summaryrefslogtreecommitdiff
path: root/boost/math/tools/roots.hpp
blob: 552f7f7ae3326d6a45cc8021827dcc37e6aafa72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP
#define BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP

#ifdef _MSC_VER
#pragma once
#endif
#include <boost/multiprecision/detail/number_base.hpp> // test for multiprecision types.
#include <boost/type_traits/is_complex.hpp> // test for complex types

#include <iostream>
#include <utility>
#include <boost/config/no_tr1/cmath.hpp>
#include <stdexcept>

#include <boost/math/tools/config.hpp>
#include <boost/cstdint.hpp>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4512)
#endif
#include <boost/math/tools/tuple.hpp>
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#include <boost/math/special_functions/sign.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/tools/toms748_solve.hpp>
#include <boost/math/policies/error_handling.hpp>

namespace boost{ namespace math{ namespace tools{

namespace detail{

namespace dummy{

   template<int n, class T>
   typename T::value_type get(const T&) BOOST_MATH_NOEXCEPT(T);
}

template <class Tuple, class T>
void unpack_tuple(const Tuple& t, T& a, T& b) BOOST_MATH_NOEXCEPT(T)
{
   using dummy::get;
   // Use ADL to find the right overload for get:
   a = get<0>(t);
   b = get<1>(t);
}
template <class Tuple, class T>
void unpack_tuple(const Tuple& t, T& a, T& b, T& c) BOOST_MATH_NOEXCEPT(T)
{
   using dummy::get;
   // Use ADL to find the right overload for get:
   a = get<0>(t);
   b = get<1>(t);
   c = get<2>(t);
}

template <class Tuple, class T>
inline void unpack_0(const Tuple& t, T& val) BOOST_MATH_NOEXCEPT(T)
{
   using dummy::get;
   // Rely on ADL to find the correct overload of get:
   val = get<0>(t);
}

template <class T, class U, class V>
inline void unpack_tuple(const std::pair<T, U>& p, V& a, V& b) BOOST_MATH_NOEXCEPT(T)
{
   a = p.first;
   b = p.second;
}
template <class T, class U, class V>
inline void unpack_0(const std::pair<T, U>& p, V& a) BOOST_MATH_NOEXCEPT(T)
{
   a = p.first;
}

template <class F, class T>
void handle_zero_derivative(F f,
                            T& last_f0,
                            const T& f0,
                            T& delta,
                            T& result,
                            T& guess,
                            const T& min,
                            const T& max) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   if(last_f0 == 0)
   {
      // this must be the first iteration, pretend that we had a
      // previous one at either min or max:
      if(result == min)
      {
         guess = max;
      }
      else
      {
         guess = min;
      }
      unpack_0(f(guess), last_f0);
      delta = guess - result;
   }
   if(sign(last_f0) * sign(f0) < 0)
   {
      // we've crossed over so move in opposite direction to last step:
      if(delta < 0)
      {
         delta = (result - min) / 2;
      }
      else
      {
         delta = (result - max) / 2;
      }
   }
   else
   {
      // move in same direction as last step:
      if(delta < 0)
      {
         delta = (result - max) / 2;
      }
      else
      {
         delta = (result - min) / 2;
      }
   }
}

} // namespace

template <class F, class T, class Tol, class Policy>
std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) BOOST_NOEXCEPT_IF(policies::is_noexcept_error_policy<Policy>::value && BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   T fmin = f(min);
   T fmax = f(max);
   if(fmin == 0)
   {
      max_iter = 2;
      return std::make_pair(min, min);
   }
   if(fmax == 0)
   {
      max_iter = 2;
      return std::make_pair(max, max);
   }

   //
   // Error checking:
   //
   static const char* function = "boost::math::tools::bisect<%1%>";
   if(min >= max)
   {
      return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function,
         "Arguments in wrong order in boost::math::tools::bisect (first arg=%1%)", min, pol));
   }
   if(fmin * fmax >= 0)
   {
      return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function,
         "No change of sign in boost::math::tools::bisect, either there is no root to find, or there are multiple roots in the interval (f(min) = %1%).", fmin, pol));
   }

   //
   // Three function invocations so far:
   //
   boost::uintmax_t count = max_iter;
   if(count < 3)
      count = 0;
   else
      count -= 3;

   while(count && (0 == tol(min, max)))
   {
      T mid = (min + max) / 2;
      T fmid = f(mid);
      if((mid == max) || (mid == min))
         break;
      if(fmid == 0)
      {
         min = max = mid;
         break;
      }
      else if(sign(fmid) * sign(fmin) < 0)
      {
         max = mid;
         fmax = fmid;
      }
      else
      {
         min = mid;
         fmin = fmid;
      }
      --count;
   }

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Bisection iteration, final count = " << max_iter << std::endl;

   static boost::uintmax_t max_count = 0;
   if(max_iter > max_count)
   {
      max_count = max_iter;
      std::cout << "Maximum iterations: " << max_iter << std::endl;
   }
#endif

   return std::make_pair(min, max);
}

template <class F, class T, class Tol>
inline std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter)  BOOST_NOEXCEPT_IF(policies::is_noexcept_error_policy<policies::policy<> >::value && BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   return bisect(f, min, max, tol, max_iter, policies::policy<>());
}

template <class F, class T, class Tol>
inline std::pair<T, T> bisect(F f, T min, T max, Tol tol) BOOST_NOEXCEPT_IF(policies::is_noexcept_error_policy<policies::policy<> >::value && BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return bisect(f, min, max, tol, m, policies::policy<>());
}


template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   BOOST_MATH_STD_USING

   T f0(0), f1, last_f0(0);
   T result = guess;

   T factor = static_cast<T>(ldexp(1.0, 1 - digits));
   T delta = tools::max_value<T>();
   T delta1 = tools::max_value<T>();
   T delta2 = tools::max_value<T>();

   boost::uintmax_t count(max_iter);

#ifdef BOOST_MATH_INSTRUMENT
	 std::cout << "Newton_raphson_iterate, guess = " << guess << ", min = " << min << ", max = " << max 
		 << ", digits = " << digits << ", max_iter = " << max_iter << std::endl;
#endif

   do{
      last_f0 = f0;
      delta2 = delta1;
      delta1 = delta;
      detail::unpack_tuple(f(result), f0, f1);
      --count;
      if(0 == f0)
         break;
      if(f1 == 0)
      {
         // Oops zero derivative!!!
#ifdef BOOST_MATH_INSTRUMENT
         std::cout << "Newton iteration, zero derivative found!" << std::endl;
#endif
         detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
      }
      else
      {
         delta = f0 / f1;
      }
#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Newton iteration " << max_iter - count << ", delta = " << delta << std::endl;
#endif
      if(fabs(delta * 2) > fabs(delta2))
      {
         // Last two steps haven't converged.
         T shift = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
         if ((result != 0) && (fabs(shift) > fabs(result)))
         {
            delta = sign(delta) * fabs(result) * 0.9; // Protect against huge jumps!
            //delta = sign(delta) * result; // Protect against huge jumps! Failed for negative result. https://github.com/boostorg/math/issues/216
         }
         else
            delta = shift;
         // reset delta1/2 so we don't take this branch next time round:
         delta1 = 3 * delta;
         delta2 = 3 * delta;
      }
      guess = result;
      result -= delta;
      if(result <= min)
      {
         delta = 0.5F * (guess - min);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      else if(result >= max)
      {
         delta = 0.5F * (guess - max);
         result = guess - delta;
         if((result == min) || (result == max))
            break;
      }
      // Update brackets:
      if(delta > 0)
         max = guess;
      else
         min = guess;
   }while(count && (fabs(result * factor) < fabs(delta)));

   max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
   std::cout << "Newton Raphson final iteration count = " << max_iter << std::endl;

   static boost::uintmax_t max_count = 0;
   if(max_iter > max_count)
   {
      max_count = max_iter;
      // std::cout << "Maximum iterations: " << max_iter << std::endl;
	    // Puzzled what this tells us, so commented out for now?
   }
#endif

   return result;
}

template <class F, class T>
inline T newton_raphson_iterate(F f, T guess, T min, T max, int digits) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return newton_raphson_iterate(f, guess, min, max, digits, m);
}

namespace detail{

   struct halley_step
   {
      template <class T>
      static T step(const T& /*x*/, const T& f0, const T& f1, const T& f2) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T))
      {
         using std::fabs;
         T denom = 2 * f0;
         T num = 2 * f1 - f0 * (f2 / f1);
         T delta;

         BOOST_MATH_INSTRUMENT_VARIABLE(denom);
         BOOST_MATH_INSTRUMENT_VARIABLE(num);

         if((fabs(num) < 1) && (fabs(denom) >= fabs(num) * tools::max_value<T>()))
         {
            // possible overflow, use Newton step:
            delta = f0 / f1;
         }
         else
            delta = denom / num;
         return delta;
      }
   };

   template <class F, class T>
   T bracket_root_towards_min(F f, T guess, const T& f0, T& min, T& max, boost::uintmax_t& count);

   template <class F, class T>
   T bracket_root_towards_max(F f, T guess, const T& f0, T& min, T& max, boost::uintmax_t& count)
   {
      using std::fabs;
      //
      // Move guess towards max until we bracket the root, updating min and max as we go:
      //
      T guess0 = guess;
      T multiplier = 2;
      T f_current = f0;
      if (fabs(min) < fabs(max))
      {
         while (--count && ((f_current < 0) == (f0 < 0)))
         {
            min = guess;
            guess *= multiplier;
            if (guess > max)
            {
               guess = max;
               f_current = -f_current;  // There must be a change of sign!
               break;
            }
            multiplier *= 2;
            unpack_0(f(guess), f_current);
         }
      }
      else
      {
         //
         // If min and max are negative we have to divide to head towards max:
         //
         while (--count && ((f_current < 0) == (f0 < 0)))
         {
            min = guess;
            guess /= multiplier;
            if (guess > max)
            {
               guess = max;
               f_current = -f_current;  // There must be a change of sign!
               break;
            }
            multiplier *= 2;
            unpack_0(f(guess), f_current);
         }
      }

      if (count)
      {
         max = guess;
         if (multiplier > 16)
            return (guess0 - guess) + bracket_root_towards_min(f, guess, f_current, min, max, count);
      }
      return guess0 - (max + min) / 2;
   }

   template <class F, class T>
   T bracket_root_towards_min(F f, T guess, const T& f0, T& min, T& max, boost::uintmax_t& count)
   {
      using std::fabs;
      //
      // Move guess towards min until we bracket the root, updating min and max as we go:
      //
      T guess0 = guess;
      T multiplier = 2;
      T f_current = f0;

      if (fabs(min) < fabs(max))
      {
         while (--count && ((f_current < 0) == (f0 < 0)))
         {
            max = guess;
            guess /= multiplier;
            if (guess < min)
            {
               guess = min;
               f_current = -f_current;  // There must be a change of sign!
               break;
            }
            multiplier *= 2;
            unpack_0(f(guess), f_current);
         }
      }
      else
      {
         //
         // If min and max are negative we have to multiply to head towards min:
         //
         while (--count && ((f_current < 0) == (f0 < 0)))
         {
            max = guess;
            guess *= multiplier;
            if (guess < min)
            {
               guess = min;
               f_current = -f_current;  // There must be a change of sign!
               break;
            }
            multiplier *= 2;
            unpack_0(f(guess), f_current);
         }
      }

      if (count)
      {
         min = guess;
         if (multiplier > 16)
            return (guess0 - guess) + bracket_root_towards_max(f, guess, f_current, min, max, count);
      }
      return guess0 - (max + min) / 2;
   }

   template <class Stepper, class F, class T>
   T second_order_root_finder(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
   {
      BOOST_MATH_STD_USING

#ifdef BOOST_MATH_INSTRUMENT
				std::cout << "Second order root iteration, guess = " << guess << ", min = " << min << ", max = " << max
				<< ", digits = " << digits << ", max_iter = " << max_iter << std::endl;
#endif

      T f0(0), f1, f2;
      T result = guess;

      T factor = ldexp(static_cast<T>(1.0), 1 - digits);
      T delta = (std::max)(T(10000000 * guess), T(10000000));  // arbitarily large delta
      T last_f0 = 0;
      T delta1 = delta;
      T delta2 = delta;
      bool out_of_bounds_sentry = false;

#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Second order root iteration, limit = " << factor << std::endl;
#endif

      boost::uintmax_t count(max_iter);

      do{
         last_f0 = f0;
         delta2 = delta1;
         delta1 = delta;
         detail::unpack_tuple(f(result), f0, f1, f2);
         --count;

         BOOST_MATH_INSTRUMENT_VARIABLE(f0);
         BOOST_MATH_INSTRUMENT_VARIABLE(f1);
         BOOST_MATH_INSTRUMENT_VARIABLE(f2);

         if(0 == f0)
            break;
         if(f1 == 0)
         {
            // Oops zero derivative!!!
#ifdef BOOST_MATH_INSTRUMENT
            std::cout << "Second order root iteration, zero derivative found!" << std::endl;
#endif
            detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
         }
         else
         {
            if(f2 != 0)
            {
               delta = Stepper::step(result, f0, f1, f2);
               if(delta * f1 / f0 < 0)
               {
                  // Oh dear, we have a problem as Newton and Halley steps
                  // disagree about which way we should move.  Probably
                  // there is cancelation error in the calculation of the
                  // Halley step, or else the derivatives are so small
                  // that their values are basically trash.  We will move
                  // in the direction indicated by a Newton step, but
                  // by no more than twice the current guess value, otherwise
                  // we can jump way out of bounds if we're not careful.
                  // See https://svn.boost.org/trac/boost/ticket/8314.
                  delta = f0 / f1;
                  if(fabs(delta) > 2 * fabs(guess))
                     delta = (delta < 0 ? -1 : 1) * 2 * fabs(guess);
               }
            }
            else
               delta = f0 / f1;
         }
#ifdef BOOST_MATH_INSTRUMENT
         std::cout << "Second order root iteration, delta = " << delta << std::endl;
#endif
         T convergence = fabs(delta / delta2);
         if((convergence > 0.8) && (convergence < 2))
         {
            // last two steps haven't converged.
            delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
            if ((result != 0) && (fabs(delta) > result))
               delta = sign(delta) * fabs(result) * 0.9; // protect against huge jumps!
            // reset delta2 so that this branch will *not* be taken on the
            // next iteration:
            delta2 = delta * 3;
            delta1 = delta * 3;
            BOOST_MATH_INSTRUMENT_VARIABLE(delta);
         }
         guess = result;
         result -= delta;
         BOOST_MATH_INSTRUMENT_VARIABLE(result);

         // check for out of bounds step:
         if(result < min)
         {
            T diff = ((fabs(min) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(min)))
               ? T(1000)
               : (fabs(min) < 1) && (fabs(tools::max_value<T>() * min) < fabs(result))
               ? ((min < 0) != (result < 0)) ? -tools::max_value<T>() : tools::max_value<T>() : T(result / min);
            if(fabs(diff) < 1)
               diff = 1 / diff;
            if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
            {
               // Only a small out of bounds step, lets assume that the result
               // is probably approximately at min:
               delta = 0.99f * (guess - min);
               result = guess - delta;
               out_of_bounds_sentry = true; // only take this branch once!
            }
            else
            {
               if (fabs(float_distance(min, max)) < 2)
               {
                  result = guess = (min + max) / 2;
                  break;
               }
               delta = bracket_root_towards_min(f, guess, f0, min, max, count);
               result = guess - delta;
               guess = min;
               continue;
            }
         }
         else if(result > max)
         {
            T diff = ((fabs(max) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(max))) ? T(1000) : T(result / max);
            if(fabs(diff) < 1)
               diff = 1 / diff;
            if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
            {
               // Only a small out of bounds step, lets assume that the result
               // is probably approximately at min:
               delta = 0.99f * (guess - max);
               result = guess - delta;
               out_of_bounds_sentry = true; // only take this branch once!
            }
            else
            {
               if (fabs(float_distance(min, max)) < 2)
               {
                  result = guess = (min + max) / 2;
                  break;
               }
               delta = bracket_root_towards_max(f, guess, f0, min, max, count);
               result = guess - delta;
               guess = min;
               continue;
            }
         }
         // update brackets:
         if(delta > 0)
            max = guess;
         else
            min = guess;
      } while(count && (fabs(result * factor) < fabs(delta)));

      max_iter -= count;

#ifdef BOOST_MATH_INSTRUMENT
      std::cout << "Second order root finder, final iteration count = " << max_iter << std::endl;
#endif

      return result;
   }
} // T second_order_root_finder
template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   return detail::second_order_root_finder<detail::halley_step>(f, guess, min, max, digits, max_iter);
}

template <class F, class T>
inline T halley_iterate(F f, T guess, T min, T max, int digits) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return halley_iterate(f, guess, min, max, digits, m);
}

namespace detail{

   struct schroder_stepper
   {
      template <class T>
      static T step(const T& x, const T& f0, const T& f1, const T& f2) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T))
      {
         using std::fabs;
         T ratio = f0 / f1;
         T delta;
         if((x != 0) && (fabs(ratio / x) < 0.1))
         {
            delta = ratio + (f2 / (2 * f1)) * ratio * ratio;
            // check second derivative doesn't over compensate:
            if(delta * ratio < 0)
               delta = ratio;
         }
         else
            delta = ratio;  // fall back to Newton iteration.
         return delta;
      }
   };

}

template <class F, class T>
T schroder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   return detail::second_order_root_finder<detail::schroder_stepper>(f, guess, min, max, digits, max_iter);
}

template <class F, class T>
inline T schroder_iterate(F f, T guess, T min, T max, int digits) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return schroder_iterate(f, guess, min, max, digits, m);
}
//
// These two are the old spelling of this function, retained for backwards compatibity just in case:
//
template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   return detail::second_order_root_finder<detail::schroder_stepper>(f, guess, min, max, digits, max_iter);
}

template <class F, class T>
inline T schroeder_iterate(F f, T guess, T min, T max, int digits) BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && noexcept(std::declval<F>()(std::declval<T>())))
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return schroder_iterate(f, guess, min, max, digits, m);
}

#ifndef BOOST_NO_CXX11_AUTO_DECLARATIONS
/*
 * Why do we set the default maximum number of iterations to the number of digits in the type?
 * Because for double roots, the number of digits increases linearly with the number of iterations,
 * so this default should recover full precision even in this somewhat pathological case.
 * For isolated roots, the problem is so rapidly convergent that this doesn't matter at all.
 */
template<class Complex, class F>
Complex complex_newton(F g, Complex guess, int max_iterations=std::numeric_limits<typename Complex::value_type>::digits)
{
    typedef typename Complex::value_type Real;
    using std::norm;
    using std::abs;
    using std::max;
    // z0, z1, and z2 cannot be the same, in case we immediately need to resort to Muller's Method:
    Complex z0 = guess + Complex(1,0);
    Complex z1 = guess + Complex(0,1);
    Complex z2 = guess;

    do {
       auto pair = g(z2);
       if (norm(pair.second) == 0)
       {
           // Muller's method. Notation follows Numerical Recipes, 9.5.2:
           Complex q = (z2 - z1)/(z1 - z0);
           auto P0 = g(z0);
           auto P1 = g(z1);
           Complex qp1 = static_cast<Complex>(1)+q;
           Complex A = q*(pair.first - qp1*P1.first + q*P0.first);

           Complex B = (static_cast<Complex>(2)*q+static_cast<Complex>(1))*pair.first - qp1*qp1*P1.first +q*q*P0.first;
           Complex C = qp1*pair.first;
           Complex rad = sqrt(B*B - static_cast<Complex>(4)*A*C);
           Complex denom1 = B + rad;
           Complex denom2 = B - rad;
           Complex correction = (z1-z2)*static_cast<Complex>(2)*C;
           if (norm(denom1) > norm(denom2))
           {
               correction /= denom1;
           }
           else
           {
               correction /= denom2;
           }

           z0 = z1;
           z1 = z2;
           z2 = z2 + correction;
       }
       else
       {
           z0 = z1;
           z1 = z2;
           z2 = z2  - (pair.first/pair.second);
       }

       // See: https://math.stackexchange.com/questions/3017766/constructing-newton-iteration-converging-to-non-root
       // If f' is continuous, then convergence of x_n -> x* implies f(x*) = 0.
       // This condition approximates this convergence condition by requiring three consecutive iterates to be clustered.
       Real tol = max(abs(z2)*std::numeric_limits<Real>::epsilon(), std::numeric_limits<Real>::epsilon());
       bool real_close = abs(z0.real() - z1.real()) < tol && abs(z0.real() - z2.real()) < tol && abs(z1.real() - z2.real()) < tol;
       bool imag_close = abs(z0.imag() - z1.imag()) < tol && abs(z0.imag() - z2.imag()) < tol && abs(z1.imag() - z2.imag()) < tol;
       if (real_close && imag_close)
       {
           return z2;
       }

   } while(max_iterations--);

    // The idea is that if we can get abs(f) < eps, we should, but if we go through all these iterations
    // and abs(f) < sqrt(eps), then roundoff error simply does not allow that we can evaluate f to < eps
    // This is somewhat awkward as it isn't scale invariant, but using the Daubechies coefficient example code,
    // I found this condition generates correct roots, whereas the scale invariant condition discussed here:
    // https://scicomp.stackexchange.com/questions/30597/defining-a-condition-number-and-termination-criteria-for-newtons-method
    // allows nonroots to be passed off as roots.
    auto pair = g(z2);
    if (abs(pair.first) < sqrt(std::numeric_limits<Real>::epsilon()))
    {
        return z2;
    }

    return {std::numeric_limits<Real>::quiet_NaN(),
            std::numeric_limits<Real>::quiet_NaN()};
}
#endif


#if !defined(BOOST_NO_CXX17_IF_CONSTEXPR)
// https://stackoverflow.com/questions/48979861/numerically-stable-method-for-solving-quadratic-equations/50065711
namespace detail
{
    template<class T>
    inline T discriminant(T const & a, T const & b, T const & c)
    {
        T w = 4*a*c;
        T e = std::fma(-c, 4*a, w);
        T f = std::fma(b, b, -w);
        return f + e;
    }
}

template<class T>
auto quadratic_roots(T const& a, T const& b, T const& c)
{
    using std::copysign;
    using std::sqrt;
    if constexpr (std::is_integral<T>::value)
    {
        // What I want is to write:
        // return quadratic_roots(double(a), double(b), double(c));
        // but that doesn't compile.
        double nan = std::numeric_limits<double>::quiet_NaN();
        if(a==0)
        {
            if (b==0 && c != 0)
            {
                return std::pair<double, double>(nan, nan);
            }
            else if (b==0 && c==0)
            {
                return std::pair<double, double>(0,0);
            }
            return std::pair<double, double>(-c/b, -c/b);
        }
        if (b==0)
        {
            double x0_sq = -double(c)/double(a);
            if (x0_sq < 0) {
                return std::pair<double, double>(nan, nan);
            }
            double x0 = sqrt(x0_sq);
            return std::pair<double, double>(-x0,x0);
        }
        double discriminant = detail::discriminant(double(a), double(b), double(c));
        if (discriminant < 0)
        {
            return std::pair<double, double>(nan, nan);
        }
        double q = -(b + copysign(sqrt(discriminant), double(b)))/T(2);
        double x0 = q/a;
        double x1 = c/q;
        if (x0 < x1) {
            return std::pair<double, double>(x0, x1);
        }
        return std::pair<double, double>(x1, x0);
    }
    else if constexpr (std::is_floating_point<T>::value)
    {
        T nan = std::numeric_limits<T>::quiet_NaN();
        if(a==0)
        {
            if (b==0 && c != 0)
            {
                return std::pair<T, T>(nan, nan);
            }
            else if (b==0 && c==0)
            {
                return std::pair<T, T>(0,0);
            }
            return std::pair<T, T>(-c/b, -c/b);
        }
        if (b==0)
        {
            T x0_sq = -c/a;
            if (x0_sq < 0) {
                return std::pair<T, T>(nan, nan);
            }
            T x0 = sqrt(x0_sq);
            return std::pair<T, T>(-x0,x0);
        }
        T discriminant = detail::discriminant(a, b, c);
        // Is there a sane way to flush very small negative values to zero?
        // If there is I don't know of it.
        if (discriminant < 0)
        {
            return std::pair<T, T>(nan, nan);
        }
        T q = -(b + copysign(sqrt(discriminant), b))/T(2);
        T x0 = q/a;
        T x1 = c/q;
        if (x0 < x1)
        {
            return std::pair<T, T>(x0, x1);
        }
        return std::pair<T, T>(x1, x0);
    }
    else if constexpr (boost::is_complex<T>::value || boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_complex)
    {
        typename T::value_type nan = std::numeric_limits<typename T::value_type>::quiet_NaN();
        if(a.real()==0 && a.imag() ==0)
        {
            using std::norm;
            if (b.real()==0 && b.imag() && norm(c) != 0)
            {
                return std::pair<T, T>({nan, nan}, {nan, nan});
            }
            else if (b.real()==0 && b.imag() && c.real() ==0 && c.imag() == 0)
            {
                return std::pair<T, T>({0,0},{0,0});
            }
            return std::pair<T, T>(-c/b, -c/b);
        }
        if (b.real()==0 && b.imag() == 0)
        {
            T x0_sq = -c/a;
            T x0 = sqrt(x0_sq);
            return std::pair<T, T>(-x0, x0);
        }
        // There's no fma for complex types:
        T discriminant = b*b - T(4)*a*c;
        T q = -(b + sqrt(discriminant))/T(2);
        return std::pair<T, T>(q/a, c/q);
    }
    else // Most likely the type is a boost.multiprecision.
    {    //There is no fma for multiprecision, and in addition it doesn't seem to be useful, so revert to the naive computation.
        T nan = std::numeric_limits<T>::quiet_NaN();
        if(a==0)
        {
            if (b==0 && c != 0)
            {
                return std::pair<T, T>(nan, nan);
            }
            else if (b==0 && c==0)
            {
                return std::pair<T, T>(0,0);
            }
            return std::pair<T, T>(-c/b, -c/b);
        }
        if (b==0)
        {
            T x0_sq = -c/a;
            if (x0_sq < 0) {
                return std::pair<T, T>(nan, nan);
            }
            T x0 = sqrt(x0_sq);
            return std::pair<T, T>(-x0,x0);
        }
        T discriminant = b*b - 4*a*c;
        if (discriminant < 0)
        {
            return std::pair<T, T>(nan, nan);
        }
        T q = -(b + copysign(sqrt(discriminant), b))/T(2);
        T x0 = q/a;
        T x1 = c/q;
        if (x0 < x1)
        {
            return std::pair<T, T>(x0, x1);
        }
        return std::pair<T, T>(x1, x0);
    }
}
#endif

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP