summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/ellint_rf.hpp
blob: ac5725783aaa9315490c86ecf84d08fb8a030265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//  Copyright (c) 2006 Xiaogang Zhang
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
//  History:
//  XZ wrote the original of this file as part of the Google
//  Summer of Code 2006.  JM modified it to fit into the
//  Boost.Math conceptual framework better, and to handle
//  types longer than 80-bit reals.
//
#ifndef BOOST_MATH_ELLINT_RF_HPP
#define BOOST_MATH_ELLINT_RF_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>

#include <boost/math/policies/error_handling.hpp>

// Carlson's elliptic integral of the first kind
// R_F(x, y, z) = 0.5 * \int_{0}^{\infty} [(t+x)(t+y)(t+z)]^{-1/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)

namespace boost { namespace math { namespace detail{

template <typename T, typename Policy>
T ellint_rf_imp(T x, T y, T z, const Policy& pol)
{
    T value, X, Y, Z, E2, E3, u, lambda, tolerance;
    unsigned long k;

    BOOST_MATH_STD_USING
    using namespace boost::math::tools;

    static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)";

    if (x < 0 || y < 0 || z < 0)
    {
       return policies::raise_domain_error<T>(function,
            "domain error, all arguments must be non-negative, "
            "only sensible result is %1%.",
            std::numeric_limits<T>::quiet_NaN(), pol);
    }
    if (x + y == 0 || y + z == 0 || z + x == 0)
    {
       return policies::raise_domain_error<T>(function,
            "domain error, at most one argument can be zero, "
            "only sensible result is %1%.",
            std::numeric_limits<T>::quiet_NaN(), pol);
    }

    // Carlson scales error as the 6th power of tolerance,
    // but this seems not to work for types larger than
    // 80-bit reals, this heuristic seems to work OK:
    if(policies::digits<T, Policy>() > 64)
    {
      tolerance = pow(tools::epsilon<T>(), T(1)/4.25f);
      BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
    }
    else
    {
      tolerance = pow(4*tools::epsilon<T>(), T(1)/6);
      BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
    }

    // duplication
    k = 1;
    do
    {
        u = (x + y + z) / 3;
        X = (u - x) / u;
        Y = (u - y) / u;
        Z = (u - z) / u;

        // Termination condition: 
        if ((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) 
           break; 

        T sx = sqrt(x);
        T sy = sqrt(y);
        T sz = sqrt(z);
        lambda = sy * (sx + sz) + sz * sx;
        x = (x + lambda) / 4;
        y = (y + lambda) / 4;
        z = (z + lambda) / 4;
        ++k;
    }
    while(k < policies::get_max_series_iterations<Policy>());

    // Check to see if we gave up too soon:
    policies::check_series_iterations<T>(function, k, pol);
    BOOST_MATH_INSTRUMENT_VARIABLE(k);

    // Taylor series expansion to the 5th order
    E2 = X * Y - Z * Z;
    E3 = X * Y * Z;
    value = (1 + E2*(E2/24 - E3*T(3)/44 - T(0.1)) + E3/14) / sqrt(u);
    BOOST_MATH_INSTRUMENT_VARIABLE(value);

    return value;
}

} // namespace detail

template <class T1, class T2, class T3, class Policy>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rf(T1 x, T2 y, T3 z, const Policy& pol)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(
      detail::ellint_rf_imp(
         static_cast<value_type>(x),
         static_cast<value_type>(y),
         static_cast<value_type>(z), pol), "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)");
}

template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rf(T1 x, T2 y, T3 z)
{
   return ellint_rf(x, y, z, policies::policy<>());
}

}} // namespaces

#endif // BOOST_MATH_ELLINT_RF_HPP