summaryrefslogtreecommitdiff
path: root/boost/python/converter/object_manager.hpp
blob: 84e44d475bf08476020951ad9c4a8fa3d47823ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright David Abrahams 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef OBJECT_MANAGER_DWA2002614_HPP
# define OBJECT_MANAGER_DWA2002614_HPP

# include <boost/python/handle.hpp>
# include <boost/python/cast.hpp>
# include <boost/python/converter/pyobject_traits.hpp>
# include <boost/type_traits/object_traits.hpp>
# include <boost/mpl/if.hpp>
# include <boost/python/detail/indirect_traits.hpp>
# include <boost/mpl/bool.hpp>

// Facilities for dealing with types which always manage Python
// objects. Some examples are object, list, str, et. al. Different
// to_python/from_python conversion rules apply here because in
// contrast to other types which are typically embedded inside a
// Python object, these are wrapped around a Python object. For most
// object managers T, a C++ non-const T reference argument does not
// imply the existence of a T lvalue embedded in the corresponding
// Python argument, since mutating member functions on T actually only
// modify the held Python object.
//
// handle<T> is an object manager, though strictly speaking it should
// not be. In other words, even though mutating member functions of
// hanlde<T> actually modify the handle<T> and not the T object,
// handle<T>& arguments of wrapped functions will bind to "rvalues"
// wrapping the actual Python argument, just as with other object
// manager classes. Making an exception for handle<T> is simply not
// worth the trouble.
//
// borrowed<T> cv* is an object manager so that we can use the general
// to_python mechanisms to convert raw Python object pointers to
// python, without the usual semantic problems of using raw pointers.


// Object Manager Concept requirements:
//
//    T is an Object Manager
//    p is a PyObject*
//    x is a T
//
//    * object_manager_traits<T>::is_specialized == true
//
//    * T(detail::borrowed_reference(p))
//        Manages p without checking its type
//
//    * get_managed_object(x, boost::python::tag)
//        Convertible to PyObject*
//
// Additional requirements if T can be converted from_python:
//
//    * T(object_manager_traits<T>::adopt(p))
//        steals a reference to p, or throws a TypeError exception if
//        p doesn't have an appropriate type. May assume p is non-null
//
//    * X::check(p)
//        convertible to bool. True iff T(X::construct(p)) will not
//        throw.

// Forward declarations
//
namespace boost { namespace python
{
  namespace api
  {
    class object; 
  }
}}

namespace boost { namespace python { namespace converter { 


// Specializations for handle<T>
template <class T>
struct handle_object_manager_traits
    : pyobject_traits<typename T::element_type>
{
 private:
  typedef pyobject_traits<typename T::element_type> base;
  
 public:
  BOOST_STATIC_CONSTANT(bool, is_specialized = true);

  // Initialize with a null_ok pointer for efficiency, bypassing the
  // null check since the source is always non-null.
  static null_ok<typename T::element_type>* adopt(PyObject* p)
  {
      return python::allow_null(base::checked_downcast(p));
  }
};

template <class T>
struct default_object_manager_traits
{
    BOOST_STATIC_CONSTANT(
        bool, is_specialized = python::detail::is_borrowed_ptr<T>::value
        );
};

template <class T>
struct object_manager_traits
    : mpl::if_c<
         is_handle<T>::value
       , handle_object_manager_traits<T>
       , default_object_manager_traits<T>
    >::type
{
};

//
// Traits for detecting whether a type is an object manager or a
// (cv-qualified) reference to an object manager.
// 

template <class T>
struct is_object_manager
    : mpl::bool_<object_manager_traits<T>::is_specialized>
{
};

# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
struct is_reference_to_object_manager
    : mpl::false_
{
};

template <class T>
struct is_reference_to_object_manager<T&>
    : is_object_manager<T>
{
};

template <class T>
struct is_reference_to_object_manager<T const&>
    : is_object_manager<T>
{
};

template <class T>
struct is_reference_to_object_manager<T volatile&>
    : is_object_manager<T>
{
};

template <class T>
struct is_reference_to_object_manager<T const volatile&>
    : is_object_manager<T>
{
};
# else

namespace detail
{
  typedef char (&yes_reference_to_object_manager)[1];
  typedef char (&no_reference_to_object_manager)[2];

  // A number of nastinesses go on here in order to work around MSVC6
  // bugs.
  template <class T>
  struct is_object_manager_help
  {
      typedef typename mpl::if_<
          is_object_manager<T>
          , yes_reference_to_object_manager
          , no_reference_to_object_manager
          >::type type;

      // If we just use the type instead of the result of calling this
      // function, VC6 will ICE.
      static type call();
  };

  // A set of overloads for each cv-qualification. The same argument
  // is passed twice: the first one is used to unwind the cv*, and the
  // second one is used to avoid relying on partial ordering for
  // overload resolution.
  template <class U>
  typename is_object_manager_help<U>
  is_object_manager_helper(U*, void*);
  
  template <class U>
  typename is_object_manager_help<U>
  is_object_manager_helper(U const*, void const*);
  
  template <class U>
  typename is_object_manager_help<U>
  is_object_manager_helper(U volatile*, void volatile*);
  
  template <class U>
  typename is_object_manager_help<U>
  is_object_manager_helper(U const volatile*, void const volatile*);
  
  template <class T>
  struct is_reference_to_object_manager_nonref
      : mpl::false_
  {
  };

  template <class T>
  struct is_reference_to_object_manager_ref
  {
      static T sample_object;
      BOOST_STATIC_CONSTANT(
        bool, value
        = (sizeof(is_object_manager_helper(&sample_object, &sample_object).call())
            == sizeof(detail::yes_reference_to_object_manager)
          )
        );
      typedef mpl::bool_<value> type;
  };
}

template <class T>
struct is_reference_to_object_manager
    : mpl::if_<
        is_reference<T>
        , detail::is_reference_to_object_manager_ref<T>
        , detail::is_reference_to_object_manager_nonref<T>
    >::type
{
};
# endif 

}}} // namespace boost::python::converter

#endif // OBJECT_MANAGER_DWA2002614_HPP