summaryrefslogtreecommitdiff
path: root/boost/polygon/polygon_90_set_data.hpp
blob: 305aa3e11339b5e5fbf1de0da01f9821036a3d59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/*
  Copyright 2008 Intel Corporation

  Use, modification and distribution are subject to the Boost Software License,
  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#include "isotropy.hpp"
#include "point_concept.hpp"
#include "transform.hpp"
#include "interval_concept.hpp"
#include "rectangle_concept.hpp"
#include "segment_concept.hpp"
#include "detail/iterator_points_to_compact.hpp"
#include "detail/iterator_compact_to_points.hpp"
#include "polygon_traits.hpp"

//manhattan boolean algorithms
#include "detail/boolean_op.hpp"
#include "detail/polygon_formation.hpp"
#include "detail/rectangle_formation.hpp"
#include "detail/max_cover.hpp"
#include "detail/property_merge.hpp"
#include "detail/polygon_90_touch.hpp"
#include "detail/iterator_geometry_to_set.hpp"

namespace boost { namespace polygon{
  template <typename ltype, typename rtype, typename op_type>
  class polygon_90_set_view;

  template <typename T>
  class polygon_90_set_data {
  public:
    typedef T coordinate_type;
    typedef std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > > value_type;
    typedef typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::const_iterator iterator_type;
    typedef polygon_90_set_data operator_arg_type;

    // default constructor
    inline polygon_90_set_data() : orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {}

    // constructor
    inline polygon_90_set_data(orientation_2d orient) : orient_(orient), data_(), dirty_(false), unsorted_(false) {}

    // constructor from an iterator pair over vertex data
    template <typename iT>
    inline polygon_90_set_data(orientation_2d orient, iT input_begin, iT input_end) :
      orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {
      dirty_ = true;
      unsorted_ = true;
      for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
    }

    // copy constructor
    inline polygon_90_set_data(const polygon_90_set_data& that) :
      orient_(that.orient_), data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_) {}

    template <typename ltype, typename rtype, typename op_type>
    inline polygon_90_set_data(const polygon_90_set_view<ltype, rtype, op_type>& that);

    // copy with orientation change constructor
    inline polygon_90_set_data(orientation_2d orient, const polygon_90_set_data& that) :
      orient_(orient), data_(), dirty_(false), unsorted_(false) {
      insert(that, false, that.orient_);
    }

    // destructor
    inline ~polygon_90_set_data() {}

    // assignement operator
    inline polygon_90_set_data& operator=(const polygon_90_set_data& that) {
      if(this == &that) return *this;
      orient_ = that.orient_;
      data_ = that.data_;
      dirty_ = that.dirty_;
      unsorted_ = that.unsorted_;
      return *this;
    }

    template <typename ltype, typename rtype, typename op_type>
    inline polygon_90_set_data& operator=(const polygon_90_set_view<ltype, rtype, op_type>& that);

    template <typename geometry_object>
    inline polygon_90_set_data& operator=(const geometry_object& geometry) {
      data_.clear();
      insert(geometry);
      return *this;
    }

    // insert iterator range
    inline void insert(iterator_type input_begin, iterator_type input_end, orientation_2d orient = HORIZONTAL) {
      if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
      dirty_ = true;
      unsorted_ = true;
      if(orient == orient_)
        data_.insert(data_.end(), input_begin, input_end);
      else {
        for( ; input_begin != input_end; ++input_begin) {
          insert(*input_begin, false, orient);
        }
      }
    }

    // insert iterator range
    template <typename iT>
    inline void insert(iT input_begin, iT input_end, orientation_2d orient = HORIZONTAL) {
      if(input_begin == input_end) return;
      dirty_ = true;
      unsorted_ = true;
      for( ; input_begin != input_end; ++input_begin) {
        insert(*input_begin, false, orient);
      }
    }

    inline void insert(const polygon_90_set_data& polygon_set) {
      insert(polygon_set.begin(), polygon_set.end(), polygon_set.orient());
    }

    inline void insert(const std::pair<std::pair<point_data<coordinate_type>, point_data<coordinate_type> >, int>& edge, bool is_hole = false,
                       orientation_2d orient = HORIZONTAL) {
      std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
      vertex.first = edge.first.first.x();
      vertex.second.first = edge.first.first.y();
      vertex.second.second = edge.second * (is_hole ? -1 : 1);
      insert(vertex, false, VERTICAL);
      vertex.first = edge.first.second.x();
      vertex.second.first = edge.first.second.y();
      vertex.second.second *= -1;
      insert(vertex, false, VERTICAL);
    }

    template <typename geometry_type>
    inline void insert(const geometry_type& geometry_object, bool is_hole = false, orientation_2d = HORIZONTAL) {
      iterator_geometry_to_set<typename geometry_concept<geometry_type>::type, geometry_type>
        begin_input(geometry_object, LOW, orient_, is_hole), end_input(geometry_object, HIGH, orient_, is_hole);
      insert(begin_input, end_input, orient_);
    }

    inline void insert(const std::pair<coordinate_type, std::pair<coordinate_type, int> >& vertex, bool is_hole = false,
                       orientation_2d orient = HORIZONTAL) {
      data_.push_back(vertex);
      if(orient != orient_) std::swap(data_.back().first, data_.back().second.first);
      if(is_hole) data_.back().second.second *= -1;
      dirty_ = true;
      unsorted_ = true;
    }

    inline void insert(coordinate_type major_coordinate, const std::pair<interval_data<coordinate_type>, int>& edge) {
      std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
      vertex.first = major_coordinate;
      vertex.second.first = edge.first.get(LOW);
      vertex.second.second = edge.second;
      insert(vertex, false, orient_);
      vertex.second.first = edge.first.get(HIGH);
      vertex.second.second *= -1;
      insert(vertex, false, orient_);
    }

    template <typename output_container>
    inline void get(output_container& output) const {
      get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
    }

    template <typename output_container>
    inline void get(output_container& output, size_t vthreshold) const {
      get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type(), vthreshold);
    }


    template <typename output_container>
    inline void get_polygons(output_container& output) const {
      get_dispatch(output, polygon_90_concept());
    }

    template <typename output_container>
    inline void get_rectangles(output_container& output) const {
      clean();
      form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
    }

    template <typename output_container>
    inline void get_rectangles(output_container& output, orientation_2d slicing_orientation) const {
      if(slicing_orientation == orient_) {
        get_rectangles(output);
      } else {
        polygon_90_set_data<coordinate_type> ps(*this);
        ps.transform(axis_transformation(axis_transformation::SWAP_XY));
        output_container result;
        ps.get_rectangles(result);
        for(typename output_container::iterator itr = result.begin(); itr != result.end(); ++itr) {
          ::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
        }
        output.insert(output.end(), result.begin(), result.end());
      }
    }

    // equivalence operator
    inline bool operator==(const polygon_90_set_data& p) const {
      if(orient_ == p.orient()) {
        clean();
        p.clean();
        return data_ == p.data_;
      } else {
        return false;
      }
    }

    // inequivalence operator
    inline bool operator!=(const polygon_90_set_data& p) const {
      return !((*this) == p);
    }

    // get iterator to begin vertex data
    inline iterator_type begin() const {
      return data_.begin();
    }

    // get iterator to end vertex data
    inline iterator_type end() const {
      return data_.end();
    }

    const value_type& value() const {
      return data_;
    }

    // clear the contents of the polygon_90_set_data
    inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }

    // find out if Polygon set is empty
    inline bool empty() const { clean(); return data_.empty(); }

    // get the Polygon set size in vertices
    inline std::size_t size() const { clean(); return data_.size(); }

    // get the current Polygon set capacity in vertices
    inline std::size_t capacity() const { return data_.capacity(); }

    // reserve size of polygon set in vertices
    inline void reserve(std::size_t size) { return data_.reserve(size); }

    // find out if Polygon set is sorted
    inline bool sorted() const { return !unsorted_; }

    // find out if Polygon set is clean
    inline bool dirty() const { return dirty_; }

    // get the scanline orientation of the polygon set
    inline orientation_2d orient() const { return orient_; }

    // Start BM
    // The problem: If we have two polygon sets with two different scanline orientations:
    // I tried changing the orientation of one to coincide with other (If not, resulting boolean operation
    // produces spurious results).
    // First I tried copying polygon data from one of the sets into another set with corrected orientation
    // using one of the copy constructor that takes in orientation (see somewhere above in this file) --> copy constructor throws error
    // Then I tried another approach:(see below). This approach also fails to produce the desired results when test case is run.
    // Here is the part that beats me: If I comment out the whole section, I can do all the operations (^=, -=, &= )these commented out
    // operations perform. So then why do we need them?. Hence, I commented out this whole section.
    // End BM
    // polygon_90_set_data<coordinate_type>& operator-=(const polygon_90_set_data& that) {
    //   sort();
    //   that.sort();
    //   value_type data;
    //   std::swap(data, data_);
    //   applyBooleanBinaryOp(data.begin(), data.end(),
    //                        that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryNot>());
    //   return *this;
    // }
    // polygon_90_set_data<coordinate_type>& operator^=(const polygon_90_set_data& that) {
    //   sort();
    //   that.sort();
    //   value_type data;
    //   std::swap(data, data_);
    //   applyBooleanBinaryOp(data.begin(), data.end(),
    //                        that.begin(), that.end(),  boolean_op::BinaryCount<boolean_op::BinaryXor>());
    //   return *this;
    // }
    // polygon_90_set_data<coordinate_type>& operator&=(const polygon_90_set_data& that) {
    //   sort();
    //   that.sort();
    //   value_type data;
    //   std::swap(data, data_);
    //   applyBooleanBinaryOp(data.begin(), data.end(),
    //                        that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryAnd>());
    //   return *this;
    // }
    // polygon_90_set_data<coordinate_type>& operator|=(const polygon_90_set_data& that) {
    //   insert(that);
    //   return *this;
    // }

    void clean() const {
      sort();
      if(dirty_) {
        boolean_op::default_arg_workaround<int>::applyBooleanOr(data_);
        dirty_ = false;
      }
    }

    void sort() const{
      if(unsorted_) {
        polygon_sort(data_.begin(), data_.end());
        unsorted_ = false;
      }
    }

    template <typename input_iterator_type>
    void set(input_iterator_type input_begin, input_iterator_type input_end, orientation_2d orient) {
      data_.clear();
      reserve(std::distance(input_begin, input_end));
      data_.insert(data_.end(), input_begin, input_end);
      orient_ = orient;
      dirty_ = true;
      unsorted_ = true;
    }

    void set(const value_type& value, orientation_2d orient) {
      data_ = value;
      orient_ = orient;
      dirty_ = true;
      unsorted_ = true;
    }

    //extents
    template <typename rectangle_type>
    bool
    extents(rectangle_type& extents_rectangle) const {
      clean();
      if(data_.empty()) return false;
      if(orient_ == HORIZONTAL)
        set_points(extents_rectangle, point_data<coordinate_type>(data_[0].second.first, data_[0].first),
                   point_data<coordinate_type>(data_[data_.size() - 1].second.first, data_[data_.size() - 1].first));
      else
        set_points(extents_rectangle, point_data<coordinate_type>(data_[0].first, data_[0].second.first),
                   point_data<coordinate_type>(data_[data_.size() - 1].first, data_[data_.size() - 1].second.first));
      for(std::size_t i = 1; i < data_.size() - 1; ++i) {
        if(orient_ == HORIZONTAL)
          encompass(extents_rectangle, point_data<coordinate_type>(data_[i].second.first, data_[i].first));
        else
          encompass(extents_rectangle, point_data<coordinate_type>(data_[i].first, data_[i].second.first));
      }
      return true;
    }

    polygon_90_set_data&
    bloat2(typename coordinate_traits<coordinate_type>::unsigned_area_type west_bloating,
          typename coordinate_traits<coordinate_type>::unsigned_area_type east_bloating,
          typename coordinate_traits<coordinate_type>::unsigned_area_type south_bloating,
          typename coordinate_traits<coordinate_type>::unsigned_area_type north_bloating) {
      std::vector<rectangle_data<coordinate_type> > rects;
      clean();
      rects.reserve(data_.size() / 2);
      get(rects);
      rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)west_bloating),
                                                                                          (coordinate_type)east_bloating),
                                                           interval_data<coordinate_type>(-((coordinate_type)south_bloating),
                                                                                          (coordinate_type)north_bloating));
      for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
          itr != rects.end(); ++itr) {
        convolve(*itr, convolutionRectangle);
      }
      clear();
      insert(rects.begin(), rects.end());
      return *this;
    }

    static void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>&  prev_pt,
                          const point_data<coordinate_type>&  current_pt,  const point_data<coordinate_type>&  next_pt,
                          coordinate_type west_bloating,
                          coordinate_type east_bloating,
                          coordinate_type south_bloating,
                          coordinate_type north_bloating) {
      bool pxl = prev_pt.x() < current_pt.x();
      bool pyl = prev_pt.y() < current_pt.y();
      bool nxl = next_pt.x() < current_pt.x();
      bool nyl = next_pt.y() < current_pt.y();
      bool pxg = prev_pt.x() > current_pt.x();
      bool pyg = prev_pt.y() > current_pt.y();
      bool nxg = next_pt.x() > current_pt.x();
      bool nyg = next_pt.y() > current_pt.y();
      //two of the four if statements will execute
      if(pxl)
        pt.y(current_pt.y() - south_bloating);
      if(pxg)
        pt.y(current_pt.y() + north_bloating);
      if(nxl)
        pt.y(current_pt.y() + north_bloating);
      if(nxg)
        pt.y(current_pt.y() - south_bloating);
      if(pyl)
        pt.x(current_pt.x() + east_bloating);
      if(pyg)
        pt.x(current_pt.x() - west_bloating);
      if(nyl)
        pt.x(current_pt.x() - west_bloating);
      if(nyg)
        pt.x(current_pt.x() + east_bloating);
    }
    static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly,
                               coordinate_type west_bloating,
                               coordinate_type east_bloating,
                               coordinate_type south_bloating,
                               coordinate_type north_bloating) {
      point_data<coordinate_type> first_pt = poly[0];
      point_data<coordinate_type> second_pt = poly[1];
      point_data<coordinate_type> prev_pt = poly[0];
      point_data<coordinate_type> current_pt = poly[1];
      for(std::size_t i = 2; i < poly.size(); ++i) {
        point_data<coordinate_type> next_pt = poly[i];
        modify_pt(poly[i-1], prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
        prev_pt = current_pt;
        current_pt = next_pt;
      }
      point_data<coordinate_type> next_pt = first_pt;
      modify_pt(poly.back(), prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
      prev_pt = current_pt;
      current_pt = next_pt;
      next_pt = second_pt;
      modify_pt(poly[0], prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
      remove_colinear_pts(poly);
    }
    static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly,
                                 coordinate_type west_shrinking,
                                 coordinate_type east_shrinking,
                                 coordinate_type south_shrinking,
                                 coordinate_type north_shrinking) {
      rectangle_data<coordinate_type> extents_rectangle;
      set_points(extents_rectangle, poly[0], poly[0]);
      point_data<coordinate_type> first_pt = poly[0];
      point_data<coordinate_type> second_pt = poly[1];
      point_data<coordinate_type> prev_pt = poly[0];
      point_data<coordinate_type> current_pt = poly[1];
      encompass(extents_rectangle, current_pt);
      for(std::size_t i = 2; i < poly.size(); ++i) {
        point_data<coordinate_type> next_pt = poly[i];
        encompass(extents_rectangle, next_pt);
        modify_pt(poly[i-1], prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
        prev_pt = current_pt;
        current_pt = next_pt;
      }
      if(delta(extents_rectangle, HORIZONTAL) < std::abs(west_shrinking + east_shrinking))
        return false;
      if(delta(extents_rectangle, VERTICAL) < std::abs(north_shrinking + south_shrinking))
        return false;
      point_data<coordinate_type> next_pt = first_pt;
      modify_pt(poly.back(), prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
      prev_pt = current_pt;
      current_pt = next_pt;
      next_pt = second_pt;
      modify_pt(poly[0], prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
      return remove_colinear_pts(poly);
    }

    static bool remove_colinear_pts(std::vector<point_data<coordinate_type> >& poly) {
      bool found_colinear = true;
      while(found_colinear && poly.size() >= 4) {
        found_colinear = false;
        typename std::vector<point_data<coordinate_type> >::iterator itr = poly.begin();
        itr += poly.size() - 1; //get last element position
        typename std::vector<point_data<coordinate_type> >::iterator itr2 = poly.begin();
        typename std::vector<point_data<coordinate_type> >::iterator itr3 = itr2;
        ++itr3;
        std::size_t count = 0;
        for( ; itr3 < poly.end(); ++itr3) {
          if(((*itr).x() == (*itr2).x() && (*itr).x() == (*itr3).x()) ||
             ((*itr).y() == (*itr2).y() && (*itr).y() == (*itr3).y()) ) {
            ++count;
            found_colinear = true;
          } else {
            itr = itr2;
            ++itr2;
          }
          *itr2 = *itr3;
        }
        itr3 = poly.begin();
        if(((*itr).x() == (*itr2).x() && (*itr).x() == (*itr3).x()) ||
           ((*itr).y() == (*itr2).y() && (*itr).y() == (*itr3).y()) ) {
          ++count;
          found_colinear = true;
        }
        poly.erase(poly.end() - count, poly.end());
      }
      return poly.size() >= 4;
    }

    polygon_90_set_data&
    bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type west_bloating,
           typename coordinate_traits<coordinate_type>::unsigned_area_type east_bloating,
           typename coordinate_traits<coordinate_type>::unsigned_area_type south_bloating,
           typename coordinate_traits<coordinate_type>::unsigned_area_type north_bloating) {
      std::list<polygon_45_with_holes_data<coordinate_type> > polys;
      get(polys);
      clear();
      for(typename std::list<polygon_45_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
          itr != polys.end(); ++itr) {
        //polygon_90_set_data<coordinate_type> psref;
        //psref.insert(view_as<polygon_90_concept>((*itr).self_));
        //rectangle_data<coordinate_type> prerect;
        //psref.extents(prerect);
        resize_poly_up((*itr).self_.coords_, (coordinate_type)west_bloating, (coordinate_type)east_bloating,
                       (coordinate_type)south_bloating, (coordinate_type)north_bloating);
        iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
          begin_input(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE),
          end_input(view_as<polygon_90_concept>((*itr).self_), HIGH, orient_, false, true, COUNTERCLOCKWISE);
        insert(begin_input, end_input, orient_);
        //polygon_90_set_data<coordinate_type> pstest;
        //pstest.insert(view_as<polygon_90_concept>((*itr).self_));
        //psref.bloat2(west_bloating, east_bloating, south_bloating, north_bloating);
        //if(!equivalence(psref, pstest)) {
        // std::cout << "test failed\n";
        //}
        for(typename std::list<polygon_45_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
            itrh != (*itr).holes_.end(); ++itrh) {
          //rectangle_data<coordinate_type> rect;
          //psref.extents(rect);
          //polygon_90_set_data<coordinate_type> psrefhole;
          //psrefhole.insert(prerect);
          //psrefhole.insert(view_as<polygon_90_concept>(*itrh), true);
          //polygon_45_data<coordinate_type> testpoly(*itrh);
          if(resize_poly_down((*itrh).coords_,(coordinate_type)west_bloating, (coordinate_type)east_bloating,
                              (coordinate_type)south_bloating, (coordinate_type)north_bloating)) {
            iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
              begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
              end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
            insert(begin_input2, end_input2, orient_);
            //polygon_90_set_data<coordinate_type> pstesthole;
            //pstesthole.insert(rect);
            //iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
            // begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true);
            //pstesthole.insert(begin_input2, end_input, orient_);
            //psrefhole.bloat2(west_bloating, east_bloating, south_bloating, north_bloating);
            //if(!equivalence(psrefhole, pstesthole)) {
            // std::cout << (winding(testpoly) == CLOCKWISE) << std::endl;
            // std::cout << (winding(*itrh) == CLOCKWISE) << std::endl;
            // polygon_90_set_data<coordinate_type> c(psrefhole);
            // c.clean();
            // polygon_90_set_data<coordinate_type> a(pstesthole);
            // polygon_90_set_data<coordinate_type> b(pstesthole);
            // a.sort();
            // b.clean();
            // std::cout << "test hole failed\n";
            // //std::cout << testpoly << std::endl;
            //}
          }
        }
      }
      return *this;
    }

    polygon_90_set_data&
    shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type west_shrinking,
           typename coordinate_traits<coordinate_type>::unsigned_area_type east_shrinking,
           typename coordinate_traits<coordinate_type>::unsigned_area_type south_shrinking,
           typename coordinate_traits<coordinate_type>::unsigned_area_type north_shrinking) {
      std::list<polygon_45_with_holes_data<coordinate_type> > polys;
      get(polys);
      clear();
      for(typename std::list<polygon_45_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
          itr != polys.end(); ++itr) {
        //polygon_90_set_data<coordinate_type> psref;
        //psref.insert(view_as<polygon_90_concept>((*itr).self_));
        //rectangle_data<coordinate_type> prerect;
        //psref.extents(prerect);
        //polygon_45_data<coordinate_type> testpoly((*itr).self_);
        if(resize_poly_down((*itr).self_.coords_, -(coordinate_type)west_shrinking, -(coordinate_type)east_shrinking,
                            -(coordinate_type)south_shrinking, -(coordinate_type)north_shrinking)) {
          iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
            begin_input(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE),
            end_input(view_as<polygon_90_concept>((*itr).self_), HIGH, orient_, false, true, COUNTERCLOCKWISE);
          insert(begin_input, end_input, orient_);
          //iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
          //  begin_input2(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE);
          //polygon_90_set_data<coordinate_type> pstest;
          //pstest.insert(begin_input2, end_input, orient_);
          //psref.shrink2(west_shrinking, east_shrinking, south_shrinking, north_shrinking);
          //if(!equivalence(psref, pstest)) {
          //  std::cout << "test failed\n";
          //}
          for(typename std::list<polygon_45_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
              itrh != (*itr).holes_.end(); ++itrh) {
            //rectangle_data<coordinate_type> rect;
            //psref.extents(rect);
            //polygon_90_set_data<coordinate_type> psrefhole;
            //psrefhole.insert(prerect);
            //psrefhole.insert(view_as<polygon_90_concept>(*itrh), true);
            //polygon_45_data<coordinate_type> testpoly(*itrh);
            resize_poly_up((*itrh).coords_, -(coordinate_type)west_shrinking, -(coordinate_type)east_shrinking,
                            -(coordinate_type)south_shrinking, -(coordinate_type)north_shrinking);
            iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
              begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
              end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
            insert(begin_input2, end_input2, orient_);
            //polygon_90_set_data<coordinate_type> pstesthole;
            //pstesthole.insert(rect);
            //iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
            //  begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true);
            //pstesthole.insert(begin_input2, end_input, orient_);
            //psrefhole.shrink2(west_shrinking, east_shrinking, south_shrinking, north_shrinking);
            //if(!equivalence(psrefhole, pstesthole)) {
            //  std::cout << (winding(testpoly) == CLOCKWISE) << std::endl;
            //  std::cout << (winding(*itrh) == CLOCKWISE) << std::endl;
            //  polygon_90_set_data<coordinate_type> c(psrefhole);
            //  c.clean();
            //  polygon_90_set_data<coordinate_type> a(pstesthole);
            //  polygon_90_set_data<coordinate_type> b(pstesthole);
            //  a.sort();
            //  b.clean();
            //  std::cout << "test hole failed\n";
            //  //std::cout << testpoly << std::endl;
            //}
          }
        }
      }
      return *this;
    }

    polygon_90_set_data&
    shrink2(typename coordinate_traits<coordinate_type>::unsigned_area_type west_shrinking,
            typename coordinate_traits<coordinate_type>::unsigned_area_type east_shrinking,
            typename coordinate_traits<coordinate_type>::unsigned_area_type south_shrinking,
            typename coordinate_traits<coordinate_type>::unsigned_area_type north_shrinking) {
      rectangle_data<coordinate_type> externalBoundary;
      if(!extents(externalBoundary)) return *this;
      ::boost::polygon::bloat(externalBoundary, 10); //bloat by diferential ammount
      //insert a hole that encompasses the data
      insert(externalBoundary, true); //note that the set is in a dirty state now
      sort();  //does not apply implicit OR operation
      std::vector<rectangle_data<coordinate_type> > rects;
      rects.reserve(data_.size() / 2);
      //begin does not apply implicit or operation, this is a dirty range
      form_rectangles(rects, data_.begin(), data_.end(), orient_, rectangle_concept());
      clear();
      rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)east_shrinking),
                                                                                          (coordinate_type)west_shrinking),
                                                           interval_data<coordinate_type>(-((coordinate_type)north_shrinking),
                                                                                          (coordinate_type)south_shrinking));
      for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
          itr != rects.end(); ++itr) {
        rectangle_data<coordinate_type>& rect = *itr;
        convolve(rect, convolutionRectangle);
        //insert rectangle as a hole
        insert(rect, true);
      }
      convolve(externalBoundary, convolutionRectangle);
      //insert duplicate of external boundary as solid to cancel out the external hole boundaries
      insert(externalBoundary);
      clean(); //we have negative values in the set, so we need to apply an OR operation to make it valid input to a boolean
      return *this;
    }

    polygon_90_set_data&
    shrink(direction_2d dir, typename coordinate_traits<coordinate_type>::unsigned_area_type shrinking) {
      if(dir == WEST)
        return shrink(shrinking, 0, 0, 0);
      if(dir == EAST)
        return shrink(0, shrinking, 0, 0);
      if(dir == SOUTH)
        return shrink(0, 0, shrinking, 0);
      return shrink(0, 0, 0, shrinking);
    }

    polygon_90_set_data&
    bloat(direction_2d dir, typename coordinate_traits<coordinate_type>::unsigned_area_type shrinking) {
      if(dir == WEST)
        return bloat(shrinking, 0, 0, 0);
      if(dir == EAST)
        return bloat(0, shrinking, 0, 0);
      if(dir == SOUTH)
        return bloat(0, 0, shrinking, 0);
      return bloat(0, 0, 0, shrinking);
    }

    polygon_90_set_data&
    resize(coordinate_type west, coordinate_type east, coordinate_type south, coordinate_type north);

    polygon_90_set_data& move(coordinate_type x_delta, coordinate_type y_delta) {
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        if(orient_ == orientation_2d(VERTICAL)) {
          (*itr).first += x_delta;
          (*itr).second.first += y_delta;
        } else {
          (*itr).second.first += x_delta;
          (*itr).first += y_delta;
        }
      }
      return *this;
    }

    // transform set
    template <typename transformation_type>
    polygon_90_set_data& transform(const transformation_type& transformation) {
      direction_2d dir1, dir2;
      transformation.get_directions(dir1, dir2);
      int sign = dir1.get_sign() * dir2.get_sign();
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        if(orient_ == orientation_2d(VERTICAL)) {
          transformation.transform((*itr).first, (*itr).second.first);
        } else {
          transformation.transform((*itr).second.first, (*itr).first);
        }
        (*itr).second.second *= sign;
      }
      if(dir1 != EAST || dir2 != NORTH)
        unsorted_ = true; //some mirroring or rotation must have happened
      return *this;
    }

    // scale set
    polygon_90_set_data& scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        (*itr).first *= (coordinate_type)factor;
        (*itr).second.first *= (coordinate_type)factor;
      }
      return *this;
    }
    polygon_90_set_data& scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
      typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        (*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) / (dt)factor);
        (*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) / (dt)factor);
      }
      unsorted_ = true; //scaling down can make coordinates equal that were not previously equal
      return *this;
    }
    template <typename scaling_type>
    polygon_90_set_data& scale(const anisotropic_scale_factor<scaling_type>& scaling) {
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        if(orient_ == orientation_2d(VERTICAL)) {
          scaling.scale((*itr).first, (*itr).second.first);
        } else {
          scaling.scale((*itr).second.first, (*itr).first);
        }
      }
      unsorted_ = true;
      return *this;
    }
    template <typename scaling_type>
    polygon_90_set_data& scale_with(const scaling_type& scaling) {
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        if(orient_ == orientation_2d(VERTICAL)) {
          scaling.scale((*itr).first, (*itr).second.first);
        } else {
          scaling.scale((*itr).second.first, (*itr).first);
        }
      }
      unsorted_ = true;
      return *this;
    }
    polygon_90_set_data& scale(double factor) {
      typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
      for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
            itr = data_.begin(); itr != data_.end(); ++itr) {
        (*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) * (dt)factor);
        (*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) * (dt)factor);
      }
      unsorted_ = true; //scaling make coordinates equal that were not previously equal
      return *this;
    }

    polygon_90_set_data& self_xor() {
      sort();
      if(dirty_) { //if it is clean it is a no-op
        boolean_op::default_arg_workaround<boolean_op::UnaryCount>::applyBooleanOr(data_);
        dirty_ = false;
      }
      return *this;
    }

    polygon_90_set_data& self_intersect() {
      sort();
      if(dirty_) { //if it is clean it is a no-op
        interval_data<coordinate_type> ivl((std::numeric_limits<coordinate_type>::min)(), (std::numeric_limits<coordinate_type>::max)());
        rectangle_data<coordinate_type> rect(ivl, ivl);
        insert(rect, true);
        clean();
      }
      return *this;
    }

    inline polygon_90_set_data& interact(const polygon_90_set_data& that) {
      typedef coordinate_type Unit;
      if(that.dirty_) that.clean();
      typename touch_90_operation<Unit>::TouchSetData tsd;
      touch_90_operation<Unit>::populateTouchSetData(tsd, that.data_, 0);
      std::vector<polygon_90_data<Unit> > polys;
      get(polys);
      std::vector<std::set<int> > graph(polys.size()+1, std::set<int>());
      for(std::size_t i = 0; i < polys.size(); ++i){
        polygon_90_set_data<Unit> psTmp(that.orient_);
        psTmp.insert(polys[i]);
        psTmp.clean();
        touch_90_operation<Unit>::populateTouchSetData(tsd, psTmp.data_, i+1);
      }
      touch_90_operation<Unit>::performTouch(graph, tsd);
      clear();
      for(std::set<int>::iterator itr = graph[0].begin(); itr != graph[0].end(); ++itr){
        insert(polys[(*itr)-1]);
      }
      dirty_ = false;
      return *this;
    }


    template <class T2, typename iterator_type_1, typename iterator_type_2>
    void applyBooleanBinaryOp(iterator_type_1 itr1, iterator_type_1 itr1_end,
                              iterator_type_2 itr2, iterator_type_2 itr2_end,
                              T2 defaultCount) {
      data_.clear();
      boolean_op::applyBooleanBinaryOp(data_, itr1, itr1_end, itr2, itr2_end, defaultCount);
    }

  private:
    orientation_2d orient_;
    mutable value_type data_;
    mutable bool dirty_;
    mutable bool unsorted_;

  private:
    //functions
    template <typename output_container>
    void get_dispatch(output_container& output, rectangle_concept ) const {
      clean();
      form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
    }
    template <typename output_container>
    void get_dispatch(output_container& output, polygon_90_concept tag) const {
      get_fracture(output, true, tag);
    }

    template <typename output_container>
    void get_dispatch(output_container& output, polygon_90_concept tag, 
      size_t vthreshold) const {
      get_fracture(output, true, tag, vthreshold);
    }

    template <typename output_container>
    void get_dispatch(output_container& output, polygon_90_with_holes_concept tag) const {
      get_fracture(output, false, tag);
    }

    template <typename output_container>
    void get_dispatch(output_container& output, polygon_90_with_holes_concept tag,
      size_t vthreshold) const {
      get_fracture(output, false, tag, vthreshold);
    }


    template <typename output_container>
    void get_dispatch(output_container& output, polygon_45_concept tag) const {
      get_fracture(output, true, tag);
    }
    template <typename output_container>
    void get_dispatch(output_container& output, polygon_45_with_holes_concept tag) const {
      get_fracture(output, false, tag);
    }
    template <typename output_container>
    void get_dispatch(output_container& output, polygon_concept tag) const {
      get_fracture(output, true, tag);
    }
    template <typename output_container>
    void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
      get_fracture(output, false, tag);
    }
    template <typename output_container, typename concept_type>
    void get_fracture(output_container& container, bool fracture_holes, concept_type tag) const {
      clean();
      ::boost::polygon::get_polygons(container, data_.begin(), data_.end(), orient_, fracture_holes, tag);
    }

    template <typename output_container, typename concept_type>
    void get_fracture(output_container& container, bool fracture_holes, concept_type tag,
      size_t vthreshold) const {
      clean();
      ::boost::polygon::get_polygons(container, data_.begin(), data_.end(), orient_, fracture_holes, tag, vthreshold);
    }
  };

  template <typename coordinate_type>
  polygon_90_set_data<coordinate_type>&
  polygon_90_set_data<coordinate_type>::resize(coordinate_type west,
                                               coordinate_type east,
                                               coordinate_type south,
                                               coordinate_type north) {
    move(-west, -south);
    coordinate_type e_total = west + east;
    coordinate_type n_total = south + north;
    if((e_total < 0) ^ (n_total < 0)) {
      //different signs
      if(e_total < 0) {
        shrink(0, -e_total, 0, 0);
        if(n_total != 0)
          return bloat(0, 0, 0, n_total);
        else
          return (*this);
      } else {
        shrink(0, 0, 0, -n_total); //shrink first
        if(e_total != 0)
          return bloat(0, e_total, 0, 0);
        else
          return (*this);
      }
    } else {
      if(e_total < 0) {
        return shrink(0, -e_total, 0, -n_total);
      }
      return bloat(0, e_total, 0, n_total);
    }
  }

  template <typename coordinate_type, typename property_type>
  class property_merge_90 {
  private:
    std::vector<std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > > pmd_;
  public:
    inline property_merge_90() : pmd_() {}
    inline property_merge_90(const property_merge_90& that) : pmd_(that.pmd_) {}
    inline property_merge_90& operator=(const property_merge_90& that) { pmd_ = that.pmd_; return *this; }
    inline void insert(const polygon_90_set_data<coordinate_type>& ps, const property_type& property) {
      merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type> >::
        populate_property_merge_data(pmd_, ps.begin(), ps.end(), property, ps.orient());
    }
    template <class GeoObjT>
    inline void insert(const GeoObjT& geoObj, const property_type& property) {
      polygon_90_set_data<coordinate_type> ps;
      ps.insert(geoObj);
      insert(ps, property);
    }
    //merge properties of input geometries and store the resulting geometries of regions
    //with unique sets of merged properties to polygons sets in a map keyed by sets of properties
    // T = std::map<std::set<property_type>, polygon_90_set_data<coordiante_type> > or
    // T = std::map<std::vector<property_type>, polygon_90_set_data<coordiante_type> >
    template <typename ResultType>
    inline void merge(ResultType& result) {
      merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type>, typename ResultType::key_type> ms;
      ms.perform_merge(result, pmd_);
    }
  };

  //ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
  //polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
  template <typename coordinate_type>
  class connectivity_extraction_90 {
  private:
    typedef typename touch_90_operation<coordinate_type>::TouchSetData tsd;
    tsd tsd_;
    unsigned int nodeCount_;
  public:
    inline connectivity_extraction_90() : tsd_(), nodeCount_(0) {}
    inline connectivity_extraction_90(const connectivity_extraction_90& that) : tsd_(that.tsd_),
                                                                          nodeCount_(that.nodeCount_) {}
    inline connectivity_extraction_90& operator=(const connectivity_extraction_90& that) {
      tsd_ = that.tsd_;
      nodeCount_ = that.nodeCount_; {}
      return *this;
    }

    //insert a polygon set graph node, the value returned is the id of the graph node
    inline unsigned int insert(const polygon_90_set_data<coordinate_type>& ps) {
      ps.clean();
      touch_90_operation<coordinate_type>::populateTouchSetData(tsd_, ps.begin(), ps.end(), nodeCount_);
      return nodeCount_++;
    }
    template <class GeoObjT>
    inline unsigned int insert(const GeoObjT& geoObj) {
      polygon_90_set_data<coordinate_type> ps;
      ps.insert(geoObj);
      return insert(ps);
    }

    //extract connectivity and store the edges in the graph
    //graph must be indexable by graph node id and the indexed value must be a std::set of
    //graph node id
    template <class GraphT>
    inline void extract(GraphT& graph) {
      touch_90_operation<coordinate_type>::performTouch(graph, tsd_);
    }
  };
}
}
#endif