summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/ellint_rf.hpp
blob: a8a7b4b21796c344956c13c96f06073ea5a2f5ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//  Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
//  History:
//  XZ wrote the original of this file as part of the Google
//  Summer of Code 2006.  JM modified it to fit into the
//  Boost.Math conceptual framework better, and to handle
//  types longer than 80-bit reals.
//  Updated 2015 to use Carlson's latest methods.
//
#ifndef BOOST_MATH_ELLINT_RF_HPP
#define BOOST_MATH_ELLINT_RF_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/ellint_rc.hpp>

// Carlson's elliptic integral of the first kind
// R_F(x, y, z) = 0.5 * \int_{0}^{\infty} [(t+x)(t+y)(t+z)]^{-1/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)

namespace boost { namespace math { namespace detail{

   template <typename T, typename Policy>
   T ellint_rf_imp(T x, T y, T z, const Policy& pol)
   {
      BOOST_MATH_STD_USING
      using namespace boost::math;
      using std::swap;

      static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)";

      if(x < 0 || y < 0 || z < 0)
      {
         return policies::raise_domain_error<T>(function,
            "domain error, all arguments must be non-negative, "
            "only sensible result is %1%.",
            std::numeric_limits<T>::quiet_NaN(), pol);
      }
      if(x + y == 0 || y + z == 0 || z + x == 0)
      {
         return policies::raise_domain_error<T>(function,
            "domain error, at most one argument can be zero, "
            "only sensible result is %1%.",
            std::numeric_limits<T>::quiet_NaN(), pol);
      }
      //
      // Special cases from http://dlmf.nist.gov/19.20#i
      //
      if(x == y)
      {
         if(x == z)
         {
            // x, y, z equal:
            return 1 / sqrt(x);
         }
         else
         {
            // 2 equal, x and y:
            if(z == 0)
               return constants::pi<T>() / (2 * sqrt(x));
            else
               return ellint_rc_imp(z, x, pol);
         }
      }
      if(x == z)
      {
         if(y == 0)
            return constants::pi<T>() / (2 * sqrt(x));
         else
            return ellint_rc_imp(y, x, pol);
      }
      if(y == z)
      {
         if(x == 0)
            return constants::pi<T>() / (2 * sqrt(y));
         else
            return ellint_rc_imp(x, y, pol);
      }
      if(x == 0)
         swap(x, z);
      else if(y == 0)
         swap(y, z);
      if(z == 0)
      {
         //
         // Special case for one value zero:
         //
         T xn = sqrt(x);
         T yn = sqrt(y);

         while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
         {
            T t = sqrt(xn * yn);
            xn = (xn + yn) / 2;
            yn = t;
         }
         return constants::pi<T>() / (xn + yn);
      }

      T xn = x;
      T yn = y;
      T zn = z;
      T An = (x + y + z) / 3;
      T A0 = An;
      T Q = pow(3 * boost::math::tools::epsilon<T>(), T(-1) / 8) * (std::max)((std::max)(fabs(An - xn), fabs(An - yn)), fabs(An - zn));
      T fn = 1;


      // duplication
      unsigned k = 1;
      for(; k < boost::math::policies::get_max_series_iterations<Policy>(); ++k)
      {
         T root_x = sqrt(xn);
         T root_y = sqrt(yn);
         T root_z = sqrt(zn);
         T lambda = root_x * root_y + root_x * root_z + root_y * root_z;
         An = (An + lambda) / 4;
         xn = (xn + lambda) / 4;
         yn = (yn + lambda) / 4;
         zn = (zn + lambda) / 4;
         Q /= 4;
         fn *= 4;
         if(Q < fabs(An))
            break;
      }
      // Check to see if we gave up too soon:
      policies::check_series_iterations<T>(function, k, pol);
      BOOST_MATH_INSTRUMENT_VARIABLE(k);

      T X = (A0 - x) / (An * fn);
      T Y = (A0 - y) / (An * fn);
      T Z = -X - Y;

      // Taylor series expansion to the 7th order
      T E2 = X * Y - Z * Z;
      T E3 = X * Y * Z;
      return (1 + E3 * (T(1) / 14 + 3 * E3 / 104) + E2 * (T(-1) / 10 + E2 / 24 - (3 * E3) / 44 - 5 * E2 * E2 / 208 + E2 * E3 / 16)) / sqrt(An);
   }

} // namespace detail

template <class T1, class T2, class T3, class Policy>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rf(T1 x, T2 y, T3 z, const Policy& pol)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(
      detail::ellint_rf_imp(
         static_cast<value_type>(x),
         static_cast<value_type>(y),
         static_cast<value_type>(z), pol), "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)");
}

template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rf(T1 x, T2 y, T3 z)
{
   return ellint_rf(x, y, z, policies::policy<>());
}

}} // namespaces

#endif // BOOST_MATH_ELLINT_RF_HPP