summaryrefslogtreecommitdiff
path: root/boost/random/normal_distribution.hpp
blob: 9515fb305a2edb4c67c143a280a9d683827b17b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/* boost random/normal_distribution.hpp header file
 *
 * Copyright Jens Maurer 2000-2001
 * Copyright Steven Watanabe 2010-2011
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: normal_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
 *
 * Revision history
 *  2001-02-18  moved to individual header files
 */

#ifndef BOOST_RANDOM_NORMAL_DISTRIBUTION_HPP
#define BOOST_RANDOM_NORMAL_DISTRIBUTION_HPP

#include <boost/config/no_tr1/cmath.hpp>
#include <istream>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/uniform_01.hpp>

namespace boost {
namespace random {

// deterministic Box-Muller method, uses trigonometric functions

/**
 * Instantiations of class template normal_distribution model a
 * \random_distribution. Such a distribution produces random numbers
 * @c x distributed with probability density function
 * \f$\displaystyle p(x) =
 *   \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
 * \f$,
 * where mean and sigma are the parameters of the distribution.
 */
template<class RealType = double>
class normal_distribution
{
public:
    typedef RealType input_type;
    typedef RealType result_type;

    class param_type {
    public:
        typedef normal_distribution distribution_type;

        /**
         * Constructs a @c param_type with a given mean and
         * standard deviation.
         *
         * Requires: sigma >= 0
         */
        explicit param_type(RealType mean_arg = RealType(0.0),
                            RealType sigma_arg = RealType(1.0))
          : _mean(mean_arg),
            _sigma(sigma_arg)
        {}

        /** Returns the mean of the distribution. */
        RealType mean() const { return _mean; }

        /** Returns the standand deviation of the distribution. */
        RealType sigma() const { return _sigma; }

        /** Writes a @c param_type to a @c std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        { os << parm._mean << " " << parm._sigma ; return os; }

        /** Reads a @c param_type from a @c std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        { is >> parm._mean >> std::ws >> parm._sigma; return is; }

        /** Returns true if the two sets of parameters are the same. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        { return lhs._mean == rhs._mean && lhs._sigma == rhs._sigma; }
        
        /** Returns true if the two sets of parameters are the different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)

    private:
        RealType _mean;
        RealType _sigma;
    };

    /**
     * Constructs a @c normal_distribution object. @c mean and @c sigma are
     * the parameters for the distribution.
     *
     * Requires: sigma >= 0
     */
    explicit normal_distribution(const RealType& mean_arg = RealType(0.0),
                                 const RealType& sigma_arg = RealType(1.0))
      : _mean(mean_arg), _sigma(sigma_arg),
        _r1(0), _r2(0), _cached_rho(0), _valid(false)
    {
        BOOST_ASSERT(_sigma >= RealType(0));
    }

    /**
     * Constructs a @c normal_distribution object from its parameters.
     */
    explicit normal_distribution(const param_type& parm)
      : _mean(parm.mean()), _sigma(parm.sigma()),
        _r1(0), _r2(0), _cached_rho(0), _valid(false)
    {}

    /**  Returns the mean of the distribution. */
    RealType mean() const { return _mean; }
    /** Returns the standard deviation of the distribution. */
    RealType sigma() const { return _sigma; }

    /** Returns the smallest value that the distribution can produce. */
    RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return -std::numeric_limits<RealType>::infinity(); }
    /** Returns the largest value that the distribution can produce. */
    RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return std::numeric_limits<RealType>::infinity(); }

    /** Returns the parameters of the distribution. */
    param_type param() const { return param_type(_mean, _sigma); }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm)
    {
        _mean = parm.mean();
        _sigma = parm.sigma();
        _valid = false;
    }

    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { _valid = false; }

    /**  Returns a normal variate. */
    template<class Engine>
    result_type operator()(Engine& eng)
    {
        using std::sqrt;
        using std::log;
        using std::sin;
        using std::cos;

        if(!_valid) {
            _r1 = boost::uniform_01<RealType>()(eng);
            _r2 = boost::uniform_01<RealType>()(eng);
            _cached_rho = sqrt(-result_type(2) * log(result_type(1)-_r2));
            _valid = true;
        } else {
            _valid = false;
        }
        // Can we have a boost::mathconst please?
        const result_type pi = result_type(3.14159265358979323846);

        return _cached_rho * (_valid ?
                              cos(result_type(2)*pi*_r1) :
                              sin(result_type(2)*pi*_r1))
            * _sigma + _mean;
    }

    /** Returns a normal variate with parameters specified by @c param. */
    template<class URNG>
    result_type operator()(URNG& urng, const param_type& parm)
    {
        return normal_distribution(parm)(urng);
    }

    /** Writes a @c normal_distribution to a @c std::ostream. */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, normal_distribution, nd)
    {
        os << nd._mean << " " << nd._sigma << " "
           << nd._valid << " " << nd._cached_rho << " " << nd._r1;
        return os;
    }

    /** Reads a @c normal_distribution from a @c std::istream. */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, normal_distribution, nd)
    {
        is >> std::ws >> nd._mean >> std::ws >> nd._sigma
           >> std::ws >> nd._valid >> std::ws >> nd._cached_rho
           >> std::ws >> nd._r1;
        return is;
    }

    /**
     * Returns true if the two instances of @c normal_distribution will
     * return identical sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(normal_distribution, lhs, rhs)
    {
        return lhs._mean == rhs._mean && lhs._sigma == rhs._sigma
            && lhs._valid == rhs._valid
            && (!lhs._valid || (lhs._r1 == rhs._r1 && lhs._r2 == rhs._r2));
    }

    /**
     * Returns true if the two instances of @c normal_distribution will
     * return different sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(normal_distribution)

private:
    RealType _mean, _sigma;
    RealType _r1, _r2, _cached_rho;
    bool _valid;

};

} // namespace random

using random::normal_distribution;

} // namespace boost

#endif // BOOST_RANDOM_NORMAL_DISTRIBUTION_HPP