summaryrefslogtreecommitdiff
path: root/boost/sort/pdqsort/pdqsort.hpp
blob: dc81d870573610baa9c73d2c22fe9ff3436d4203 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// Pattern-defeating quicksort

//              Copyright Orson Peters 2017.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

// See http://www.boost.org/libs/sort/ for library home page.


#ifndef BOOST_SORT_PDQSORT_HPP
#define BOOST_SORT_PDQSORT_HPP

#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <utility>
#include <boost/type_traits.hpp>

#if __cplusplus >= 201103L
    #include <cstdint>
    #define BOOST_PDQSORT_PREFER_MOVE(x) std::move(x)
#else
    #define BOOST_PDQSORT_PREFER_MOVE(x) (x)
#endif

namespace boost {
namespace sort {

namespace pdqsort_detail {
    enum {
        // Partitions below this size are sorted using insertion sort.
        insertion_sort_threshold = 24,

        // Partitions above this size use Tukey's ninther to select the pivot.
        ninther_threshold = 128,

        // When we detect an already sorted partition, attempt an insertion sort that allows this
        // amount of element moves before giving up.
        partial_insertion_sort_limit = 8,

        // Must be multiple of 8 due to loop unrolling, and < 256 to fit in unsigned char.
        block_size = 64,

        // Cacheline size, assumes power of two.
        cacheline_size = 64
    };

    template<class T> struct is_default_compare : boost::false_type { };
    template<class T> struct is_default_compare<std::less<T> > : boost::true_type { };
    template<class T> struct is_default_compare<std::greater<T> > : boost::true_type { };

    // Returns floor(log2(n)), assumes n > 0.
    template<class T>
    inline int log2(T n) {
        int log = 0;
        while (n >>= 1) ++log;
        return log;
    }

    // Sorts [begin, end) using insertion sort with the given comparison function.
    template<class Iter, class Compare>
    inline void insertion_sort(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;
        if (begin == end) return;

        for (Iter cur = begin + 1; cur != end; ++cur) {
            Iter sift = cur;
            Iter sift_1 = cur - 1;

            // Compare first so we can avoid 2 moves for an element already positioned correctly.
            if (comp(*sift, *sift_1)) {
                T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);

                do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
                while (sift != begin && comp(tmp, *--sift_1));

                *sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
            }
        }
    }

    // Sorts [begin, end) using insertion sort with the given comparison function. Assumes
    // *(begin - 1) is an element smaller than or equal to any element in [begin, end).
    template<class Iter, class Compare>
    inline void unguarded_insertion_sort(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;
        if (begin == end) return;

        for (Iter cur = begin + 1; cur != end; ++cur) {
            Iter sift = cur;
            Iter sift_1 = cur - 1;

            // Compare first so we can avoid 2 moves for an element already positioned correctly.
            if (comp(*sift, *sift_1)) {
                T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);

                do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
                while (comp(tmp, *--sift_1));

                *sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
            }
        }
    }

    // Attempts to use insertion sort on [begin, end). Will return false if more than
    // partial_insertion_sort_limit elements were moved, and abort sorting. Otherwise it will
    // successfully sort and return true.
    template<class Iter, class Compare>
    inline bool partial_insertion_sort(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;
        if (begin == end) return true;
        
        int limit = 0;
        for (Iter cur = begin + 1; cur != end; ++cur) {
            if (limit > partial_insertion_sort_limit) return false;

            Iter sift = cur;
            Iter sift_1 = cur - 1;

            // Compare first so we can avoid 2 moves for an element already positioned correctly.
            if (comp(*sift, *sift_1)) {
                T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);

                do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
                while (sift != begin && comp(tmp, *--sift_1));

                *sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
                limit += cur - sift;
            }
        }

        return true;
    }

    template<class Iter, class Compare>
    inline void sort2(Iter a, Iter b, Compare comp) {
        if (comp(*b, *a)) std::iter_swap(a, b);
    }

    // Sorts the elements *a, *b and *c using comparison function comp.
    template<class Iter, class Compare>
    inline void sort3(Iter a, Iter b, Iter c, Compare comp) {
        sort2(a, b, comp);
        sort2(b, c, comp);
        sort2(a, b, comp);
    }

    template<class T>
    inline T* align_cacheline(T* p) {
#if defined(UINTPTR_MAX) && __cplusplus >= 201103L
        std::uintptr_t ip = reinterpret_cast<std::uintptr_t>(p);
#else
        std::size_t ip = reinterpret_cast<std::size_t>(p);
#endif
        ip = (ip + cacheline_size - 1) & -cacheline_size;
        return reinterpret_cast<T*>(ip);
    }

    template<class Iter>
    inline void swap_offsets(Iter first, Iter last,
                             unsigned char* offsets_l, unsigned char* offsets_r,
                             int num, bool use_swaps) {
        typedef typename std::iterator_traits<Iter>::value_type T;
        if (use_swaps) {
            // This case is needed for the descending distribution, where we need
            // to have proper swapping for pdqsort to remain O(n).
            for (int i = 0; i < num; ++i) {
                std::iter_swap(first + offsets_l[i], last - offsets_r[i]);
            }
        } else if (num > 0) {
            Iter l = first + offsets_l[0]; Iter r = last - offsets_r[0];
            T tmp(BOOST_PDQSORT_PREFER_MOVE(*l)); *l = BOOST_PDQSORT_PREFER_MOVE(*r);
            for (int i = 1; i < num; ++i) {
                l = first + offsets_l[i]; *r = BOOST_PDQSORT_PREFER_MOVE(*l);
                r = last - offsets_r[i]; *l = BOOST_PDQSORT_PREFER_MOVE(*r);
            }
            *r = BOOST_PDQSORT_PREFER_MOVE(tmp);
        }
    }

    // Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
    // to the pivot are put in the right-hand partition. Returns the position of the pivot after
    // partitioning and whether the passed sequence already was correctly partitioned. Assumes the
    // pivot is a median of at least 3 elements and that [begin, end) is at least
    // insertion_sort_threshold long. Uses branchless partitioning.
    template<class Iter, class Compare>
    inline std::pair<Iter, bool> partition_right_branchless(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;

        // Move pivot into local for speed.
        T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));
        Iter first = begin;
        Iter last = end;

        // Find the first element greater than or equal than the pivot (the median of 3 guarantees
        // this exists).
        while (comp(*++first, pivot));

        // Find the first element strictly smaller than the pivot. We have to guard this search if
        // there was no element before *first.
        if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
        else                    while (                !comp(*--last, pivot));

        // If the first pair of elements that should be swapped to partition are the same element,
        // the passed in sequence already was correctly partitioned.
        bool already_partitioned = first >= last;
        if (!already_partitioned) {
            std::iter_swap(first, last);
            ++first;
        }

        // The following branchless partitioning is derived from "BlockQuicksort: How Branch
        // Mispredictions don't affect Quicksort" by Stefan Edelkamp and Armin Weiss.
        unsigned char offsets_l_storage[block_size + cacheline_size];
        unsigned char offsets_r_storage[block_size + cacheline_size];
        unsigned char* offsets_l = align_cacheline(offsets_l_storage);
        unsigned char* offsets_r = align_cacheline(offsets_r_storage);
        int num_l, num_r, start_l, start_r;
        num_l = num_r = start_l = start_r = 0;
        
        while (last - first > 2 * block_size) {
            // Fill up offset blocks with elements that are on the wrong side.
            if (num_l == 0) {
                start_l = 0;
                Iter it = first;
                for (unsigned char i = 0; i < block_size;) {
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                    offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
                }
            }
            if (num_r == 0) {
                start_r = 0;
                Iter it = last;
                for (unsigned char i = 0; i < block_size;) {
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                    offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
                }
            }

            // Swap elements and update block sizes and first/last boundaries.
            int num = (std::min)(num_l, num_r);
            swap_offsets(first, last, offsets_l + start_l, offsets_r + start_r,
                         num, num_l == num_r);
            num_l -= num; num_r -= num;
            start_l += num; start_r += num;
            if (num_l == 0) first += block_size;
            if (num_r == 0) last -= block_size;
        }

        int l_size = 0, r_size = 0;
        int unknown_left = (last - first) - ((num_r || num_l) ? block_size : 0);
        if (num_r) {
            // Handle leftover block by assigning the unknown elements to the other block.
            l_size = unknown_left;
            r_size = block_size;
        } else if (num_l) {
            l_size = block_size;
            r_size = unknown_left;
        } else {
            // No leftover block, split the unknown elements in two blocks.
            l_size = unknown_left/2;
            r_size = unknown_left - l_size;
        }

        // Fill offset buffers if needed.
        if (unknown_left && !num_l) {
            start_l = 0;
            Iter it = first;
            for (unsigned char i = 0; i < l_size;) {
                offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
            }
        }
        if (unknown_left && !num_r) {
            start_r = 0;
            Iter it = last;
            for (unsigned char i = 0; i < r_size;) {
                offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
            }
        }

        int num = (std::min)(num_l, num_r);
        swap_offsets(first, last, offsets_l + start_l, offsets_r + start_r, num, num_l == num_r);
        num_l -= num; num_r -= num;
        start_l += num; start_r += num;
        if (num_l == 0) first += l_size;
        if (num_r == 0) last -= r_size;
        
        // We have now fully identified [first, last)'s proper position. Swap the last elements.
        if (num_l) {
            offsets_l += start_l;
            while (num_l--) std::iter_swap(first + offsets_l[num_l], --last);
            first = last;
        }
        if (num_r) {
            offsets_r += start_r;
            while (num_r--) std::iter_swap(last - offsets_r[num_r], first), ++first;
            last = first;
        }

        // Put the pivot in the right place.
        Iter pivot_pos = first - 1;
        *begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
        *pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);

        return std::make_pair(pivot_pos, already_partitioned);
    }

    // Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
    // to the pivot are put in the right-hand partition. Returns the position of the pivot after
    // partitioning and whether the passed sequence already was correctly partitioned. Assumes the
    // pivot is a median of at least 3 elements and that [begin, end) is at least
    // insertion_sort_threshold long.
    template<class Iter, class Compare>
    inline std::pair<Iter, bool> partition_right(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;
        
        // Move pivot into local for speed.
        T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));

        Iter first = begin;
        Iter last = end;

        // Find the first element greater than or equal than the pivot (the median of 3 guarantees
        // this exists).
        while (comp(*++first, pivot));

        // Find the first element strictly smaller than the pivot. We have to guard this search if
        // there was no element before *first.
        if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
        else                    while (                !comp(*--last, pivot));

        // If the first pair of elements that should be swapped to partition are the same element,
        // the passed in sequence already was correctly partitioned.
        bool already_partitioned = first >= last;
        
        // Keep swapping pairs of elements that are on the wrong side of the pivot. Previously
        // swapped pairs guard the searches, which is why the first iteration is special-cased
        // above.
        while (first < last) {
            std::iter_swap(first, last);
            while (comp(*++first, pivot));
            while (!comp(*--last, pivot));
        }

        // Put the pivot in the right place.
        Iter pivot_pos = first - 1;
        *begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
        *pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);

        return std::make_pair(pivot_pos, already_partitioned);
    }

    // Similar function to the one above, except elements equal to the pivot are put to the left of
    // the pivot and it doesn't check or return if the passed sequence already was partitioned.
    // Since this is rarely used (the many equal case), and in that case pdqsort already has O(n)
    // performance, no block quicksort is applied here for simplicity.
    template<class Iter, class Compare>
    inline Iter partition_left(Iter begin, Iter end, Compare comp) {
        typedef typename std::iterator_traits<Iter>::value_type T;

        T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));
        Iter first = begin;
        Iter last = end;
        
        while (comp(pivot, *--last));

        if (last + 1 == end) while (first < last && !comp(pivot, *++first));
        else                 while (                !comp(pivot, *++first));

        while (first < last) {
            std::iter_swap(first, last);
            while (comp(pivot, *--last));
            while (!comp(pivot, *++first));
        }

        Iter pivot_pos = last;
        *begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
        *pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);

        return pivot_pos;
    }


    template<class Iter, class Compare, bool Branchless>
    inline void pdqsort_loop(Iter begin, Iter end, Compare comp, int bad_allowed, bool leftmost = true) {
        typedef typename std::iterator_traits<Iter>::difference_type diff_t;

        // Use a while loop for tail recursion elimination.
        while (true) {
            diff_t size = end - begin;

            // Insertion sort is faster for small arrays.
            if (size < insertion_sort_threshold) {
                if (leftmost) insertion_sort(begin, end, comp);
                else unguarded_insertion_sort(begin, end, comp);
                return;
            }

            // Choose pivot as median of 3 or pseudomedian of 9.
            diff_t s2 = size / 2;
            if (size > ninther_threshold) {
                sort3(begin, begin + s2, end - 1, comp);
                sort3(begin + 1, begin + (s2 - 1), end - 2, comp);
                sort3(begin + 2, begin + (s2 + 1), end - 3, comp);
                sort3(begin + (s2 - 1), begin + s2, begin + (s2 + 1), comp);
                std::iter_swap(begin, begin + s2);
            } else sort3(begin + s2, begin, end - 1, comp);

            // If *(begin - 1) is the end of the right partition of a previous partition operation
            // there is no element in [begin, end) that is smaller than *(begin - 1). Then if our
            // pivot compares equal to *(begin - 1) we change strategy, putting equal elements in
            // the left partition, greater elements in the right partition. We do not have to
            // recurse on the left partition, since it's sorted (all equal).
            if (!leftmost && !comp(*(begin - 1), *begin)) {
                begin = partition_left(begin, end, comp) + 1;
                continue;
            }

            // Partition and get results.
            std::pair<Iter, bool> part_result =
                Branchless ? partition_right_branchless(begin, end, comp)
                           : partition_right(begin, end, comp);
            Iter pivot_pos = part_result.first;
            bool already_partitioned = part_result.second;

            // Check for a highly unbalanced partition.
            diff_t l_size = pivot_pos - begin;
            diff_t r_size = end - (pivot_pos + 1);
            bool highly_unbalanced = l_size < size / 8 || r_size < size / 8;

            // If we got a highly unbalanced partition we shuffle elements to break many patterns.
            if (highly_unbalanced) {
                // If we had too many bad partitions, switch to heapsort to guarantee O(n log n).
                if (--bad_allowed == 0) {
                    std::make_heap(begin, end, comp);
                    std::sort_heap(begin, end, comp);
                    return;
                }

                if (l_size >= insertion_sort_threshold) {
                    std::iter_swap(begin,             begin + l_size / 4);
                    std::iter_swap(pivot_pos - 1, pivot_pos - l_size / 4);

                    if (l_size > ninther_threshold) {
                        std::iter_swap(begin + 1,         begin + (l_size / 4 + 1));
                        std::iter_swap(begin + 2,         begin + (l_size / 4 + 2));
                        std::iter_swap(pivot_pos - 2, pivot_pos - (l_size / 4 + 1));
                        std::iter_swap(pivot_pos - 3, pivot_pos - (l_size / 4 + 2));
                    }
                }
                
                if (r_size >= insertion_sort_threshold) {
                    std::iter_swap(pivot_pos + 1, pivot_pos + (1 + r_size / 4));
                    std::iter_swap(end - 1,                   end - r_size / 4);
                    
                    if (r_size > ninther_threshold) {
                        std::iter_swap(pivot_pos + 2, pivot_pos + (2 + r_size / 4));
                        std::iter_swap(pivot_pos + 3, pivot_pos + (3 + r_size / 4));
                        std::iter_swap(end - 2,             end - (1 + r_size / 4));
                        std::iter_swap(end - 3,             end - (2 + r_size / 4));
                    }
                }
            } else {
                // If we were decently balanced and we tried to sort an already partitioned
                // sequence try to use insertion sort.
                if (already_partitioned && partial_insertion_sort(begin, pivot_pos, comp)
                                        && partial_insertion_sort(pivot_pos + 1, end, comp)) return;
            }
                
            // Sort the left partition first using recursion and do tail recursion elimination for
            // the right-hand partition.
            pdqsort_loop<Iter, Compare, Branchless>(begin, pivot_pos, comp, bad_allowed, leftmost);
            begin = pivot_pos + 1;
            leftmost = false;
        }
    }
}


/*! \brief Generic sort algorithm using random access iterators and a user-defined comparison operator.

    \details @c pdqsort is a fast generic sorting algorithm that is similar in concept to introsort
but runs faster on certain patterns. @c pdqsort is in-place, unstable, deterministic, has a worst
case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>. Even without patterns, the
quicksort has been very efficiently implemented, and @c pdqsort runs 1-5% faster than GCC 6.2's
@c std::sort. If the type being sorted is @c std::is_arithmetic and Compare is @c std::less or
@c std::greater this function will automatically use @c pdqsort_branchless for far greater speedups.

   \param[in] first Iterator pointer to first element.
   \param[in] last Iterator pointing to one beyond the end of data.
   \param[in] comp A binary functor that returns whether the first element passed to it should go before the second in order.
   \pre [@c first, @c last) is a valid range.
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
   \post The elements in the range [@c first, @c last) are sorted in ascending order.

   \return @c void.

   \throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
   (or moves), functors, or any operations on iterators throw.
   \warning Invalid arguments cause undefined behaviour.
   \warning Throwing an exception may cause data loss.
*/
template<class Iter, class Compare>
inline void pdqsort(Iter first, Iter last, Compare comp) {
    if (first == last) return;
    pdqsort_detail::pdqsort_loop<Iter, Compare,
        pdqsort_detail::is_default_compare<typename boost::decay<Compare>::type>::value &&
        boost::is_arithmetic<typename std::iterator_traits<Iter>::value_type>::value>(
        first, last, comp, pdqsort_detail::log2(last - first));
}


/*! \brief Generic sort algorithm using random access iterators and a user-defined comparison operator.

    \details @c pdqsort_branchless is a fast generic sorting algorithm that is similar in concept to
introsort but runs faster on certain patterns. @c pdqsort_branchless is in-place, unstable,
deterministic, has a worst case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>.
Even without patterns, the quicksort has been very efficiently implemented with block based
partitioning, and @c pdqsort_branchless runs 80-90% faster than GCC 6.2's @c std::sort when sorting
small data such as integers. However, this speedup is gained by totally bypassing the branch
predictor, if your comparison operator or iterator contains branches you will most likely see little
gain or a small loss in performance.

   \param[in] first Iterator pointer to first element.
   \param[in] last Iterator pointing to one beyond the end of data.
   \param[in] comp A binary functor that returns whether the first element passed to it should go before the second in order.
   \pre [@c first, @c last) is a valid range.
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
   \post The elements in the range [@c first, @c last) are sorted in ascending order.

   \return @c void.

   \throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
   (or moves), functors, or any operations on iterators throw.
   \warning Invalid arguments cause undefined behaviour.
   \warning Throwing an exception may cause data loss.
*/
template<class Iter, class Compare>
inline void pdqsort_branchless(Iter first, Iter last, Compare comp) {
    if (first == last) return;
    pdqsort_detail::pdqsort_loop<Iter, Compare, true>(
        first, last, comp, pdqsort_detail::log2(last - first));
}


/*! \brief Generic sort algorithm using random access iterators.

    \details @c pdqsort is a fast generic sorting algorithm that is similar in concept to introsort
but runs faster on certain patterns. @c pdqsort is in-place, unstable, deterministic, has a worst
case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>. Even without patterns, the
quicksort partitioning has been very efficiently implemented, and @c pdqsort runs 80-90% faster than
GCC 6.2's @c std::sort. If the type being sorted is @c std::is_arithmetic this function will
automatically use @c pdqsort_branchless.

   \param[in] first Iterator pointer to first element.
   \param[in] last Iterator pointing to one beyond the end of data.
   \pre [@c first, @c last) is a valid range.
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
   \post The elements in the range [@c first, @c last) are sorted in ascending order.

   \return @c void.

   \throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
   (or moves), functors, or any operations on iterators throw.
   \warning Invalid arguments cause undefined behaviour.
   \warning Throwing an exception may cause data loss.
*/
template<class Iter>
inline void pdqsort(Iter first, Iter last) {
    typedef typename std::iterator_traits<Iter>::value_type T;
    pdqsort(first, last, std::less<T>());
}


/*! \brief Generic sort algorithm using random access iterators.

    \details @c pdqsort_branchless is a fast generic sorting algorithm that is similar in concept to
introsort but runs faster on certain patterns. @c pdqsort_branchless is in-place, unstable,
deterministic, has a worst case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>.
Even without patterns, the quicksort has been very efficiently implemented with block based
partitioning, and @c pdqsort_branchless runs 80-90% faster than GCC 6.2's @c std::sort when sorting
small data such as integers. However, this speedup is gained by totally bypassing the branch
predictor, if your comparison operator or iterator contains branches you will most likely see little
gain or a small loss in performance.

   \param[in] first Iterator pointer to first element.
   \param[in] last Iterator pointing to one beyond the end of data.
   \pre [@c first, @c last) is a valid range.
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
   \pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
   \post The elements in the range [@c first, @c last) are sorted in ascending order.

   \return @c void.

   \throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
   (or moves), functors, or any operations on iterators throw.
   \warning Invalid arguments cause undefined behaviour.
   \warning Throwing an exception may cause data loss.
*/
template<class Iter>
inline void pdqsort_branchless(Iter first, Iter last) {
    typedef typename std::iterator_traits<Iter>::value_type T;
    pdqsort_branchless(first, last, std::less<T>());
}

}
}

#undef BOOST_PDQSORT_PREFER_MOVE

#endif