summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/detail/polygamma.hpp
blob: 4ef503bf7c988a3375b3749f0e061a8c11644386 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

///////////////////////////////////////////////////////////////////////////////
//  Copyright 2013 Nikhar Agrawal
//  Copyright 2013 Christopher Kormanyos
//  Copyright 2014 John Maddock
//  Copyright 2013 Paul Bristow
//  Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
  #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_

  #include <cmath>
  #include <limits>
  #include <boost/cstdint.hpp>
  #include <boost/math/policies/policy.hpp>
  #include <boost/math/special_functions/bernoulli.hpp>
  #include <boost/math/special_functions/trunc.hpp>
  #include <boost/math/special_functions/zeta.hpp>
  #include <boost/math/special_functions/digamma.hpp>
  #include <boost/math/special_functions/sin_pi.hpp>
  #include <boost/math/special_functions/cos_pi.hpp>
  #include <boost/math/special_functions/pow.hpp>
  #include <boost/mpl/if.hpp>
  #include <boost/mpl/int.hpp>
  #include <boost/static_assert.hpp>
  #include <boost/type_traits/is_convertible.hpp>

  namespace boost { namespace math { namespace detail{

  template<class T, class Policy>
  T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
  {
     // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
     BOOST_MATH_STD_USING
     //
     // sum       == current value of accumulated sum.
     // term      == value of current term to be added to sum.
     // part_term == value of current term excluding the Bernoulli number part
     //
     if(n + x == x)
     {
        // x is crazy large, just concentrate on the first part of the expression and use logs:
        if(n == 1) return 1 / x;
        T nlx = n * log(x);
        if((nlx < tools::log_max_value<T>()) && (n < max_factorial<T>::value))
           return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1) * pow(x, -n);
        else
         return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
     }
     T term, sum, part_term;
     T x_squared = x * x;
     //
     // Start by setting part_term to:
     //
     // (n-1)! / x^(n+1)
     //
     // which is common to both the first term of the series (with k = 1)
     // and to the leading part.  
     // We can then get to the leading term by:
     //
     // part_term * (n + 2 * x) / 2
     //
     // and to the first term in the series 
     // (excluding the Bernoulli number) by:
     //
     // part_term n * (n + 1) / (2x)
     //
     // If either the factorial would overflow,
     // or the power term underflows, this just gets set to 0 and then we
     // know that we have to use logs for the initial terms:
     //
     part_term = ((n > boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>())) 
        ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, -n - 1));
     if(part_term == 0)
     {
        // Either n is very large, or the power term underflows,
        // set the initial values of part_term, term and sum via logs:
        part_term = boost::math::lgamma(n, pol) - (n + 1) * log(x);
        sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
        part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
        part_term = exp(part_term);
     }
     else
     {
        sum = part_term * (n + 2 * x) / 2;
        part_term *= (T(n) * (n + 1)) / 2;
        part_term /= x;
     }
     //
     // If the leading term is 0, so is the result:
     //
     if(sum == 0)
        return sum;

     for(unsigned k = 1;;)
     {
        term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
        sum += term;
        //
        // Normal termination condition:
        //
        if(fabs(term / sum) < tools::epsilon<T>())
           break;
        //
        // Increment our counter, and move part_term on to the next value:
        //
        ++k;
        part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
        part_term /= (2 * k - 1) * 2 * k;
        part_term /= x_squared;
        //
        // Emergency get out termination condition:
        //
        if(k > policies::get_max_series_iterations<Policy>())
        {
           return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
        }
     }
     
     if((n - 1) & 1)
        sum = -sum;

     return sum;
  }

  template<class T, class Policy>
  T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
  {
    // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/

    // Use N = (0.4 * digits) + (4 * n) for target value for x:
    BOOST_MATH_STD_USING
    const int d4d  = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
    const int N = d4d + (4 * n);
    const int m    = n;
    const int iter = N - itrunc(x);

    if(iter > (int)policies::get_max_series_iterations<Policy>())
       return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + boost::lexical_cast<std::string>(n) + " and x = %1%").c_str(), x, pol);

    const int minus_m_minus_one = -m - 1;

    T z(x);
    T sum0(0);
    T z_plus_k_pow_minus_m_minus_one(0);

    // Forward recursion to larger x, need to check for overflow first though:
    if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
    {
       for(int k = 1; k <= iter; ++k)
       {
          z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
          sum0 += z_plus_k_pow_minus_m_minus_one;
          z += 1;
       }
       sum0 *= boost::math::factorial<T>(n);
    }
    else
    {
       for(int k = 1; k <= iter; ++k)
       {
          T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
          sum0 += exp(log_term);
          z += 1;
       }
    }
    if((n - 1) & 1)
       sum0 = -sum0;

    return sum0 + polygamma_atinfinityplus(n, z, pol, function);
  }

  template <class T, class Policy>
  T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
  {
     BOOST_MATH_STD_USING
     //
     // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
     // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
     // we get an alternating series for polygamma when x is small in terms of zeta functions of
     // integer arguments (which are easy to evaluate, at least when the integer is even).
     //
     // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
     //
     T scale = boost::math::factorial<T>(n, pol);
     //
     // "factorial_part" contains everything except the zeta function
     // evaluations in each term:
     //
     T factorial_part = 1;
     //
     // "prefix" is what we'll be adding the accumulated sum to, it will
     // be n! / z^(n+1), but since we're scaling by n! it's just 
     // 1 / z^(n+1) for now:
     //
     T prefix = pow(x, n + 1);
     if(prefix == 0)
        return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
     prefix = 1 / prefix;
     //
     // First term in the series is necessarily < zeta(2) < 2, so
     // ignore the sum if it will have no effect on the result anyway:
     //
     if(prefix > 2 / policies::get_epsilon<T, Policy>())
        return ((n & 1) ? 1 : -1) * 
         (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, 0, pol) : prefix * scale);
     //
     // As this is an alternating series we could accelerate it using 
     // "Convergence Acceleration of Alternating Series",
     // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
     // In practice however, it appears not to make any difference to the number of terms
     // required except in some edge cases which are filtered out anyway before we get here.
     //
     T sum = prefix;
     for(unsigned k = 0;;)
     {
        // Get the k'th term:
        T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
        sum += term;
        // Termination condition:
        if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
           break;
        //
        // Move on k and factorial_part:
        //
        ++k;
        factorial_part *= (-x * (n + k)) / k;
        //
        // Last chance exit:
        //
        if(k > policies::get_max_series_iterations<Policy>())
           return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
     }
     //
     // We need to multiply by the scale, at each stage checking for oveflow:
     //
     if(boost::math::tools::max_value<T>() / scale < sum)
        return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
     sum *= scale;
     return n & 1 ? sum : -sum;
  }

  //
  // Helper function which figures out which slot our coefficient is in
  // given an angle multiplier for the cosine term of power:
  //
  template <class Table>
  typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
  {
     return table[row][power / 2];
  }



  template <class T, class Policy>
  T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
  {
     BOOST_MATH_STD_USING
     // Return n'th derivative of cot(pi*x) at x, these are simply
     // tabulated for up to n = 9, beyond that it is possible to
     // calculate coefficients as follows:
     //
     // The general form of each derivative is:
     //
     // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
     //
     // With constant C[0,1] = -1 and all other C[k,n] = 0;
     // Then for each k < n+1:
     // C[k-1, n+1]  -= k * C[k, n];
     // C[k+1, n+1]  += (k-n-1) * C[k, n];
     //
     // Note that there are many different ways of representing this derivative thanks to
     // the many trigomonetric identies available.  In particular, the sum of powers of
     // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
     // plug the derivative into Mathematica this is the form it will give.  The two
     // forms are related via the Chebeshev polynomials of the first kind and
     // T_n(cos(x)) = cos(n x).  The polynomial form has the great advantage that
     // all the cosine terms are zero at half integer arguments - right where this
     // function has it's minumum - thus avoiding cancellation error in this region.
     //
     // And finally, since every other term in the polynomials is zero, we can save
     // space by only storing the non-zero terms.  This greatly complexifies
     // subscripting the tables in the calculation, but halves the storage space
     // (and complexity for that matter).
     //
     T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
     T c = boost::math::cos_pi(x, pol);
     switch(n)
     {
     case 1:
        return -constants::pi<T, Policy>() / (s * s);
     case 2:
     {
        return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
     }
     case 3:
     {
        int P[] = { -2, -4 };
        return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
     }
     case 4:
     {
        int P[] = { 16, 8 };
        return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
     }
     case 5:
     {
        int P[] = { -16, -88, -16 };
        return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
     }
     case 6:
     {
        int P[] = { 272, 416, 32 };
        return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
     }
     case 7:
     {
        int P[] = { -272, -2880, -1824, -64 };
        return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
     }
     case 8:
     {
        int P[] = { 7936, 24576, 7680, 128 };
        return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
     }
     case 9:
     {
        int P[] = { -7936, -137216, -185856, -31616, -256 };
        return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
     }
     case 10:
     {
        int P[] = { 353792, 1841152, 1304832, 128512, 512 };
        return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
     }
     case 11:
     {
        int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
        return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
     }
     case 12:
     {
        int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
        return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
     }
#ifndef BOOST_NO_LONG_LONG
     case 13:
     {
        long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
        return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
     }
     case 14:
     {
        long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
        return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
     }
     case 15:
     {
        long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
        return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
     }
     case 16:
     {
        long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
        return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
     }
     case 17:
     {
        long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
        return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
     }
     case 18:
     {
        long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
        return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
     }
     case 19:
     {
        long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
        return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
     }
     case 20:
     {
        long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
        return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
     }
#endif
     }

     //
     // We'll have to compute the coefficients up to n, 
     // complexity is O(n^2) which we don't worry about for now
     // as the values are computed once and then cached.
     // However, if the final evaluation would have too many
     // terms just bail out right away:
     //
     if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
        return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
#ifdef BOOST_HAS_THREADS
     static boost::detail::lightweight_mutex m;
     boost::detail::lightweight_mutex::scoped_lock l(m);
#endif
     static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));

     int index = n - 1;

     if(index >= (int)table.size())
     {
        for(int i = (int)table.size() - 1; i < index; ++i)
        {
           int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
           int sin_order = i + 2;  // order of the sin term
           int max_cos_order = sin_order - 1;  // largest order of the polynomial of cos terms
           int max_columns = (max_cos_order - offset) / 2;  // How many entries there are in the current row.
           int next_offset = offset ? 0 : 1;
           int next_max_columns = (max_cos_order + 1 - next_offset) / 2;  // How many entries there will be in the next row
           table.push_back(std::vector<T>(next_max_columns + 1, T(0)));

           for(int column = 0; column <= max_columns; ++column)
           {
              int cos_order = 2 * column + offset;  // order of the cosine term in entry "column"
              BOOST_ASSERT(column < (int)table[i].size());
              BOOST_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
              table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
              if(cos_order)
                table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
           }
        }

     }
     T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
     if(index & 1)
        sum *= c;  // First coeffient is order 1, and really an odd polynomial.
     if(sum == 0)
        return sum;
     //
     // The remaining terms are computed using logs since the powers and factorials
     // get real large real quick:
     //
     T power_terms = n * log(boost::math::constants::pi<T>());
     if(s == 0)
        return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
     power_terms -= log(fabs(s)) * (n + 1);
     power_terms += boost::math::lgamma(T(n));
     power_terms += log(fabs(sum));

     if(power_terms > boost::math::tools::log_max_value<T>())
        return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);

     return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
  }

  template <class T, class Policy>
  struct polygamma_initializer
  {
     struct init
     {
        init()
        {
           // Forces initialization of our table of coefficients and mutex:
           boost::math::polygamma(30, T(-2.5f), Policy());
        }
        void force_instantiate()const{}
     };
     static const init initializer;
     static void force_instantiate()
     {
        initializer.force_instantiate();
     }
  };

  template <class T, class Policy>
  const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
  
  template<class T, class Policy>
  inline T polygamma_imp(const int n, T x, const Policy &pol)
  {
    BOOST_MATH_STD_USING
    static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
    polygamma_initializer<T, Policy>::initializer.force_instantiate();
    if(n < 0)
       return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
    if(x < 0)
    {
       if(floor(x) == x)
       {
          //
          // Result is infinity if x is odd, and a pole error if x is even.
          //
          if(lltrunc(x) & 1)
             return policies::raise_overflow_error<T>(function, 0, pol);
          else
             return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
       }
       T z = 1 - x;
       T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
       return n & 1 ? T(-result) : result;
    }
    //
    // Limit for use of small-x-series is chosen
    // so that the series doesn't go too divergent
    // in the first few terms.  Ordinarily this
    // would mean setting the limit to ~ 1 / n,
    // but we can tolerate a small amount of divergence:
    //
    T small_x_limit = std::min(T(T(5) / n), T(0.25f));
    if(x < small_x_limit)
    {
      return polygamma_nearzero(n, x, pol, function);
    }
    else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
    {
      return polygamma_atinfinityplus(n, x, pol, function);
    }
    else if(x == 1)
    {
       return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
    }
    else if(x == 0.5f)
    {
       T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
       if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
          return boost::math::sign(result) * policies::raise_overflow_error<T>(function, 0, pol);
       result *= ldexp(T(1), n + 1) - 1;
       return result;
    }
    else
    {
      return polygamma_attransitionplus(n, x, pol, function);
    }
  }

} } } // namespace boost::math::detail

#endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_