summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/legendre_stieltjes.hpp
blob: 5d681988707abbfda40d14072ee38e4c8cad980a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP
#define BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP

/*
 * Constructs the Legendre-Stieltjes polynomial of degree m.
 * The Legendre-Stieltjes polynomials are used to create extensions for Gaussian quadratures,
 * commonly called "Gauss-Konrod" quadratures.
 *
 * References:
 * Patterson, TNL. "The optimum addition of points to quadrature formulae." Mathematics of Computation 22.104 (1968): 847-856.
 */

#include <iostream>
#include <vector>
#include <boost/math/tools/roots.hpp>
#include <boost/math/special_functions/legendre.hpp>

namespace boost{
namespace math{

template<class Real>
class legendre_stieltjes
{
public:
    legendre_stieltjes(size_t m)
    {
        if (m == 0)
        {
           throw std::domain_error("The Legendre-Stieltjes polynomial is defined for order m > 0.\n");
        }
        m_m = m;
        std::ptrdiff_t n = m - 1;
        std::ptrdiff_t q;
        std::ptrdiff_t r;
        bool odd = n & 1;
        if (odd)
        {
           q = 1;
           r = (n-1)/2 + 2;
        }
        else
        {
           q = 0;
           r = n/2 + 1;
        }
        m_a.resize(r + 1);
        // We'll keep the ones-based indexing at the cost of storing a superfluous element
        // so that we can follow Patterson's notation exactly.
        m_a[r] = static_cast<Real>(1);
        // Make sure using the zero index is a bug:
        m_a[0] = std::numeric_limits<Real>::quiet_NaN();

        for (std::ptrdiff_t k = 1; k < r; ++k)
        {
            Real ratio = 1;
            m_a[r - k] = 0;
            for (std::ptrdiff_t i = r + 1 - k; i <= r; ++i)
            {
                // See Patterson, equation 12
                std::ptrdiff_t num = (n - q + 2*(i + k - 1))*(n + q + 2*(k - i + 1))*(n-1-q+2*(i-k))*(2*(k+i-1) -1 -q -n);
                std::ptrdiff_t den = (n - q + 2*(i - k))*(2*(k + i - 1) - q - n)*(n + 1 + q + 2*(k - i))*(n - 1 - q + 2*(i + k));
                ratio *= static_cast<Real>(num)/static_cast<Real>(den);
                m_a[r - k] -= ratio*m_a[i];
            }
        }
    }


    Real norm_sq() const
    {
        Real t = 0;
        bool odd = m_m & 1;
        for (size_t i = 1; i < m_a.size(); ++i)
        {
            if(odd)
            {
                t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-1);
            }
            else
            {
                t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-3);
            }
        }
        return t;
    }


    Real operator()(Real x) const
    {
        // Trivial implementation:
        // Em += m_a[i]*legendre_p(2*i - 1, x);  m odd
        // Em += m_a[i]*legendre_p(2*i - 2, x);  m even
        size_t r = m_a.size() - 1;
        Real p0 = 1;
        Real p1 = x;

        Real Em;
        bool odd = m_m & 1;
        if (odd)
        {
            Em = m_a[1]*p1;
        }
        else
        {
            Em = m_a[1]*p0;
        }

        unsigned n = 1;
        for (size_t i = 2; i <= r; ++i)
        {
            std::swap(p0, p1);
            p1 = boost::math::legendre_next(n, x, p0, p1);
            ++n;
            if (!odd)
            {
               Em += m_a[i]*p1;
            }
            std::swap(p0, p1);
            p1 = boost::math::legendre_next(n, x, p0, p1);
            ++n;
            if(odd)
            {
                Em += m_a[i]*p1;
            }
        }
        return Em;
    }


    Real prime(Real x) const
    {
        Real Em_prime = 0;

        for (size_t i = 1; i < m_a.size(); ++i)
        {
            if(m_m & 1)
            {
                Em_prime += m_a[i]*detail::legendre_p_prime_imp(2*i - 1, x, policies::policy<>());
            }
            else
            {
                Em_prime += m_a[i]*detail::legendre_p_prime_imp(2*i - 2, x, policies::policy<>());
            }
        }
        return Em_prime;
    }

    std::vector<Real> zeros() const
    {
        using boost::math::constants::half;

        std::vector<Real> stieltjes_zeros;
        std::vector<Real> legendre_zeros = legendre_p_zeros<Real>(m_m - 1);
        int k;
        if (m_m & 1)
        {
            stieltjes_zeros.resize(legendre_zeros.size() + 1, std::numeric_limits<Real>::quiet_NaN());
            stieltjes_zeros[0] = 0;
            k = 1;
        }
        else
        {
            stieltjes_zeros.resize(legendre_zeros.size(), std::numeric_limits<Real>::quiet_NaN());
            k = 0;
        }

        while (k < (int)stieltjes_zeros.size())
        {
            Real lower_bound;
            Real upper_bound;
            if (m_m & 1)
            {
                lower_bound = legendre_zeros[k - 1];
                if (k == (int)legendre_zeros.size())
                {
                    upper_bound = 1;
                }
                else
                {
                    upper_bound = legendre_zeros[k];
                }
            }
            else
            {
                lower_bound = legendre_zeros[k];
                if (k == (int)legendre_zeros.size() - 1)
                {
                    upper_bound = 1;
                }
                else
                {
                    upper_bound = legendre_zeros[k+1];
                }
            }

            // The root bracketing is not very tight; to keep weird stuff from happening
            // in the Newton's method, let's tighten up the tolerance using a few bisections.
            boost::math::tools::eps_tolerance<Real> tol(6);
            auto g = [&](Real t) { return this->operator()(t); };
            auto p = boost::math::tools::bisect(g, lower_bound, upper_bound, tol);

            Real x_nk_guess = p.first + (p.second - p.first)*half<Real>();
            boost::uintmax_t number_of_iterations = 500;

            auto f = [&] (Real x) { Real Pn = this->operator()(x);
                                    Real Pn_prime = this->prime(x);
                                    return std::pair<Real, Real>(Pn, Pn_prime); };

            const Real x_nk = boost::math::tools::newton_raphson_iterate(f, x_nk_guess,
                                                  p.first, p.second,
                                                  2*std::numeric_limits<Real>::digits10,
                                                  number_of_iterations);

            BOOST_ASSERT(p.first < x_nk);
            BOOST_ASSERT(x_nk < p.second);
            stieltjes_zeros[k] = x_nk;
            ++k;
        }
        return stieltjes_zeros;
    }

private:
    // Coefficients of Legendre expansion
    std::vector<Real> m_a;
    int m_m;
};

}}
#endif