summaryrefslogtreecommitdiff
path: root/boost/polygon/detail/boolean_op.hpp
blob: d3e3614fe50a12f8b701e1e705e3118276386f33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*
  Copyright 2008 Intel Corporation

  Use, modification and distribution are subject to the Boost Software License,
  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_BOOLEAN_OP_HPP
#define BOOST_POLYGON_BOOLEAN_OP_HPP
namespace boost { namespace polygon{
namespace boolean_op {

  //BooleanOp is the generic boolean operation scanline algorithm that provides
  //all the simple boolean set operations on manhattan data.  By templatizing
  //the intersection count of the input and algorithm internals it is extensible
  //to multi-layer scans, properties and other advanced scanline operations above
  //and beyond simple booleans.
  //T must cast to int
  template <class T, typename Unit>
  class BooleanOp {
  public:
    typedef std::map<Unit, T> ScanData;
    typedef std::pair<Unit, T> ElementType;
  protected:
    ScanData scanData_;
    typename ScanData::iterator nextItr_;
    T nullT_;
  public:
    inline BooleanOp () : scanData_(), nextItr_(), nullT_() { nextItr_ = scanData_.end(); nullT_ = 0; }
    inline BooleanOp (T nullT) : scanData_(), nextItr_(), nullT_(nullT) { nextItr_ = scanData_.end(); }
    inline BooleanOp (const BooleanOp& that) : scanData_(that.scanData_), nextItr_(),
                                               nullT_(that.nullT_) { nextItr_ = scanData_.begin(); }
    inline BooleanOp& operator=(const BooleanOp& that);

    //moves scanline forward
    inline void advanceScan() { nextItr_ = scanData_.begin(); }

    //proceses the given interval and T data
    //appends output edges to cT
    template <class cT>
    inline void processInterval(cT& outputContainer, interval_data<Unit> ivl, T deltaCount);

  private:
    inline typename ScanData::iterator lookup_(Unit pos){
      if(nextItr_ != scanData_.end() && nextItr_->first >= pos) {
        return nextItr_;
      }
      return nextItr_ = scanData_.lower_bound(pos);
    }
    inline typename ScanData::iterator insert_(Unit pos, T count){
      return nextItr_ = scanData_.insert(nextItr_, ElementType(pos, count));
    }
    template <class cT>
    inline void evaluateInterval_(cT& outputContainer, interval_data<Unit> ivl, T beforeCount, T afterCount);
  };

  class BinaryAnd {
  public:
    inline BinaryAnd() {}
    inline bool operator()(int a, int b) { return (a > 0) & (b > 0); }
  };
  class BinaryOr {
  public:
    inline BinaryOr() {}
    inline bool operator()(int a, int b) { return (a > 0) | (b > 0); }
  };
  class BinaryNot {
  public:
    inline BinaryNot() {}
    inline bool operator()(int a, int b) { return (a > 0) & !(b > 0); }
  };
  class BinaryXor {
  public:
    inline BinaryXor() {}
    inline bool operator()(int a, int b) { return (a > 0) ^ (b > 0); }
  };

  //BinaryCount is an array of two deltaCounts coming from two different layers
  //of scan event data.  It is the merged count of the two suitable for consumption
  //as the template argument of the BooleanOp algorithm because BinaryCount casts to int.
  //T is a binary functor object that evaluates the array of counts and returns a logical
  //result of some operation on those values.
  //BinaryCount supports many of the operators that work with int, particularly the
  //binary operators, but cannot support less than or increment.
  template <class T>
  class BinaryCount {
  public:
    inline BinaryCount()
#ifndef BOOST_POLYGON_MSVC
      : counts_()
#endif
    { counts_[0] = counts_[1] = 0; }
    // constructs from two integers
    inline BinaryCount(int countL, int countR)
#ifndef BOOST_POLYGON_MSVC
      : counts_()
#endif
    { counts_[0] = countL, counts_[1] = countR; }
    inline BinaryCount& operator=(int count) { counts_[0] = count, counts_[1] = count; return *this; }
    inline BinaryCount& operator=(const BinaryCount& that);
    inline BinaryCount(const BinaryCount& that)
#ifndef BOOST_POLYGON_MSVC
      : counts_()
#endif
    { *this = that; }
    inline bool operator==(const BinaryCount& that) const;
    inline bool operator!=(const BinaryCount& that) const { return !((*this) == that);}
    inline BinaryCount& operator+=(const BinaryCount& that);
    inline BinaryCount& operator-=(const BinaryCount& that);
    inline BinaryCount operator+(const BinaryCount& that) const;
    inline BinaryCount operator-(const BinaryCount& that) const;
    inline BinaryCount operator-() const;
    inline int& operator[](bool index) { return counts_[index]; }

    //cast to int operator evaluates data using T binary functor
    inline operator int() const { return T()(counts_[0], counts_[1]); }
  private:
    int counts_[2];
  };

  class UnaryCount {
  public:
    inline UnaryCount() : count_(0) {}
    // constructs from two integers
    inline explicit UnaryCount(int count) : count_(count) {}
    inline UnaryCount& operator=(int count) { count_ = count; return *this; }
    inline UnaryCount& operator=(const UnaryCount& that) { count_ = that.count_; return *this; }
    inline UnaryCount(const UnaryCount& that) : count_(that.count_) {}
    inline bool operator==(const UnaryCount& that) const { return count_ == that.count_; }
    inline bool operator!=(const UnaryCount& that) const { return !((*this) == that);}
    inline UnaryCount& operator+=(const UnaryCount& that) { count_ += that.count_; return *this; }
    inline UnaryCount& operator-=(const UnaryCount& that) { count_ -= that.count_; return *this; }
    inline UnaryCount operator+(const UnaryCount& that) const { UnaryCount tmp(*this); tmp += that; return tmp; }
    inline UnaryCount operator-(const UnaryCount& that) const { UnaryCount tmp(*this); tmp -= that; return tmp; }
    inline UnaryCount operator-() const { UnaryCount tmp; return tmp - *this; }

    //cast to int operator evaluates data using T binary functor
    inline operator int() const { return count_ % 2; }
  private:
    int count_;
  };

  template <class T, typename Unit>
  inline BooleanOp<T, Unit>& BooleanOp<T, Unit>::operator=(const BooleanOp& that) {
    scanData_ = that.scanData_;
    nextItr_ = scanData_.begin();
    nullT_ = that.nullT_;
    return *this;
  }

  //appends output edges to cT
  template <class T, typename Unit>
  template <class cT>
  inline void BooleanOp<T, Unit>::processInterval(cT& outputContainer, interval_data<Unit> ivl, T deltaCount) {
    typename ScanData::iterator lowItr = lookup_(ivl.low());
    typename ScanData::iterator highItr = lookup_(ivl.high());
    //add interval to scan data if it is past the end
    if(lowItr == scanData_.end()) {
      lowItr = insert_(ivl.low(), deltaCount);
      highItr = insert_(ivl.high(), nullT_);
      evaluateInterval_(outputContainer, ivl, nullT_, deltaCount);
      return;
    }
    //ensure that highItr points to the end of the ivl
    if(highItr == scanData_.end() || (*highItr).first > ivl.high()) {
      T value = nullT_;
      if(highItr != scanData_.begin()) {
        --highItr;
        value = highItr->second;
      }
      nextItr_ = highItr;
      highItr = insert_(ivl.high(), value);
    }
    //split the low interval if needed
    if(lowItr->first > ivl.low()) {
      if(lowItr != scanData_.begin()) {
        --lowItr;
        nextItr_ = lowItr;
        lowItr = insert_(ivl.low(), lowItr->second);
      } else {
        nextItr_ = lowItr;
        lowItr = insert_(ivl.low(), nullT_);
      }
    }
    //process scan data intersecting interval
    for(typename ScanData::iterator itr = lowItr; itr != highItr; ){
      T beforeCount = itr->second;
      T afterCount = itr->second += deltaCount;
      Unit low = itr->first;
      ++itr;
      Unit high = itr->first;
      evaluateInterval_(outputContainer, interval_data<Unit>(low, high), beforeCount, afterCount);
    }
    //merge the bottom interval with the one below if they have the same count
    if(lowItr != scanData_.begin()){
      typename ScanData::iterator belowLowItr = lowItr;
      --belowLowItr;
      if(belowLowItr->second == lowItr->second) {
        scanData_.erase(lowItr);
      }
    }
    //merge the top interval with the one above if they have the same count
    if(highItr != scanData_.begin()) {
      typename ScanData::iterator beforeHighItr = highItr;
      --beforeHighItr;
      if(beforeHighItr->second == highItr->second) {
        scanData_.erase(highItr);
        highItr = beforeHighItr;
        ++highItr;
      }
    }
    nextItr_ = highItr;
  }

  template <class T, typename Unit>
  template <class cT>
  inline void BooleanOp<T, Unit>::evaluateInterval_(cT& outputContainer, interval_data<Unit> ivl,
                                              T beforeCount, T afterCount) {
    bool before = (int)beforeCount > 0;
    bool after = (int)afterCount > 0;
    int value =  (!before & after) - (before & !after);
    if(value) {
      outputContainer.insert(outputContainer.end(), std::pair<interval_data<Unit>, int>(ivl, value));
    }
  }

  template <class T>
  inline BinaryCount<T>& BinaryCount<T>::operator=(const BinaryCount<T>& that) {
    counts_[0] = that.counts_[0];
    counts_[1] = that.counts_[1];
    return *this;
  }
  template <class T>
  inline bool BinaryCount<T>::operator==(const BinaryCount<T>& that) const {
    return counts_[0] == that.counts_[0] &&
      counts_[1] == that.counts_[1];
  }
  template <class T>
  inline BinaryCount<T>& BinaryCount<T>::operator+=(const BinaryCount<T>& that) {
    counts_[0] += that.counts_[0];
    counts_[1] += that.counts_[1];
    return *this;
  }
  template <class T>
  inline BinaryCount<T>& BinaryCount<T>::operator-=(const BinaryCount<T>& that) {
    counts_[0] += that.counts_[0];
    counts_[1] += that.counts_[1];
    return *this;
  }
  template <class T>
  inline BinaryCount<T> BinaryCount<T>::operator+(const BinaryCount<T>& that) const {
    BinaryCount retVal(*this);
    retVal += that;
    return retVal;
  }
  template <class T>
  inline BinaryCount<T> BinaryCount<T>::operator-(const BinaryCount<T>& that) const {
    BinaryCount retVal(*this);
    retVal -= that;
    return retVal;
  }
  template <class T>
  inline BinaryCount<T> BinaryCount<T>::operator-() const {
    return BinaryCount<T>() - *this;
  }


  template <class T, typename Unit, typename iterator_type_1, typename iterator_type_2>
  inline void applyBooleanBinaryOp(std::vector<std::pair<Unit, std::pair<Unit, int> > >& output,
                                   //const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input1,
                                   //const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input2,
                                   iterator_type_1 itr1, iterator_type_1 itr1_end,
                                   iterator_type_2 itr2, iterator_type_2 itr2_end,
                                   T defaultCount) {
    BooleanOp<T, Unit> boolean(defaultCount);
    //typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::const_iterator itr1 = input1.begin();
    //typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::const_iterator itr2 = input2.begin();
    std::vector<std::pair<interval_data<Unit>, int> > container;
    //output.reserve((std::max)(input1.size(), input2.size()));

    //consider eliminating dependecy on limits with bool flag for initial state
    Unit UnitMax = (std::numeric_limits<Unit>::max)();
    Unit prevCoord = UnitMax;
    Unit prevPosition = UnitMax;
    T count(defaultCount);
    //define the starting point
    if(itr1 != itr1_end) {
      prevCoord = (*itr1).first;
      prevPosition = (*itr1).second.first;
      count[0] += (*itr1).second.second;
    }
    if(itr2 != itr2_end) {
      if((*itr2).first < prevCoord ||
         ((*itr2).first == prevCoord && (*itr2).second.first < prevPosition)) {
        prevCoord = (*itr2).first;
        prevPosition = (*itr2).second.first;
        count = defaultCount;
        count[1] += (*itr2).second.second;
        ++itr2;
      } else if((*itr2).first == prevCoord && (*itr2).second.first == prevPosition) {
        count[1] += (*itr2).second.second;
        ++itr2;
        if(itr1 != itr1_end) ++itr1;
      } else {
        if(itr1 != itr1_end) ++itr1;
      }
    } else {
      if(itr1 != itr1_end) ++itr1;
    }

    while(itr1 != itr1_end || itr2 != itr2_end) {
      Unit curCoord = UnitMax;
      Unit curPosition = UnitMax;
      T curCount(defaultCount);
      if(itr1 != itr1_end) {
        curCoord = (*itr1).first;
        curPosition = (*itr1).second.first;
        curCount[0] += (*itr1).second.second;
      }
      if(itr2 != itr2_end) {
        if((*itr2).first < curCoord ||
           ((*itr2).first == curCoord && (*itr2).second.first < curPosition)) {
          curCoord = (*itr2).first;
          curPosition = (*itr2).second.first;
          curCount = defaultCount;
          curCount[1] += (*itr2).second.second;
          ++itr2;
        } else if((*itr2).first == curCoord && (*itr2).second.first == curPosition) {
          curCount[1] += (*itr2).second.second;
          ++itr2;
          if(itr1 != itr1_end) ++itr1;
        } else {
          if(itr1 != itr1_end) ++itr1;
        }
      } else {
        ++itr1;
      }

      if(prevCoord != curCoord) {
        boolean.advanceScan();
        prevCoord = curCoord;
        prevPosition = curPosition;
        count = curCount;
        continue;
      }
      if(curPosition != prevPosition && count != defaultCount) {
        interval_data<Unit> ivl(prevPosition, curPosition);
        container.clear();
        boolean.processInterval(container, ivl, count);
        for(std::size_t i = 0; i < container.size(); ++i) {
          std::pair<interval_data<Unit>, int>& element = container[i];
          if(!output.empty() && output.back().first == prevCoord &&
             output.back().second.first == element.first.low() &&
             output.back().second.second == element.second * -1) {
            output.pop_back();
          } else {
            output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevCoord, std::pair<Unit, int>(element.first.low(),
                                                                                                    element.second)));
          }
          output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevCoord, std::pair<Unit, int>(element.first.high(),
                                                                                                  element.second * -1)));
        }
      }
      prevPosition = curPosition;
      count += curCount;
    }
  }

  template <class T, typename Unit>
  inline void applyBooleanBinaryOp(std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputOutput,
                                   const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input2,
                                   T defaultCount) {
    std::vector<std::pair<Unit, std::pair<Unit, int> > > output;
    applyBooleanBinaryOp(output, inputOutput, input2, defaultCount);
    if(output.size() < inputOutput.size() / 2) {
      inputOutput = std::vector<std::pair<Unit, std::pair<Unit, int> > >();
    } else {
      inputOutput.clear();
    }
    inputOutput.insert(inputOutput.end(), output.begin(), output.end());
  }

  template <typename Unit>
  inline void applyUnaryXOr(std::vector<std::pair<Unit, std::pair<Unit, int> > >& input) {
    BooleanOp<UnaryCount, Unit> booleanXOr;

  }

  template <typename count_type = int>
  struct default_arg_workaround {
    template <typename Unit>
    static inline void applyBooleanOr(std::vector<std::pair<Unit, std::pair<Unit, int> > >& input) {
      BooleanOp<count_type, Unit> booleanOr;
      std::vector<std::pair<interval_data<Unit>, int> > container;
      std::vector<std::pair<Unit, std::pair<Unit, int> > > output;
      output.reserve(input.size());
      //consider eliminating dependecy on limits with bool flag for initial state
      Unit UnitMax = (std::numeric_limits<Unit>::max)();
      Unit prevPos = UnitMax;
      Unit prevY = UnitMax;
      int count = 0;
      for(typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::iterator itr = input.begin();
          itr != input.end(); ++itr) {
        Unit pos = (*itr).first;
        Unit y = (*itr).second.first;
        if(pos != prevPos) {
          booleanOr.advanceScan();
          prevPos = pos;
          prevY = y;
          count = (*itr).second.second;
          continue;
        }
        if(y != prevY && count != 0) {
          interval_data<Unit> ivl(prevY, y);
          container.clear();
          booleanOr.processInterval(container, ivl, count_type(count));
          for(std::size_t i = 0; i < container.size(); ++i) {
            std::pair<interval_data<Unit>, int>& element = container[i];
            if(!output.empty() && output.back().first == prevPos &&
               output.back().second.first == element.first.low() &&
               output.back().second.second == element.second * -1) {
              output.pop_back();
            } else {
              output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevPos, std::pair<Unit, int>(element.first.low(),
                                                                                                    element.second)));
            }
            output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevPos, std::pair<Unit, int>(element.first.high(),
                                                                                                  element.second * -1)));
          }
        }
        prevY = y;
        count += (*itr).second.second;
      }
      if(output.size() < input.size() / 2) {
        input = std::vector<std::pair<Unit, std::pair<Unit, int> > >();
      } else {
      input.clear();
      }
      input.insert(input.end(), output.begin(), output.end());
    }
  };

}

}

}
#endif