summaryrefslogtreecommitdiff
path: root/boost/numeric/odeint/stepper/bulirsch_stoer_dense_out.hpp
blob: 6a1eed15fb26bc312bbe2f421186636fafb32e48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*
 [auto_generated]
 boost/numeric/odeint/stepper/bulirsch_stoer_dense_out.hpp

 [begin_description]
 Implementaiton of the Burlish-Stoer method with dense output
 [end_description]

 Copyright 2011-2015 Mario Mulansky
 Copyright 2011-2013 Karsten Ahnert
 Copyright 2012 Christoph Koke

 Distributed under the Boost Software License, Version 1.0.
 (See accompanying file LICENSE_1_0.txt or
 copy at http://www.boost.org/LICENSE_1_0.txt)
 */


#ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_DENSE_OUT_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_DENSE_OUT_HPP_INCLUDED


#include <iostream>

#include <algorithm>

#include <boost/config.hpp> // for min/max guidelines

#include <boost/numeric/odeint/util/bind.hpp>

#include <boost/math/special_functions/binomial.hpp>

#include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
#include <boost/numeric/odeint/stepper/modified_midpoint.hpp>
#include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>

#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/util/unit_helper.hpp>

#include <boost/numeric/odeint/integrate/max_step_checker.hpp>

#include <boost/type_traits.hpp>


namespace boost {
namespace numeric {
namespace odeint {

template<
    class State ,
    class Value = double ,
    class Deriv = State ,
    class Time = Value ,
    class Algebra = typename algebra_dispatcher< State >::algebra_type ,
    class Operations = typename operations_dispatcher< State >::operations_type ,
    class Resizer = initially_resizer
    >
class bulirsch_stoer_dense_out {


public:

    typedef State state_type;
    typedef Value value_type;
    typedef Deriv deriv_type;
    typedef Time time_type;
    typedef Algebra algebra_type;
    typedef Operations operations_type;
    typedef Resizer resizer_type;
    typedef dense_output_stepper_tag stepper_category;
#ifndef DOXYGEN_SKIP
    typedef state_wrapper< state_type > wrapped_state_type;
    typedef state_wrapper< deriv_type > wrapped_deriv_type;

    typedef bulirsch_stoer_dense_out< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type;

    typedef typename inverse_time< time_type >::type inv_time_type;

    typedef std::vector< value_type > value_vector;
    typedef std::vector< time_type > time_vector;
    typedef std::vector< inv_time_type > inv_time_vector;  //should be 1/time_type for boost.units
    typedef std::vector< value_vector > value_matrix;
    typedef std::vector< size_t > int_vector;
    typedef std::vector< wrapped_state_type > state_vector_type;
    typedef std::vector< wrapped_deriv_type > deriv_vector_type;
    typedef std::vector< deriv_vector_type > deriv_table_type;
#endif //DOXYGEN_SKIP

    const static size_t m_k_max = 8;



    bulirsch_stoer_dense_out(
        value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 ,
        value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 ,
        time_type max_dt = static_cast<time_type>(0) ,
        bool control_interpolation = false )
        : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) ,
          m_max_dt(max_dt) ,
          m_control_interpolation( control_interpolation) ,
          m_last_step_rejected( false ) , m_first( true ) ,
          m_current_state_x1( true ) ,
          m_error( m_k_max ) ,
          m_interval_sequence( m_k_max+1 ) ,
          m_coeff( m_k_max+1 ) ,
          m_cost( m_k_max+1 ) ,
          m_facmin_table( m_k_max+1 ) ,
          m_table( m_k_max ) ,
          m_mp_states( m_k_max+1 ) ,
          m_derivs( m_k_max+1 ) ,
          m_diffs( 2*m_k_max+2 ) ,
          STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 )
    {
        BOOST_USING_STD_MIN();
        BOOST_USING_STD_MAX();

        for( unsigned short i = 0; i < m_k_max+1; i++ )
        {
            /* only this specific sequence allows for dense output */
            m_interval_sequence[i] = 2 + 4*i;  // 2 6 10 14 ...
            m_derivs[i].resize( m_interval_sequence[i] );
            if( i == 0 )
            {
                m_cost[i] = m_interval_sequence[i];
            } else
            {
                m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
            }
            m_facmin_table[i] = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , static_cast< value_type >(1) / static_cast< value_type >( 2*i+1 ) );
            m_coeff[i].resize(i);
            for( size_t k = 0 ; k < i ; ++k  )
            {
                const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] );
                m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation
            }
            // crude estimate of optimal order

            m_current_k_opt = 4;
            /* no calculation because log10 might not exist for value_type!
            const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >( 1.0E-12 ) ) ) * 0.6 + 0.5 );
            m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 1 , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>( m_k_max-1 ) , static_cast<int>( logfact ) ));
            */
        }
        int num = 1;
        for( int i = 2*(m_k_max)+1 ; i >=0  ; i-- )
        {
            m_diffs[i].resize( num );
            num += (i+1)%2;
        }
    }

    template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut >
    controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , DerivOut &dxdt_new , time_type &dt )
    {
        if( m_max_dt != static_cast<time_type>(0) && detail::less_with_sign(m_max_dt, dt, dt) )
        {
            // given step size is bigger then max_dt
            // set limit and return fail
            dt = m_max_dt;
            return fail;
        }

        BOOST_USING_STD_MIN();
        BOOST_USING_STD_MAX();
        using std::pow;
        
        static const value_type val1( 1.0 );

        bool reject( true );

        time_vector h_opt( m_k_max+1 );
        inv_time_vector work( m_k_max+1 );

        m_k_final = 0;
        time_type new_h = dt;

        //std::cout << "t=" << t <<", dt=" << dt << ", k_opt=" << m_current_k_opt << ", first: " << m_first << std::endl;

        for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ )
        {
            m_midpoint.set_steps( m_interval_sequence[k] );
            if( k == 0 )
            {
                m_midpoint.do_step( system , in , dxdt , t , out , dt , m_mp_states[k].m_v , m_derivs[k]);
            }
            else
            {
                m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt , m_mp_states[k].m_v , m_derivs[k] );
                extrapolate( k , m_table , m_coeff , out );
                // get error estimate
                m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v ,
                                     typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) );
                const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt );
                h_opt[k] = calc_h_opt( dt , error , k );
                work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k];

                m_k_final = k;

                if( (k == m_current_k_opt-1) || m_first )
                { // convergence before k_opt ?
                    if( error < 1.0 )
                    {
                        //convergence
                        reject = false;
                        if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) )
                        {
                            // leave order as is (except we were in first round)
                            m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) );
                            new_h = h_opt[k] * static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] );
                        } else {
                            m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) );
                            new_h = h_opt[k];
                        }
                        break;
                    }
                    else if( should_reject( error , k ) && !m_first )
                    {
                        reject = true;
                        new_h = h_opt[k];
                        break;
                    }
                }
                if( k == m_current_k_opt )
                { // convergence at k_opt ?
                    if( error < 1.0 )
                    {
                        //convergence
                        reject = false;
                        if( (work[k-1] < KFAC2*work[k]) )
                        {
                            m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
                            new_h = h_opt[m_current_k_opt];
                        }
                        else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected )
                        {
                            m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(m_current_k_opt)+1 );
                            new_h = h_opt[k]*static_cast<value_type>( m_cost[m_current_k_opt] ) / static_cast<value_type>( m_cost[k] );
                        } else
                            new_h = h_opt[m_current_k_opt];
                        break;
                    }
                    else if( should_reject( error , k ) )
                    {
                        reject = true;
                        new_h = h_opt[m_current_k_opt];
                        break;
                    }
                }
                if( k == m_current_k_opt+1 )
                { // convergence at k_opt+1 ?
                    if( error < 1.0 )
                    {   //convergence
                        reject = false;
                        if( work[k-2] < KFAC2*work[k-1] )
                            m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
                        if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected )
                            m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) );
                        new_h = h_opt[m_current_k_opt];
                    } else
                    {
                        reject = true;
                        new_h = h_opt[m_current_k_opt];
                    }
                    break;
                }
            }
        }

        if( !reject )
        {

            //calculate dxdt for next step and dense output
            typename odeint::unwrap_reference< System >::type &sys = system;
            sys( out , dxdt_new , t+dt );

            //prepare dense output
            value_type error = prepare_dense_output( m_k_final , in , dxdt , out , dxdt_new , dt );

            if( error > static_cast<value_type>(10) ) // we are not as accurate for interpolation as for the steps
            {
                reject = true;
                new_h = dt * pow BOOST_PREVENT_MACRO_SUBSTITUTION( error , static_cast<value_type>(-1)/(2*m_k_final+2) );
            } else {
                t += dt;
            }
        }
        //set next stepsize
        if( !m_last_step_rejected || (new_h < dt) )
        {
            // limit step size
            if( m_max_dt != static_cast<time_type>(0) )
            {
                new_h = detail::min_abs(m_max_dt, new_h);
            }
            dt = new_h;
        }

        m_last_step_rejected = reject;
        if( reject )
            return fail;
        else
            return success;
    }

    template< class StateType >
    void initialize( const StateType &x0 , const time_type &t0 , const time_type &dt0 )
    {
        m_resizer.adjust_size( x0 , detail::bind( &controlled_error_bs_type::template resize_impl< StateType > , detail::ref( *this ) , detail::_1 ) );
        boost::numeric::odeint::copy( x0 , get_current_state() );
        m_t = t0;
        m_dt = dt0;
        reset();
    }


    /*  =======================================================
     *  the actual step method that should be called from outside (maybe make try_step private?)
     */
    template< class System >
    std::pair< time_type , time_type > do_step( System system )
    {
        if( m_first )
        {
            typename odeint::unwrap_reference< System >::type &sys = system;
            sys( get_current_state() , get_current_deriv() , m_t );
        }

        failed_step_checker fail_checker;  // to throw a runtime_error if step size adjustment fails
        controlled_step_result res = fail;
        m_t_last = m_t;
        while( res == fail )
        {
            res = try_step( system , get_current_state() , get_current_deriv() , m_t , get_old_state() , get_old_deriv() , m_dt );
            m_first = false;
            fail_checker();  // check for overflow of failed steps
        }
        toggle_current_state();
        return std::make_pair( m_t_last , m_t );
    }

    /* performs the interpolation from a calculated step */
    template< class StateOut >
    void calc_state( time_type t , StateOut &x ) const
    {
        do_interpolation( t , x );
    }

    const state_type& current_state( void ) const
    {
        return get_current_state();
    }

    time_type current_time( void ) const
    {
        return m_t;
    }

    const state_type& previous_state( void ) const
    {
        return get_old_state();
    }

    time_type previous_time( void ) const
    {
        return m_t_last;
    }

    time_type current_time_step( void ) const
    {
        return m_dt;
    }

    /** \brief Resets the internal state of the stepper. */
    void reset()
    {
        m_first = true;
        m_last_step_rejected = false;
    }

    template< class StateIn >
    void adjust_size( const StateIn &x )
    {
        resize_impl( x );
        m_midpoint.adjust_size( x );
    }


private:

    template< class StateInOut , class StateVector >
    void extrapolate( size_t k , StateVector &table , const value_matrix &coeff , StateInOut &xest , size_t order_start_index = 0 )
    //polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
    {
        static const value_type val1( 1.0 );
        for( int j=k-1 ; j>0 ; --j )
        {
            m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
                                 typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][j + order_start_index] ,
                                                                                                           -coeff[k + order_start_index][j + order_start_index] ) );
        }
        m_algebra.for_each3( xest , table[0].m_v , xest ,
                             typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][0 + order_start_index] ,
                                                                                                       -coeff[k + order_start_index][0 + order_start_index]) );
    }


    template< class StateVector >
    void extrapolate_dense_out( size_t k , StateVector &table , const value_matrix &coeff , size_t order_start_index = 0 )
    //polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
    {
        // result is written into table[0]
        static const value_type val1( 1.0 );
        for( int j=k ; j>1 ; --j )
        {
            m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
                                 typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][j + order_start_index - 1] ,
                                                                                                           -coeff[k + order_start_index][j + order_start_index - 1] ) );
        }
        m_algebra.for_each3( table[0].m_v , table[1].m_v , table[0].m_v ,
                             typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][order_start_index] ,
                                                                                                       -coeff[k + order_start_index][order_start_index]) );
    }

    time_type calc_h_opt( time_type h , value_type error , size_t k ) const
    {
        BOOST_USING_STD_MIN();
        BOOST_USING_STD_MAX();
        using std::pow;

        value_type expo = static_cast<value_type>(1)/(m_interval_sequence[k-1]);
        value_type facmin = m_facmin_table[k];
        value_type fac;
        if (error == 0.0)
            fac = static_cast<value_type>(1)/facmin;
        else
        {
            fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo );
            fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( facmin/STEPFAC4 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(static_cast<value_type>(1)/facmin) , fac ) );
        }
        return h*fac;
    }

    bool in_convergence_window( size_t k ) const
    {
        if( (k == m_current_k_opt-1) && !m_last_step_rejected )
            return true; // decrease order only if last step was not rejected
        return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) );
    }

    bool should_reject( value_type error , size_t k ) const
    {
        if( k == m_current_k_opt-1 )
        {
            const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] /
                (m_interval_sequence[0]*m_interval_sequence[0]);
            //step will fail, criterion 17.3.17 in NR
            return ( error > d*d );
        }
        else if( k == m_current_k_opt )
        {
            const value_type d = m_interval_sequence[m_current_k_opt+1] / m_interval_sequence[0];
            return ( error > d*d );
        } else
            return error > 1.0;
    }

    template< class StateIn1 , class DerivIn1 , class StateIn2 , class DerivIn2 >
    value_type prepare_dense_output( int k , const StateIn1 &x_start , const DerivIn1 &dxdt_start ,
                                     const StateIn2 & /* x_end */ , const DerivIn2 & /*dxdt_end */ , time_type dt )  
    /* k is the order to which the result was approximated */
    {

        /* compute the coefficients of the interpolation polynomial
         * we parametrize the interval t .. t+dt by theta = -1 .. 1
         * we use 2k+3 values at the interval center theta=0 to obtain the interpolation coefficients
         * the values are x(t+dt/2) and the derivatives dx/dt , ... d^(2k+2) x / dt^(2k+2) at the midpoints
         * the derivatives are approximated via finite differences
         * all values are obtained from interpolation of the results from the increasing orders of the midpoint calls
         */

        // calculate finite difference approximations to derivatives at the midpoint
        for( int j = 0 ; j<=k ; j++ )
        {
            /* not working with boost units... */
            const value_type d = m_interval_sequence[j] / ( static_cast<value_type>(2) * dt );
            value_type f = 1.0; //factor 1/2 here because our interpolation interval has length 2 !!!
            for( int kappa = 0 ; kappa <= 2*j+1 ; ++kappa )
            {
                calculate_finite_difference( j , kappa , f , dxdt_start );
                f *= d;
            }

            if( j > 0 )
                extrapolate_dense_out( j , m_mp_states , m_coeff );
        }

        time_type d = dt/2;

        // extrapolate finite differences
        for( int kappa = 0 ; kappa<=2*k+1 ; kappa++ )
        {
            for( int j=1 ; j<=(k-kappa/2) ; ++j )
                extrapolate_dense_out( j , m_diffs[kappa] , m_coeff , kappa/2 );

            // extrapolation results are now stored in m_diffs[kappa][0]

            // divide kappa-th derivative by kappa because we need these terms for dense output interpolation
            m_algebra.for_each1( m_diffs[kappa][0].m_v , typename operations_type::template scale< time_type >( static_cast<time_type>(d) ) );

            d *= dt/(2*(kappa+2));
        }

        // dense output coefficients a_0 is stored in m_mp_states[0], a_i for i = 1...2k are stored in m_diffs[i-1][0]

        // the error is just the highest order coefficient of the interpolation polynomial
        // this is because we use only the midpoint theta=0 as support for the interpolation (remember that theta = -1 .. 1)

        value_type error = 0.0;
        if( m_control_interpolation )
        {
            boost::numeric::odeint::copy( m_diffs[2*k+1][0].m_v , m_err.m_v );
            error = m_error_checker.error( m_algebra , x_start , dxdt_start , m_err.m_v , dt );
        }

        return error;
    }

    template< class DerivIn >
    void calculate_finite_difference( size_t j , size_t kappa , value_type fac , const DerivIn &dxdt )
    {
        const int m = m_interval_sequence[j]/2-1;
        if( kappa == 0) // no calculation required for 0th derivative of f
        {
            m_algebra.for_each2( m_diffs[0][j].m_v , m_derivs[j][m].m_v ,
                                 typename operations_type::template scale_sum1< value_type >( fac ) );
        }
        else
        {
            // calculate the index of m_diffs for this kappa-j-combination
            const int j_diffs = j - kappa/2;

            m_algebra.for_each2( m_diffs[kappa][j_diffs].m_v , m_derivs[j][m+kappa].m_v ,
                                 typename operations_type::template scale_sum1< value_type >( fac ) );
            value_type sign = -1.0;
            int c = 1;
            //computes the j-th order finite difference for the kappa-th derivative of f at t+dt/2 using function evaluations stored in m_derivs
            for( int i = m+static_cast<int>(kappa)-2 ; i >= m-static_cast<int>(kappa) ; i -= 2 )
            {
                if( i >= 0 )
                {
                    m_algebra.for_each3( m_diffs[kappa][j_diffs].m_v , m_diffs[kappa][j_diffs].m_v , m_derivs[j][i].m_v ,
                                         typename operations_type::template scale_sum2< value_type , value_type >( 1.0 ,
                                                                                                                   sign * fac * boost::math::binomial_coefficient< value_type >( kappa , c ) ) );
                }
                else
                {
                    m_algebra.for_each3( m_diffs[kappa][j_diffs].m_v , m_diffs[kappa][j_diffs].m_v , dxdt ,
                                         typename operations_type::template scale_sum2< value_type , value_type >( 1.0 , sign * fac ) );
                }
                sign *= -1;
                ++c;
            }
        }
    }

    template< class StateOut >
    void do_interpolation( time_type t , StateOut &out ) const
    {
        // interpolation polynomial is defined for theta = -1 ... 1
        // m_k_final is the number of order-iterations done for the last step - it governs the order of the interpolation polynomial
        const value_type theta = 2 * get_unit_value( (t - m_t_last) / (m_t - m_t_last) ) - 1;
        // we use only values at interval center, that is theta=0, for interpolation
        // our interpolation polynomial is thus of order 2k+2, hence we have 2k+3 terms

        boost::numeric::odeint::copy( m_mp_states[0].m_v , out );
        // add remaining terms: x += a_1 theta + a2 theta^2 + ... + a_{2k} theta^{2k}
        value_type theta_pow( theta );
        for( size_t i=0 ; i<=2*m_k_final+1 ; ++i )
        {
            m_algebra.for_each3( out , out , m_diffs[i][0].m_v ,
                                 typename operations_type::template scale_sum2< value_type >( static_cast<value_type>(1) , theta_pow ) );
            theta_pow *= theta;
        }
    }

    /* Resizer methods */
    template< class StateIn >
    bool resize_impl( const StateIn &x )
    {
        bool resized( false );

        resized |= adjust_size_by_resizeability( m_x1 , x , typename is_resizeable<state_type>::type() );
        resized |= adjust_size_by_resizeability( m_x2 , x , typename is_resizeable<state_type>::type() );
        resized |= adjust_size_by_resizeability( m_dxdt1 , x , typename is_resizeable<state_type>::type() );
        resized |= adjust_size_by_resizeability( m_dxdt2 , x , typename is_resizeable<state_type>::type() );
        resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() );

        for( size_t i = 0 ; i < m_k_max ; ++i )
            resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() );
        for( size_t i = 0 ; i < m_k_max+1 ; ++i )
            resized |= adjust_size_by_resizeability( m_mp_states[i] , x , typename is_resizeable<state_type>::type() );
        for( size_t i = 0 ; i < m_k_max+1 ; ++i )
            for( size_t j = 0 ; j < m_derivs[i].size() ; ++j )
                resized |= adjust_size_by_resizeability( m_derivs[i][j] , x , typename is_resizeable<deriv_type>::type() );
        for( size_t i = 0 ; i < 2*m_k_max+2 ; ++i )
            for( size_t j = 0 ; j < m_diffs[i].size() ; ++j )
                resized |= adjust_size_by_resizeability( m_diffs[i][j] , x , typename is_resizeable<deriv_type>::type() );

        return resized;
    }


    state_type& get_current_state( void )
    {
        return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
    }
    
    const state_type& get_current_state( void ) const
    {
        return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
    }
    
    state_type& get_old_state( void )
    {
        return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
    }
    
    const state_type& get_old_state( void ) const
    {
        return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
    }

    deriv_type& get_current_deriv( void )
    {
        return m_current_state_x1 ? m_dxdt1.m_v : m_dxdt2.m_v ;
    }
    
    const deriv_type& get_current_deriv( void ) const
    {
        return m_current_state_x1 ? m_dxdt1.m_v : m_dxdt2.m_v ;
    }
    
    deriv_type& get_old_deriv( void )
    {
        return m_current_state_x1 ? m_dxdt2.m_v : m_dxdt1.m_v ;
    }
    
    const deriv_type& get_old_deriv( void ) const
    {
        return m_current_state_x1 ? m_dxdt2.m_v : m_dxdt1.m_v ;
    }

    
    void toggle_current_state( void )
    {
        m_current_state_x1 = ! m_current_state_x1;
    }



    default_error_checker< value_type, algebra_type , operations_type > m_error_checker;
    modified_midpoint_dense_out< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint;

    time_type m_max_dt;

    bool m_control_interpolation;

    bool m_last_step_rejected;
    bool m_first;

    time_type m_t;
    time_type m_dt;
    time_type m_dt_last;
    time_type m_t_last;

    size_t m_current_k_opt;
    size_t m_k_final;

    algebra_type m_algebra;

    resizer_type m_resizer;

    wrapped_state_type m_x1 , m_x2;
    wrapped_deriv_type m_dxdt1 , m_dxdt2;
    wrapped_state_type m_err;
    bool m_current_state_x1;



    value_vector m_error; // errors of repeated midpoint steps and extrapolations
    int_vector m_interval_sequence; // stores the successive interval counts
    value_matrix m_coeff;
    int_vector m_cost; // costs for interval count
    value_vector m_facmin_table; // for precomputed facmin to save pow calls

    state_vector_type m_table; // sequence of states for extrapolation

    //for dense output:
    state_vector_type m_mp_states; // sequence of approximations of x at distance center
    deriv_table_type m_derivs; // table of function values
    deriv_table_type m_diffs; // table of function values

    //wrapped_state_type m_a1 , m_a2 , m_a3 , m_a4;

    value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2;
};



/********** DOXYGEN **********/

/**
 * \class bulirsch_stoer_dense_out
 * \brief The Bulirsch-Stoer algorithm.
 * 
 * The Bulirsch-Stoer is a controlled stepper that adjusts both step size
 * and order of the method. The algorithm uses the modified midpoint and
 * a polynomial extrapolation compute the solution. This class also provides
 * dense output facility.
 *
 * \tparam State The state type.
 * \tparam Value The value type.
 * \tparam Deriv The type representing the time derivative of the state.
 * \tparam Time The time representing the independent variable - the time.
 * \tparam Algebra The algebra type.
 * \tparam Operations The operations type.
 * \tparam Resizer The resizer policy type.
 */

    /**
     * \fn bulirsch_stoer_dense_out::bulirsch_stoer_dense_out( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt , bool control_interpolation )
     * \brief Constructs the bulirsch_stoer class, including initialization of 
     * the error bounds.
     *
     * \param eps_abs Absolute tolerance level.
     * \param eps_rel Relative tolerance level.
     * \param factor_x Factor for the weight of the state.
     * \param factor_dxdt Factor for the weight of the derivative.
     * \param control_interpolation Set true to additionally control the error of 
     * the interpolation.
     */

    /**
     * \fn bulirsch_stoer_dense_out::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , DerivOut &dxdt_new , time_type &dt )
     * \brief Tries to perform one step.
     *
     * This method tries to do one step with step size dt. If the error estimate
     * is to large, the step is rejected and the method returns fail and the 
     * step size dt is reduced. If the error estimate is acceptably small, the
     * step is performed, success is returned and dt might be increased to make 
     * the steps as large as possible. This method also updates t if a step is
     * performed. Also, the internal order of the stepper is adjusted if required.
     *
     * \param system The system function to solve, hence the r.h.s. of the ODE. 
     * It must fulfill the Simple System concept.
     * \param in The state of the ODE which should be solved.
     * \param dxdt The derivative of state.
     * \param t The value of the time. Updated if the step is successful.
     * \param out Used to store the result of the step.
     * \param dt The step size. Updated.
     * \return success if the step was accepted, fail otherwise.
     */

    /**
     * \fn bulirsch_stoer_dense_out::initialize( const StateType &x0 , const time_type &t0 , const time_type &dt0 )
     * \brief Initializes the dense output stepper.
     *
     * \param x0 The initial state.
     * \param t0 The initial time.
     * \param dt0 The initial time step.
     */

    /**
     * \fn bulirsch_stoer_dense_out::do_step( System system )
     * \brief Does one time step. This is the main method that should be used to 
     * integrate an ODE with this stepper.
     * \note initialize has to be called before using this method to set the
     * initial conditions x,t and the stepsize.
     * \param system The system function to solve, hence the r.h.s. of the
     * ordinary differential equation. It must fulfill the Simple System concept.
     * \return Pair with start and end time of the integration step.
     */

    /**
     * \fn bulirsch_stoer_dense_out::calc_state( time_type t , StateOut &x ) const
     * \brief Calculates the solution at an intermediate point within the last step
     * \param t The time at which the solution should be calculated, has to be
     * in the current time interval.
     * \param x The output variable where the result is written into.
     */

    /**
     * \fn bulirsch_stoer_dense_out::current_state( void ) const
     * \brief Returns the current state of the solution.
     * \return The current state of the solution x(t).
     */

    /**
     * \fn bulirsch_stoer_dense_out::current_time( void ) const
     * \brief Returns the current time of the solution.
     * \return The current time of the solution t.
     */

    /**
     * \fn bulirsch_stoer_dense_out::previous_state( void ) const
     * \brief Returns the last state of the solution.
     * \return The last state of the solution x(t-dt).
     */

    /**
     * \fn bulirsch_stoer_dense_out::previous_time( void ) const
     * \brief Returns the last time of the solution.
     * \return The last time of the solution t-dt.
     */

    /**
     * \fn bulirsch_stoer_dense_out::current_time_step( void ) const
     * \brief Returns the current step size.
     * \return The current step size.
     */

    /**
     * \fn bulirsch_stoer_dense_out::adjust_size( const StateIn &x )
     * \brief Adjust the size of all temporaries in the stepper manually.
     * \param x A state from which the size of the temporaries to be resized is deduced.
     */

}
}
}

#endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED