summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/detail/bessel_i0.hpp
blob: 676eb715114c4c3f2dbd1283f91b58542885ac1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
//  Copyright (c) 2006 Xiaogang Zhang
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_BESSEL_I0_HPP
#define BOOST_MATH_BESSEL_I0_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/assert.hpp>

// Modified Bessel function of the first kind of order zero
// minimax rational approximations on intervals, see
// Blair and Edwards, Chalk River Report AECL-4928, 1974

namespace boost { namespace math { namespace detail{

template <typename T>
T bessel_i0(T x);

template <class T>
struct bessel_i0_initializer
{
   struct init
   {
      init()
      {
         do_init();
      }
      static void do_init()
      {
         bessel_i0(T(1));
      }
      void force_instantiate()const{}
   };
   static const init initializer;
   static void force_instantiate()
   {
      initializer.force_instantiate();
   }
};

template <class T>
const typename bessel_i0_initializer<T>::init bessel_i0_initializer<T>::initializer;

template <typename T>
T bessel_i0(T x)
{
    bessel_i0_initializer<T>::force_instantiate();

    static const T P1[] = {
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375249e+15)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5050369673018427753e+14)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2940087627407749166e+13)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4925101247114157499e+11)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1912746104985237192e+10)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0313066708737980747e+08)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9545626019847898221e+05)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4125195876041896775e+03)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.0935347449210549190e+00)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5453977791786851041e-02)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5172644670688975051e-05)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0517226450451067446e-08)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.6843448573468483278e-11)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5982226675653184646e-14)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.2487866627945699800e-18)),
    };
    static const T Q1[] = {
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375245e+15)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.8858692566751002988e+12)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2207067397808979846e+10)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0377081058062166144e+07)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.8527560179962773045e+03)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
    };
    static const T P2[] = {
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2210262233306573296e-04)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3067392038106924055e-02)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4700805721174453923e-01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5674518371240761397e+00)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3517945679239481621e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1611322818701131207e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.6090021968656180000e+00)),
    };
    static const T Q2[] = {
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5194330231005480228e-04)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2547697594819615062e-02)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1151759188741312645e+00)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3982595353892851542e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0228002066743340583e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5539563258012929600e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1446690275135491500e+01)),
        static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
    };
    T value, factor, r;

    BOOST_MATH_STD_USING
    using namespace boost::math::tools;

    BOOST_ASSERT(x >= 0); // negative x is handled before we get here
    if (x == 0)
    {
        return static_cast<T>(1);
    }
    if (x <= 15)                        // x in (0, 15]
    {
        T y = x * x;
        value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
    }
    else                                // x in (15, \infty)
    {
        T y = 1 / x - T(1) / 15;
        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
        factor = exp(x) / sqrt(x);
        value = factor * r;
    }

    return value;
}

}}} // namespaces

#endif // BOOST_MATH_BESSEL_I0_HPP