      unsigned bin_count = unsigned(div_max - div_min) + 1;
      unsigned cache_end;
      RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset,
                                          cache_end, bin_count);

      //Calculating the size of each bin
      for (RandomAccessIter current = first; current != last;)
        bin_sizes[unsigned(rshift(*(current++), log_divisor) - div_min)]++;
      //The index of the first positive bin
      unsigned first_positive = 
        (div_min < 0) ? static_cast<unsigned>(-div_min) : 0;
      //Resetting if all bins are negative
      if (cache_offset + first_positive > cache_end)
        first_positive = cache_end - cache_offset;
      //Reversing the order of the negative bins
      //Note that because of the negative/positive ordering direction flip
      //We can not depend upon bin order and positions matching up
      //so bin_sizes must be reused to contain the end of the bin
      if (first_positive > 0) {
        bins[first_positive - 1] = first;
        for (int ii = first_positive - 2; ii >= 0; --ii) {
          bins[ii] = first + bin_sizes[ii + 1];
          bin_sizes[ii] += bin_sizes[ii + 1];
        }
        //Handling positives following negatives
        if (static_cast<unsigned>(first_positive) < bin_count) {
          bins[first_positive] = first + bin_sizes[0];
          bin_sizes[first_positive] += bin_sizes[0];
        }
      }
      else
        bins[0] = first;
      for (unsigned u = first_positive; u < bin_count - 1; u++) {
        bins[u + 1] = first + bin_sizes[u];
        bin_sizes[u + 1] += bin_sizes[u];
      }

      //Swap into place
      RandomAccessIter next_bin_start = first;
      for (unsigned u = 0; u < bin_count; ++u) {
        next_bin_start = first + bin_sizes[u];
        inner_swap_loop<RandomAccessIter, Div_type, Right_shift>
          (bins, next_bin_start, u, rshift, log_divisor, div_min);
      }

      //Return if we've completed bucketsorting
      if (!log_divisor)
        return;

      //Handling negative values first
      size_t max_count = get_min_count<float_log_mean_bin_size,
                                       float_log_min_split_count,
                                       float_log_finishing_count>(log_divisor);
      RandomAccessIter lastPos = first;
      for (int ii = cache_offset + first_positive - 1; 
           ii >= static_cast<int>(cache_offset);
           lastPos = bin_cache[ii--]) {
        size_t count = bin_cache[ii] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[ii], comp);
        //sort negative values using reversed-bin spreadsort
        else
          negative_float_sort_rec<RandomAccessIter, Div_type, Right_shift,
                                  Compare, Size_type>(lastPos, bin_cache[ii],
                                                      bin_cache, cache_end,
                                                      bin_sizes, rshift, comp);
      }

      for (unsigned u = cache_offset + first_positive; u < cache_end;
          lastPos = bin_cache[u], ++u) {
        size_t count = bin_cache[u] - lastPos;
        if (count < 2)
          continue;
        if (count < max_count)
          std::sort(lastPos, bin_cache[u], comp);
        //sort positive values using normal spreadsort
        else
          spreadsort_rec<RandomAccessIter, Div_type, Right_shift, Compare,
                          Size_type, float_log_mean_bin_size,
                          float_log_min_split_count, float_log_finishing_count>
      (lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, rshift, comp);
      }
    }

    //Checking whether the value type is a float, and trying a 32-bit integer
    template <class RandomAccessIter>
    inline typename boost::enable_if_c< sizeof(boost::uint32_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type)
      && std::numeric_limits<typename
      std::iterator_traits<RandomAccessIter>::value_type>::is_iec559,
      void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, boost::int32_t, boost::uint32_t>
        (first, last, bin_cache, 0, bin_sizes);
    }

    //Checking whether the value type is a double, and using a 64-bit integer
    template <class RandomAccessIter>
    inline typename boost::enable_if_c< sizeof(boost::uint64_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type)
      && std::numeric_limits<typename
      std::iterator_traits<RandomAccessIter>::value_type>::is_iec559,
      void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, boost::int64_t, boost::uint64_t>
        (first, last, bin_cache, 0, bin_sizes);
    }

    template <class RandomAccessIter>
    inline typename boost::disable_if_c< (sizeof(boost::uint64_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type)
      || sizeof(boost::uint32_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type))
      && std::numeric_limits<typename
      std::iterator_traits<RandomAccessIter>::value_type>::is_iec559,
      void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last)
    {
      BOOST_STATIC_WARNING(!(sizeof(boost::uint64_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type)
      || sizeof(boost::uint32_t) ==
      sizeof(typename std::iterator_traits<RandomAccessIter>::value_type))
      || !std::numeric_limits<typename
      std::iterator_traits<RandomAccessIter>::value_type>::is_iec559);
      std::sort(first, last);
    }

    //These approaches require the user to do the typecast
    //with rshift but default comparision
    template <class RandomAccessIter, class Div_type, class Right_shift>
    inline typename boost::enable_if_c< sizeof(size_t) >= sizeof(Div_type),
      void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, Div_type, Right_shift, size_t>
        (first, last, bin_cache, 0, bin_sizes, rshift);
    }

    //maximum integer size with rshift but default comparision
    template <class RandomAccessIter, class Div_type, class Right_shift>
    inline typename boost::enable_if_c< sizeof(size_t) < sizeof(Div_type)
      && sizeof(boost::uintmax_t) >= sizeof(Div_type), void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, Div_type, Right_shift, boost::uintmax_t>
        (first, last, bin_cache, 0, bin_sizes, rshift);
    }

    //sizeof(Div_type) doesn't match, so use std::sort
    template <class RandomAccessIter, class Div_type, class Right_shift>
    inline typename boost::disable_if_c< sizeof(boost::uintmax_t) >=
      sizeof(Div_type), void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift)
    {
      BOOST_STATIC_WARNING(sizeof(boost::uintmax_t) >= sizeof(Div_type));
      std::sort(first, last);
    }

    //specialized comparison
    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare>
    inline typename boost::enable_if_c< sizeof(size_t) >= sizeof(Div_type),
      void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift, Compare comp)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, Div_type, Right_shift, Compare,
        size_t>
        (first, last, bin_cache, 0, bin_sizes, rshift, comp);
    }

    //max-sized integer with specialized comparison
    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare>
    inline typename boost::enable_if_c< sizeof(size_t) < sizeof(Div_type)
      && sizeof(boost::uintmax_t) >= sizeof(Div_type), void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift, Compare comp)
    {
      size_t bin_sizes[1 << max_finishing_splits];
      std::vector<RandomAccessIter> bin_cache;
      float_sort_rec<RandomAccessIter, Div_type, Right_shift, Compare,
        boost::uintmax_t>
        (first, last, bin_cache, 0, bin_sizes, rshift, comp);
    }

    //sizeof(Div_type) doesn't match, so use std::sort
    template <class RandomAccessIter, class Div_type, class Right_shift,
              class Compare>
    inline typename boost::disable_if_c< sizeof(boost::uintmax_t) >=
      sizeof(Div_type), void >::type
    float_sort(RandomAccessIter first, RandomAccessIter last, Div_type,
               Right_shift rshift, Compare comp)
    {
      BOOST_STATIC_WARNING(sizeof(boost::uintmax_t) >= sizeof(Div_type));
      std::sort(first, last, comp);
    }
  }
}
}
}

#endif