summaryrefslogtreecommitdiff
path: root/boost/multi_index/detail/rnd_index_loader.hpp
blob: 793c52177e3af7b096adf05171c834134f14fd46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* Copyright 2003-2008 Joaquin M Lopez Munoz.
 * Distributed under the Boost Software License, Version 1.0.
 * (See accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org/libs/multi_index for library home page.
 */

#ifndef BOOST_MULTI_INDEX_DETAIL_RND_INDEX_LOADER_HPP
#define BOOST_MULTI_INDEX_DETAIL_RND_INDEX_LOADER_HPP

#if defined(_MSC_VER)&&(_MSC_VER>=1200)
#pragma once
#endif

#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
#include <algorithm>
#include <boost/detail/allocator_utilities.hpp>
#include <boost/multi_index/detail/auto_space.hpp>
#include <boost/multi_index/detail/prevent_eti.hpp>
#include <boost/multi_index/detail/rnd_index_ptr_array.hpp>
#include <boost/noncopyable.hpp>
#include <cstddef>

namespace boost{

namespace multi_index{

namespace detail{

/* This class implements a serialization rearranger for random access
 * indices. In order to achieve O(n) performance, the following strategy
 * is followed: the nodes of the index are handled as if in a bidirectional
 * list, where the next pointers are stored in the original
 * random_access_index_ptr_array and the prev pointers are stored in
 * an auxiliary array. Rearranging of nodes in such a bidirectional list
 * is constant time. Once all the arrangements are performed (on destruction
 * time) the list is traversed in reverse order and
 * pointers are swapped and set accordingly so that they recover its
 * original semantics ( *(node->up())==node ) while retaining the
 * new order.
 */

template<typename Allocator>
class random_access_index_loader_base:private noncopyable
{
protected:
  typedef typename prevent_eti<
    Allocator,
    random_access_index_node_impl<
      typename boost::detail::allocator::rebind_to<
        Allocator,
        char
      >::type
    >
  >::type                                           node_impl_type;
  typedef typename node_impl_type::pointer          node_impl_pointer;
  typedef random_access_index_ptr_array<Allocator>  ptr_array;

  random_access_index_loader_base(const Allocator& al_,ptr_array& ptrs_):
    al(al_),
    ptrs(ptrs_),
    header(*ptrs.end()),
    prev_spc(al,0),
    preprocessed(false)
  {}

  ~random_access_index_loader_base()
  {
    if(preprocessed)
    {
      node_impl_pointer n=header;
      next(n)=n;

      for(std::size_t i=ptrs.size();i--;){
        n=prev(n);
        std::size_t d=position(n);
        if(d!=i){
          node_impl_pointer m=prev(next_at(i));
          std::swap(m->up(),n->up());
          next_at(d)=next_at(i);
          std::swap(prev_at(d),prev_at(i));
        }
        next(n)=n;
      }
    }
  }

  void rearrange(node_impl_pointer position,node_impl_pointer x)
  {
    preprocess(); /* only incur this penalty if rearrange() is ever called */
    if(position==node_impl_pointer(0))position=header;
    next(prev(x))=next(x);
    prev(next(x))=prev(x);
    prev(x)=position;
    next(x)=next(position);
    next(prev(x))=prev(next(x))=x;
  }

private:
  void preprocess()
  {
    if(!preprocessed){
      /* get space for the auxiliary prev array */
      auto_space<node_impl_pointer,Allocator> tmp(al,ptrs.size()+1);
      prev_spc.swap(tmp);

      /* prev_spc elements point to the prev nodes */
      std::rotate_copy(
        &*ptrs.begin(),&*ptrs.end(),&*ptrs.end()+1,&*prev_spc.data());

      /* ptrs elements point to the next nodes */
      std::rotate(&*ptrs.begin(),&*ptrs.begin()+1,&*ptrs.end()+1);

      preprocessed=true;
    }
  }

  std::size_t position(node_impl_pointer x)const
  {
    return (std::size_t)(x->up()-ptrs.begin());
  }

  node_impl_pointer& next_at(std::size_t n)const
  {
    return *ptrs.at(n);
  }

  node_impl_pointer& prev_at(std::size_t n)const
  {
    return *(prev_spc.data()+n);
  }

  node_impl_pointer& next(node_impl_pointer x)const
  {
    return *(x->up());
  }

  node_impl_pointer& prev(node_impl_pointer x)const
  {
    return prev_at(position(x));
  }

  Allocator                               al;
  ptr_array&                              ptrs;
  node_impl_pointer                       header;
  auto_space<node_impl_pointer,Allocator> prev_spc;
  bool                                    preprocessed;
};

template<typename Node,typename Allocator>
class random_access_index_loader:
  private random_access_index_loader_base<Allocator>
{
  typedef random_access_index_loader_base<Allocator> super;
  typedef typename super::node_impl_pointer          node_impl_pointer;
  typedef typename super::ptr_array                  ptr_array;

public:
  random_access_index_loader(const Allocator& al_,ptr_array& ptrs_):
    super(al_,ptrs_)
  {}

  void rearrange(Node* position,Node *x)
  {
    super::rearrange(position?position->impl():node_impl_pointer(0),x->impl());
  }
};

} /* namespace multi_index::detail */

} /* namespace multi_index */

} /* namespace boost */

#endif