summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/beta.hpp
blob: 98d8f7fa80372074deb4a0c04bfd958e89499582 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_SPECIAL_BETA_HPP
#define BOOST_MATH_SPECIAL_BETA_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/binomial.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/erf.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/static_assert.hpp>
#include <boost/config/no_tr1/cmath.hpp>

namespace boost{ namespace math{

namespace detail{

//
// Implementation of Beta(a,b) using the Lanczos approximation:
//
template <class T, class Lanczos, class Policy>
T beta_imp(T a, T b, const Lanczos&, const Policy& pol)
{
   BOOST_MATH_STD_USING  // for ADL of std names

   if(a <= 0)
      return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got a=%1%).", a, pol);
   if(b <= 0)
      return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got b=%1%).", b, pol);

   T result;

   T prefix = 1;
   T c = a + b;

   // Special cases:
   if((c == a) && (b < tools::epsilon<T>()))
      return boost::math::tgamma(b, pol);
   else if((c == b) && (a < tools::epsilon<T>()))
      return boost::math::tgamma(a, pol);
   if(b == 1)
      return 1/a;
   else if(a == 1)
      return 1/b;

   /*
   //
   // This code appears to be no longer necessary: it was
   // used to offset errors introduced from the Lanczos
   // approximation, but the current Lanczos approximations
   // are sufficiently accurate for all z that we can ditch
   // this.  It remains in the file for future reference...
   //
   // If a or b are less than 1, shift to greater than 1:
   if(a < 1)
   {
      prefix *= c / a;
      c += 1;
      a += 1;
   }
   if(b < 1)
   {
      prefix *= c / b;
      c += 1;
      b += 1;
   }
   */

   if(a < b)
      std::swap(a, b);

   // Lanczos calculation:
   T agh = a + Lanczos::g() - T(0.5);
   T bgh = b + Lanczos::g() - T(0.5);
   T cgh = c + Lanczos::g() - T(0.5);
   result = Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b) / Lanczos::lanczos_sum_expG_scaled(c);
   T ambh = a - T(0.5) - b;
   if((fabs(b * ambh) < (cgh * 100)) && (a > 100))
   {
      // Special case where the base of the power term is close to 1
      // compute (1+x)^y instead:
      result *= exp(ambh * boost::math::log1p(-b / cgh, pol));
   }
   else
   {
      result *= pow(agh / cgh, a - T(0.5) - b);
   }
   if(cgh > 1e10f)
      // this avoids possible overflow, but appears to be marginally less accurate:
      result *= pow((agh / cgh) * (bgh / cgh), b);
   else
      result *= pow((agh * bgh) / (cgh * cgh), b);
   result *= sqrt(boost::math::constants::e<T>() / bgh);

   // If a and b were originally less than 1 we need to scale the result:
   result *= prefix;

   return result;
} // template <class T, class Lanczos> beta_imp(T a, T b, const Lanczos&)

//
// Generic implementation of Beta(a,b) without Lanczos approximation support
// (Caution this is slow!!!):
//
template <class T, class Policy>
T beta_imp(T a, T b, const lanczos::undefined_lanczos& /* l */, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(a <= 0)
      return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got a=%1%).", a, pol);
   if(b <= 0)
      return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got b=%1%).", b, pol);

   T result;

   T prefix = 1;
   T c = a + b;

   // special cases:
   if((c == a) && (b < tools::epsilon<T>()))
      return boost::math::tgamma(b, pol);
   else if((c == b) && (a < tools::epsilon<T>()))
      return boost::math::tgamma(a, pol);
   if(b == 1)
      return 1/a;
   else if(a == 1)
      return 1/b;

   // shift to a and b > 1 if required:
   if(a < 1)
   {
      prefix *= c / a;
      c += 1;
      a += 1;
   }
   if(b < 1)
   {
      prefix *= c / b;
      c += 1;
      b += 1;
   }
   if(a < b)
      std::swap(a, b);

   // set integration limits:
   T la = (std::max)(T(10), a);
   T lb = (std::max)(T(10), b);
   T lc = (std::max)(T(10), T(a+b));

   // calculate the fraction parts:
   T sa = detail::lower_gamma_series(a, la, pol) / a;
   sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
   T sb = detail::lower_gamma_series(b, lb, pol) / b;
   sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
   T sc = detail::lower_gamma_series(c, lc, pol) / c;
   sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());

   // and the exponent part:
   result = exp(lc - la - lb) * pow(la/lc, a) * pow(lb/lc, b);

   // and combine:
   result *= sa * sb / sc;

   // if a and b were originally less than 1 we need to scale the result:
   result *= prefix;

   return result;
} // template <class T>T beta_imp(T a, T b, const lanczos::undefined_lanczos& l)


//
// Compute the leading power terms in the incomplete Beta:
//
// (x^a)(y^b)/Beta(a,b) when normalised, and
// (x^a)(y^b) otherwise.
//
// Almost all of the error in the incomplete beta comes from this
// function: particularly when a and b are large. Computing large
// powers are *hard* though, and using logarithms just leads to
// horrendous cancellation errors.
//
template <class T, class Lanczos, class Policy>
T ibeta_power_terms(T a,
                        T b,
                        T x,
                        T y,
                        const Lanczos&,
                        bool normalised,
                        const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(!normalised)
   {
      // can we do better here?
      return pow(x, a) * pow(y, b);
   }

   T result;

   T prefix = 1;
   T c = a + b;

   // combine power terms with Lanczos approximation:
   T agh = a + Lanczos::g() - T(0.5);
   T bgh = b + Lanczos::g() - T(0.5);
   T cgh = c + Lanczos::g() - T(0.5);
   result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b));

   // l1 and l2 are the base of the exponents minus one:
   T l1 = (x * b - y * agh) / agh;
   T l2 = (y * a - x * bgh) / bgh;
   if(((std::min)(fabs(l1), fabs(l2)) < 0.2))
   {
      // when the base of the exponent is very near 1 we get really
      // gross errors unless extra care is taken:
      if((l1 * l2 > 0) || ((std::min)(a, b) < 1))
      {
         //
         // This first branch handles the simple cases where either: 
         //
         // * The two power terms both go in the same direction 
         // (towards zero or towards infinity).  In this case if either 
         // term overflows or underflows, then the product of the two must 
         // do so also.  
         // *Alternatively if one exponent is less than one, then we 
         // can't productively use it to eliminate overflow or underflow 
         // from the other term.  Problems with spurious overflow/underflow 
         // can't be ruled out in this case, but it is *very* unlikely 
         // since one of the power terms will evaluate to a number close to 1.
         //
         if(fabs(l1) < 0.1)
         {
            result *= exp(a * boost::math::log1p(l1, pol));
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
         else
         {
            result *= pow((x * cgh) / agh, a);
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
         if(fabs(l2) < 0.1)
         {
            result *= exp(b * boost::math::log1p(l2, pol));
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
         else
         {
            result *= pow((y * cgh) / bgh, b);
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
      }
      else if((std::max)(fabs(l1), fabs(l2)) < 0.5)
      {
         //
         // Both exponents are near one and both the exponents are 
         // greater than one and further these two 
         // power terms tend in opposite directions (one towards zero, 
         // the other towards infinity), so we have to combine the terms 
         // to avoid any risk of overflow or underflow.
         //
         // We do this by moving one power term inside the other, we have:
         //
         //    (1 + l1)^a * (1 + l2)^b
         //  = ((1 + l1)*(1 + l2)^(b/a))^a
         //  = (1 + l1 + l3 + l1*l3)^a   ;  l3 = (1 + l2)^(b/a) - 1
         //                                    = exp((b/a) * log(1 + l2)) - 1
         //
         // The tricky bit is deciding which term to move inside :-)
         // By preference we move the larger term inside, so that the
         // size of the largest exponent is reduced.  However, that can
         // only be done as long as l3 (see above) is also small.
         //
         bool small_a = a < b;
         T ratio = b / a;
         if((small_a && (ratio * l2 < 0.1)) || (!small_a && (l1 / ratio > 0.1)))
         {
            T l3 = boost::math::expm1(ratio * boost::math::log1p(l2, pol), pol);
            l3 = l1 + l3 + l3 * l1;
            l3 = a * boost::math::log1p(l3, pol);
            result *= exp(l3);
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
         else
         {
            T l3 = boost::math::expm1(boost::math::log1p(l1, pol) / ratio, pol);
            l3 = l2 + l3 + l3 * l2;
            l3 = b * boost::math::log1p(l3, pol);
            result *= exp(l3);
            BOOST_MATH_INSTRUMENT_VARIABLE(result);
         }
      }
      else if(fabs(l1) < fabs(l2))
      {
         // First base near 1 only:
         T l = a * boost::math::log1p(l1, pol)
            + b * log((y * cgh) / bgh);
         result *= exp(l);
         BOOST_MATH_INSTRUMENT_VARIABLE(result);
      }
      else
      {
         // Second base near 1 only:
         T l = b * boost::math::log1p(l2, pol)
            + a * log((x * cgh) / agh);
         result *= exp(l);
         BOOST_MATH_INSTRUMENT_VARIABLE(result);
      }
   }
   else
   {
      // general case:
      T b1 = (x * cgh) / agh;
      T b2 = (y * cgh) / bgh;
      l1 = a * log(b1);
      l2 = b * log(b2);
      BOOST_MATH_INSTRUMENT_VARIABLE(b1);
      BOOST_MATH_INSTRUMENT_VARIABLE(b2);
      BOOST_MATH_INSTRUMENT_VARIABLE(l1);
      BOOST_MATH_INSTRUMENT_VARIABLE(l2);
      if((l1 >= tools::log_max_value<T>())
         || (l1 <= tools::log_min_value<T>())
         || (l2 >= tools::log_max_value<T>())
         || (l2 <= tools::log_min_value<T>())
         )
      {
         // Oops, overflow, sidestep:
         if(a < b)
            result *= pow(pow(b2, b/a) * b1, a);
         else
            result *= pow(pow(b1, a/b) * b2, b);
         BOOST_MATH_INSTRUMENT_VARIABLE(result);
      }
      else
      {
         // finally the normal case:
         result *= pow(b1, a) * pow(b2, b);
         BOOST_MATH_INSTRUMENT_VARIABLE(result);
      }
   }
   // combine with the leftover terms from the Lanczos approximation:
   result *= sqrt(bgh / boost::math::constants::e<T>());
   result *= sqrt(agh / cgh);
   result *= prefix;

   BOOST_MATH_INSTRUMENT_VARIABLE(result);

   return result;
}
//
// Compute the leading power terms in the incomplete Beta:
//
// (x^a)(y^b)/Beta(a,b) when normalised, and
// (x^a)(y^b) otherwise.
//
// Almost all of the error in the incomplete beta comes from this
// function: particularly when a and b are large. Computing large
// powers are *hard* though, and using logarithms just leads to
// horrendous cancellation errors.
//
// This version is generic, slow, and does not use the Lanczos approximation.
//
template <class T, class Policy>
T ibeta_power_terms(T a,
                        T b,
                        T x,
                        T y,
                        const boost::math::lanczos::undefined_lanczos&,
                        bool normalised,
                        const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(!normalised)
   {
      return pow(x, a) * pow(y, b);
   }

   T result= 0; // assignment here silences warnings later

   T c = a + b;

   // integration limits for the gamma functions:
   //T la = (std::max)(T(10), a);
   //T lb = (std::max)(T(10), b);
   //T lc = (std::max)(T(10), a+b);
   T la = a + 5;
   T lb = b + 5;
   T lc = a + b + 5;
   // gamma function partials:
   T sa = detail::lower_gamma_series(a, la, pol) / a;
   sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
   T sb = detail::lower_gamma_series(b, lb, pol) / b;
   sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
   T sc = detail::lower_gamma_series(c, lc, pol) / c;
   sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());
   // gamma function powers combined with incomplete beta powers:

   T b1 = (x * lc) / la;
   T b2 = (y * lc) / lb;
   T e1 = lc - la - lb;
   T lb1 = a * log(b1);
   T lb2 = b * log(b2);

   if((lb1 >= tools::log_max_value<T>())
      || (lb1 <= tools::log_min_value<T>())
      || (lb2 >= tools::log_max_value<T>())
      || (lb2 <= tools::log_min_value<T>())
      || (e1 >= tools::log_max_value<T>())
      || (e1 <= tools::log_min_value<T>())
      )
   {
      result = exp(lb1 + lb2 - e1);
   }
   else
   {
      T p1, p2;
      if((fabs(b1 - 1) * a < 10) && (a > 1))
         p1 = exp(a * boost::math::log1p((x * b - y * la) / la, pol));
      else
         p1 = pow(b1, a);
      if((fabs(b2 - 1) * b < 10) && (b > 1))
         p2 = exp(b * boost::math::log1p((y * a - x * lb) / lb, pol));
      else
         p2 = pow(b2, b);
      T p3 = exp(e1);
      result = p1 * p2 / p3;
   }
   // and combine with the remaining gamma function components:
   result /= sa * sb / sc;

   return result;
}
//
// Series approximation to the incomplete beta:
//
template <class T>
struct ibeta_series_t
{
   typedef T result_type;
   ibeta_series_t(T a_, T b_, T x_, T mult) : result(mult), x(x_), apn(a_), poch(1-b_), n(1) {}
   T operator()()
   {
      T r = result / apn;
      apn += 1;
      result *= poch * x / n;
      ++n;
      poch += 1;
      return r;
   }
private:
   T result, x, apn, poch;
   int n;
};

template <class T, class Lanczos, class Policy>
T ibeta_series(T a, T b, T x, T s0, const Lanczos&, bool normalised, T* p_derivative, T y, const Policy& pol)
{
   BOOST_MATH_STD_USING

   T result;

   BOOST_ASSERT((p_derivative == 0) || normalised);

   if(normalised)
   {
      T c = a + b;

      // incomplete beta power term, combined with the Lanczos approximation:
      T agh = a + Lanczos::g() - T(0.5);
      T bgh = b + Lanczos::g() - T(0.5);
      T cgh = c + Lanczos::g() - T(0.5);
      result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b));
      if(a * b < bgh * 10)
         result *= exp((b - 0.5f) * boost::math::log1p(a / bgh, pol));
      else
         result *= pow(cgh / bgh, b - 0.5f);
      result *= pow(x * cgh / agh, a);
      result *= sqrt(agh / boost::math::constants::e<T>());

      if(p_derivative)
      {
         *p_derivative = result * pow(y, b);
         BOOST_ASSERT(*p_derivative >= 0);
      }
   }
   else
   {
      // Non-normalised, just compute the power:
      result = pow(x, a);
   }
   if(result < tools::min_value<T>())
      return s0; // Safeguard: series can't cope with denorms.
   ibeta_series_t<T> s(a, b, x, result);
   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
   result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0);
   policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (with lanczos)", max_iter, pol);
   return result;
}
//
// Incomplete Beta series again, this time without Lanczos support:
//
template <class T, class Policy>
T ibeta_series(T a, T b, T x, T s0, const boost::math::lanczos::undefined_lanczos&, bool normalised, T* p_derivative, T y, const Policy& pol)
{
   BOOST_MATH_STD_USING

   T result;
   BOOST_ASSERT((p_derivative == 0) || normalised);

   if(normalised)
   {
      T c = a + b;

      // figure out integration limits for the gamma function:
      //T la = (std::max)(T(10), a);
      //T lb = (std::max)(T(10), b);
      //T lc = (std::max)(T(10), a+b);
      T la = a + 5;
      T lb = b + 5;
      T lc = a + b + 5;

      // calculate the gamma parts:
      T sa = detail::lower_gamma_series(a, la, pol) / a;
      sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
      T sb = detail::lower_gamma_series(b, lb, pol) / b;
      sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
      T sc = detail::lower_gamma_series(c, lc, pol) / c;
      sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());

      // and their combined power-terms:
      T b1 = (x * lc) / la;
      T b2 = lc/lb;
      T e1 = lc - la - lb;
      T lb1 = a * log(b1);
      T lb2 = b * log(b2);

      if((lb1 >= tools::log_max_value<T>())
         || (lb1 <= tools::log_min_value<T>())
         || (lb2 >= tools::log_max_value<T>())
         || (lb2 <= tools::log_min_value<T>())
         || (e1 >= tools::log_max_value<T>())
         || (e1 <= tools::log_min_value<T>()) )
      {
         T p = lb1 + lb2 - e1;
         result = exp(p);
      }
      else
      {
         result = pow(b1, a);
         if(a * b < lb * 10)
            result *= exp(b * boost::math::log1p(a / lb, pol));
         else
            result *= pow(b2, b);
         result /= exp(e1);
      }
      // and combine the results:
      result /= sa * sb / sc;

      if(p_derivative)
      {
         *p_derivative = result * pow(y, b);
         BOOST_ASSERT(*p_derivative >= 0);
      }
   }
   else
   {
      // Non-normalised, just compute the power:
      result = pow(x, a);
   }
   if(result < tools::min_value<T>())
      return s0; // Safeguard: series can't cope with denorms.
   ibeta_series_t<T> s(a, b, x, result);
   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
   result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0);
   policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (without lanczos)", max_iter, pol);
   return result;
}

//
// Continued fraction for the incomplete beta:
//
template <class T>
struct ibeta_fraction2_t
{
   typedef std::pair<T, T> result_type;

   ibeta_fraction2_t(T a_, T b_, T x_, T y_) : a(a_), b(b_), x(x_), y(y_), m(0) {}

   result_type operator()()
   {
      T aN = (a + m - 1) * (a + b + m - 1) * m * (b - m) * x * x;
      T denom = (a + 2 * m - 1);
      aN /= denom * denom;

      T bN = m;
      bN += (m * (b - m) * x) / (a + 2*m - 1);
      bN += ((a + m) * (a * y - b * x + 1 + m *(2 - x))) / (a + 2*m + 1);

      ++m;

      return std::make_pair(aN, bN);
   }

private:
   T a, b, x, y;
   int m;
};
//
// Evaluate the incomplete beta via the continued fraction representation:
//
template <class T, class Policy>
inline T ibeta_fraction2(T a, T b, T x, T y, const Policy& pol, bool normalised, T* p_derivative)
{
   typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
   BOOST_MATH_STD_USING
   T result = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol);
   if(p_derivative)
   {
      *p_derivative = result;
      BOOST_ASSERT(*p_derivative >= 0);
   }
   if(result == 0)
      return result;

   ibeta_fraction2_t<T> f(a, b, x, y);
   T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon<T, Policy>());
   BOOST_MATH_INSTRUMENT_VARIABLE(fract);
   BOOST_MATH_INSTRUMENT_VARIABLE(result);
   return result / fract;
}
//
// Computes the difference between ibeta(a,b,x) and ibeta(a+k,b,x):
//
template <class T, class Policy>
T ibeta_a_step(T a, T b, T x, T y, int k, const Policy& pol, bool normalised, T* p_derivative)
{
   typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;

   BOOST_MATH_INSTRUMENT_VARIABLE(k);

   T prefix = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol);
   if(p_derivative)
   {
      *p_derivative = prefix;
      BOOST_ASSERT(*p_derivative >= 0);
   }
   prefix /= a;
   if(prefix == 0)
      return prefix;
   T sum = 1;
   T term = 1;
   // series summation from 0 to k-1:
   for(int i = 0; i < k-1; ++i)
   {
      term *= (a+b+i) * x / (a+i+1);
      sum += term;
   }
   prefix *= sum;

   return prefix;
}
//
// This function is only needed for the non-regular incomplete beta,
// it computes the delta in:
// beta(a,b,x) = prefix + delta * beta(a+k,b,x)
// it is currently only called for small k.
//
template <class T>
inline T rising_factorial_ratio(T a, T b, int k)
{
   // calculate:
   // (a)(a+1)(a+2)...(a+k-1)
   // _______________________
   // (b)(b+1)(b+2)...(b+k-1)

   // This is only called with small k, for large k
   // it is grossly inefficient, do not use outside it's
   // intended purpose!!!
   BOOST_MATH_INSTRUMENT_VARIABLE(k);
   if(k == 0)
      return 1;
   T result = 1;
   for(int i = 0; i < k; ++i)
      result *= (a+i) / (b+i);
   return result;
}
//
// Routine for a > 15, b < 1
//
// Begin by figuring out how large our table of Pn's should be,
// quoted accuracies are "guestimates" based on empiracal observation.
// Note that the table size should never exceed the size of our
// tables of factorials.
//
template <class T>
struct Pn_size
{
   // This is likely to be enough for ~35-50 digit accuracy
   // but it's hard to quantify exactly:
   BOOST_STATIC_CONSTANT(unsigned, value = 50);
   BOOST_STATIC_ASSERT(::boost::math::max_factorial<T>::value >= 100);
};
template <>
struct Pn_size<float>
{
   BOOST_STATIC_CONSTANT(unsigned, value = 15); // ~8-15 digit accuracy
   BOOST_STATIC_ASSERT(::boost::math::max_factorial<float>::value >= 30);
};
template <>
struct Pn_size<double>
{
   BOOST_STATIC_CONSTANT(unsigned, value = 30); // 16-20 digit accuracy
   BOOST_STATIC_ASSERT(::boost::math::max_factorial<double>::value >= 60);
};
template <>
struct Pn_size<long double>
{
   BOOST_STATIC_CONSTANT(unsigned, value = 50); // ~35-50 digit accuracy
   BOOST_STATIC_ASSERT(::boost::math::max_factorial<long double>::value >= 100);
};

template <class T, class Policy>
T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Policy& pol, bool normalised)
{
   typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
   BOOST_MATH_STD_USING
   //
   // This is DiDonato and Morris's BGRAT routine, see Eq's 9 through 9.6.
   //
   // Some values we'll need later, these are Eq 9.1:
   //
   T bm1 = b - 1;
   T t = a + bm1 / 2;
   T lx, u;
   if(y < 0.35)
      lx = boost::math::log1p(-y, pol);
   else
      lx = log(x);
   u = -t * lx;
   // and from from 9.2:
   T prefix;
   T h = regularised_gamma_prefix(b, u, pol, lanczos_type());
   if(h <= tools::min_value<T>())
      return s0;
   if(normalised)
   {
      prefix = h / boost::math::tgamma_delta_ratio(a, b, pol);
      prefix /= pow(t, b);
   }
   else
   {
      prefix = full_igamma_prefix(b, u, pol) / pow(t, b);
   }
   prefix *= mult;
   //
   // now we need the quantity Pn, unfortunatately this is computed
   // recursively, and requires a full history of all the previous values
   // so no choice but to declare a big table and hope it's big enough...
   //
   T p[ ::boost::math::detail::Pn_size<T>::value ] = { 1 };  // see 9.3.
   //
   // Now an initial value for J, see 9.6:
   //
   T j = boost::math::gamma_q(b, u, pol) / h;
   //
   // Now we can start to pull things together and evaluate the sum in Eq 9:
   //
   T sum = s0 + prefix * j;  // Value at N = 0
   // some variables we'll need:
   unsigned tnp1 = 1; // 2*N+1
   T lx2 = lx / 2;
   lx2 *= lx2;
   T lxp = 1;
   T t4 = 4 * t * t;
   T b2n = b;

   for(unsigned n = 1; n < sizeof(p)/sizeof(p[0]); ++n)
   {
      /*
      // debugging code, enable this if you want to determine whether
      // the table of Pn's is large enough...
      //
      static int max_count = 2;
      if(n > max_count)
      {
         max_count = n;
         std::cerr << "Max iterations in BGRAT was " << n << std::endl;
      }
      */
      //
      // begin by evaluating the next Pn from Eq 9.4:
      //
      tnp1 += 2;
      p[n] = 0;
      T mbn = b - n;
      unsigned tmp1 = 3;
      for(unsigned m = 1; m < n; ++m)
      {
         mbn = m * b - n;
         p[n] += mbn * p[n-m] / boost::math::unchecked_factorial<T>(tmp1);
         tmp1 += 2;
      }
      p[n] /= n;
      p[n] += bm1 / boost::math::unchecked_factorial<T>(tnp1);
      //
      // Now we want Jn from Jn-1 using Eq 9.6:
      //
      j = (b2n * (b2n + 1) * j + (u + b2n + 1) * lxp) / t4;
      lxp *= lx2;
      b2n += 2;
      //
      // pull it together with Eq 9:
      //
      T r = prefix * p[n] * j;
      sum += r;
      if(r > 1)
      {
         if(fabs(r) < fabs(tools::epsilon<T>() * sum))
            break;
      }
      else
      {
         if(fabs(r / tools::epsilon<T>()) < fabs(sum))
            break;
      }
   }
   return sum;
} // template <class T, class Lanczos>T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Lanczos& l, bool normalised)

//
// For integer arguments we can relate the incomplete beta to the
// complement of the binomial distribution cdf and use this finite sum.
//
template <class T>
T binomial_ccdf(T n, T k, T x, T y)
{
   BOOST_MATH_STD_USING // ADL of std names

   T result = pow(x, n);

   if(result > tools::min_value<T>())
   {
      T term = result;
      for(unsigned i = itrunc(T(n - 1)); i > k; --i)
      {
         term *= ((i + 1) * y) / ((n - i) * x);
         result += term;
      }
   }
   else
   {
      // First term underflows so we need to start at the mode of the
      // distribution and work outwards:
      int start = itrunc(n * x);
      if(start <= k + 1)
         start = itrunc(k + 2);
      result = pow(x, start) * pow(y, n - start) * boost::math::binomial_coefficient<T>(itrunc(n), itrunc(start));
      if(result == 0)
      {
         // OK, starting slightly above the mode didn't work, 
         // we'll have to sum the terms the old fashioned way:
         for(unsigned i = start - 1; i > k; --i)
         {
            result += pow(x, (int)i) * pow(y, n - i) * boost::math::binomial_coefficient<T>(itrunc(n), itrunc(i));
         }
      }
      else
      {
         T term = result;
         T start_term = result;
         for(unsigned i = start - 1; i > k; --i)
         {
            term *= ((i + 1) * y) / ((n - i) * x);
            result += term;
         }
         term = start_term;
         for(unsigned i = start + 1; i <= n; ++i)
         {
            term *= (n - i + 1) * x / (i * y);
            result += term;
         }
      }
   }

   return result;
}


//
// The incomplete beta function implementation:
// This is just a big bunch of spagetti code to divide up the
// input range and select the right implementation method for
// each domain:
//
template <class T, class Policy>
T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised, T* p_derivative)
{
   static const char* function = "boost::math::ibeta<%1%>(%1%, %1%, %1%)";
   typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
   BOOST_MATH_STD_USING // for ADL of std math functions.

   BOOST_MATH_INSTRUMENT_VARIABLE(a);
   BOOST_MATH_INSTRUMENT_VARIABLE(b);
   BOOST_MATH_INSTRUMENT_VARIABLE(x);
   BOOST_MATH_INSTRUMENT_VARIABLE(inv);
   BOOST_MATH_INSTRUMENT_VARIABLE(normalised);

   bool invert = inv;
   T fract;
   T y = 1 - x;

   BOOST_ASSERT((p_derivative == 0) || normalised);

   if(p_derivative)
      *p_derivative = -1; // value not set.

   if((x < 0) || (x > 1))
      return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%).", x, pol);

   if(normalised)
   {
      if(a < 0)
         return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be >= zero (got a=%1%).", a, pol);
      if(b < 0)
         return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be >= zero (got b=%1%).", b, pol);
      // extend to a few very special cases:
      if(a == 0)
      {
         if(b == 0)
            return policies::raise_domain_error<T>(function, "The arguments a and b to the incomplete beta function cannot both be zero, with x=%1%.", x, pol);
         if(b > 0)
            return inv ? 0 : 1;
      }
      else if(b == 0)
      {
         if(a > 0)
            return inv ? 1 : 0;
      }
   }
   else
   {
      if(a <= 0)
         return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%).", a, pol);
      if(b <= 0)
         return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%).", b, pol);
   }

   if(x == 0)
   {
      if(p_derivative)
      {
         *p_derivative = (a == 1) ? (T)1 : (a < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2);
      }
      return (invert ? (normalised ? T(1) : boost::math::beta(a, b, pol)) : T(0));
   }
   if(x == 1)
   {
      if(p_derivative)
      {
         *p_derivative = (b == 1) ? T(1) : (b < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2);
      }
      return (invert == 0 ? (normalised ? 1 : boost::math::beta(a, b, pol)) : 0);
   }
   if((a == 0.5f) && (b == 0.5f))
   {
      // We have an arcsine distribution:
      if(p_derivative)
      {
         *p_derivative = 1 / constants::pi<T>() * sqrt(y * x);
      }
      T p = invert ? asin(sqrt(y)) / constants::half_pi<T>() : asin(sqrt(x)) / constants::half_pi<T>();
      if(!normalised)
         p *= constants::pi<T>();
      return p;
   }
   if(a == 1)
   {
      std::swap(a, b);
      std::swap(x, y);
      invert = !invert;
   }
   if(b == 1)
   {
      //
      // Special case see: http://functions.wolfram.com/GammaBetaErf/BetaRegularized/03/01/01/
      //
      if(a == 1)
      {
         if(p_derivative)
            *p_derivative = 1;
         return invert ? y : x;
      }
      
      if(p_derivative)
      {
         *p_derivative = a * pow(x, a - 1);
      }
      T p;
      if(y < 0.5)
         p = invert ? T(-boost::math::expm1(a * boost::math::log1p(-y, pol), pol)) : T(exp(a * boost::math::log1p(-y, pol)));
      else
         p = invert ? T(-boost::math::powm1(x, a, pol)) : T(pow(x, a));
      if(!normalised)
         p /= a;
      return p;
   }

   if((std::min)(a, b) <= 1)
   {
      if(x > 0.5)
      {
         std::swap(a, b);
         std::swap(x, y);
         invert = !invert;
         BOOST_MATH_INSTRUMENT_VARIABLE(invert);
      }
      if((std::max)(a, b) <= 1)
      {
         // Both a,b < 1:
         if((a >= (std::min)(T(0.2), b)) || (pow(x, a) <= 0.9))
         {
            if(!invert)
            {
               fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
            else
            {
               fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
               invert = false;
               fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
         }
         else
         {
            std::swap(a, b);
            std::swap(x, y);
            invert = !invert;
            if(y >= 0.3)
            {
               if(!invert)
               {
                  fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
               else
               {
                  fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
                  invert = false;
                  fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
            }
            else
            {
               // Sidestep on a, and then use the series representation:
               T prefix;
               if(!normalised)
               {
                  prefix = rising_factorial_ratio(T(a+b), a, 20);
               }
               else
               {
                  prefix = 1;
               }
               fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative);
               if(!invert)
               {
                  fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
               else
               {
                  fract -= (normalised ? 1 : boost::math::beta(a, b, pol));
                  invert = false;
                  fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
            }
         }
      }
      else
      {
         // One of a, b < 1 only:
         if((b <= 1) || ((x < 0.1) && (pow(b * x, a) <= 0.7)))
         {
            if(!invert)
            {
               fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
            else
            {
               fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
               invert = false;
               fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
         }
         else
         {
            std::swap(a, b);
            std::swap(x, y);
            invert = !invert;

            if(y >= 0.3)
            {
               if(!invert)
               {
                  fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
               else
               {
                  fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
                  invert = false;
                  fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
            }
            else if(a >= 15)
            {
               if(!invert)
               {
                  fract = beta_small_b_large_a_series(a, b, x, y, T(0), T(1), pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
               else
               {
                  fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
                  invert = false;
                  fract = -beta_small_b_large_a_series(a, b, x, y, fract, T(1), pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
            }
            else
            {
               // Sidestep to improve errors:
               T prefix;
               if(!normalised)
               {
                  prefix = rising_factorial_ratio(T(a+b), a, 20);
               }
               else
               {
                  prefix = 1;
               }
               fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               if(!invert)
               {
                  fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
               else
               {
                  fract -= (normalised ? 1 : boost::math::beta(a, b, pol));
                  invert = false;
                  fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
                  BOOST_MATH_INSTRUMENT_VARIABLE(fract);
               }
            }
         }
      }
   }
   else
   {
      // Both a,b >= 1:
      T lambda;
      if(a < b)
      {
         lambda = a - (a + b) * x;
      }
      else
      {
         lambda = (a + b) * y - b;
      }
      if(lambda < 0)
      {
         std::swap(a, b);
         std::swap(x, y);
         invert = !invert;
         BOOST_MATH_INSTRUMENT_VARIABLE(invert);
      }
      
      if(b < 40)
      {
         if((floor(a) == a) && (floor(b) == b) && (a < (std::numeric_limits<int>::max)() - 100))
         {
            // relate to the binomial distribution and use a finite sum:
            T k = a - 1;
            T n = b + k;
            fract = binomial_ccdf(n, k, x, y);
            if(!normalised)
               fract *= boost::math::beta(a, b, pol);
            BOOST_MATH_INSTRUMENT_VARIABLE(fract);
         }
         else if(b * x <= 0.7)
         {
            if(!invert)
            {
               fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
            else
            {
               fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
               invert = false;
               fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
               BOOST_MATH_INSTRUMENT_VARIABLE(fract);
            }
         }
         else if(a > 15)
         {
            // sidestep so we can use the series representation:
            int n = itrunc(T(floor(b)), pol);
            if(n == b)
               --n;
            T bbar = b - n;
            T prefix;
            if(!normalised)
            {
               prefix = rising_factorial_ratio(T(a+bbar), bbar, n);
            }
            else
            {
               prefix = 1;
            }
            fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0));
            fract = beta_small_b_large_a_series(a,  bbar, x, y, fract, T(1), pol, normalised);
            fract /= prefix;
            BOOST_MATH_INSTRUMENT_VARIABLE(fract);
         }
         else if(normalised)
         {
            // The formula here for the non-normalised case is tricky to figure
            // out (for me!!), and requires two pochhammer calculations rather
            // than one, so leave it for now and only use this in the normalized case....
            int n = itrunc(T(floor(b)), pol);
            T bbar = b - n;
            if(bbar <= 0)
            {
               --n;
               bbar += 1;
            }
            fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0));
            fract += ibeta_a_step(a, bbar, x, y, 20, pol, normalised, static_cast<T*>(0));
            if(invert)
               fract -= 1;  // Note this line would need changing if we ever enable this branch in non-normalized case
            fract = beta_small_b_large_a_series(T(a+20),  bbar, x, y, fract, T(1), pol, normalised);
            if(invert)
            {
               fract = -fract;
               invert = false;
            }
            BOOST_MATH_INSTRUMENT_VARIABLE(fract);
         }
         else
         {
            fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative);
            BOOST_MATH_INSTRUMENT_VARIABLE(fract);
         }
      }
      else
      {
         fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative);
         BOOST_MATH_INSTRUMENT_VARIABLE(fract);
      }
   }
   if(p_derivative)
   {
      if(*p_derivative < 0)
      {
         *p_derivative = ibeta_power_terms(a, b, x, y, lanczos_type(), true, pol);
      }
      T div = y * x;

      if(*p_derivative != 0)
      {
         if((tools::max_value<T>() * div < *p_derivative))
         {
            // overflow, return an arbitarily large value:
            *p_derivative = tools::max_value<T>() / 2;
         }
         else
         {
            *p_derivative /= div;
         }
      }
   }
   return invert ? (normalised ? 1 : boost::math::beta(a, b, pol)) - fract : fract;
} // template <class T, class Lanczos>T ibeta_imp(T a, T b, T x, const Lanczos& l, bool inv, bool normalised)

template <class T, class Policy>
inline T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised)
{
   return ibeta_imp(a, b, x, pol, inv, normalised, static_cast<T*>(0));
}

template <class T, class Policy>
T ibeta_derivative_imp(T a, T b, T x, const Policy& pol)
{
   static const char* function = "ibeta_derivative<%1%>(%1%,%1%,%1%)";
   //
   // start with the usual error checks:
   //
   if(a <= 0)
      return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%).", a, pol);
   if(b <= 0)
      return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%).", b, pol);
   if((x < 0) || (x > 1))
      return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%).", x, pol);
   //
   // Now the corner cases:
   //
   if(x == 0)
   {
      return (a > 1) ? 0 : 
         (a == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol);
   }
   else if(x == 1)
   {
      return (b > 1) ? 0 :
         (b == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol);
   }
   //
   // Now the regular cases:
   //
   typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
   T f1 = ibeta_power_terms<T>(a, b, x, 1 - x, lanczos_type(), true, pol);
   T y = (1 - x) * x;

   if(f1 == 0)
      return 0;
   
   if((tools::max_value<T>() * y < f1))
   {
      // overflow:
      return policies::raise_overflow_error<T>(function, 0, pol);
   }

   f1 /= y;

   return f1;
}
//
// Some forwarding functions that dis-ambiguate the third argument type:
//
template <class RT1, class RT2, class Policy>
inline typename tools::promote_args<RT1, RT2>::type 
   beta(RT1 a, RT2 b, const Policy&, const mpl::true_*)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::beta_imp(static_cast<value_type>(a), static_cast<value_type>(b), evaluation_type(), forwarding_policy()), "boost::math::beta<%1%>(%1%,%1%)");
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   beta(RT1 a, RT2 b, RT3 x, const mpl::false_*)
{
   return boost::math::beta(a, b, x, policies::policy<>());
}
} // namespace detail

//
// The actual function entry-points now follow, these just figure out
// which Lanczos approximation to use
// and forward to the implementation functions:
//
template <class RT1, class RT2, class A>
inline typename tools::promote_args<RT1, RT2, A>::type 
   beta(RT1 a, RT2 b, A arg)
{
   typedef typename policies::is_policy<A>::type tag;
   return boost::math::detail::beta(a, b, arg, static_cast<tag*>(0));
}

template <class RT1, class RT2>
inline typename tools::promote_args<RT1, RT2>::type 
   beta(RT1 a, RT2 b)
{
   return boost::math::beta(a, b, policies::policy<>());
}

template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   beta(RT1 a, RT2 b, RT3 x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, false), "boost::math::beta<%1%>(%1%,%1%,%1%)");
}

template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   betac(RT1 a, RT2 b, RT3 x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, false), "boost::math::betac<%1%>(%1%,%1%,%1%)");
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   betac(RT1 a, RT2 b, RT3 x)
{
   return boost::math::betac(a, b, x, policies::policy<>());
}

template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibeta(RT1 a, RT2 b, RT3 x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, true), "boost::math::ibeta<%1%>(%1%,%1%,%1%)");
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibeta(RT1 a, RT2 b, RT3 x)
{
   return boost::math::ibeta(a, b, x, policies::policy<>());
}

template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibetac(RT1 a, RT2 b, RT3 x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, true), "boost::math::ibetac<%1%>(%1%,%1%,%1%)");
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibetac(RT1 a, RT2 b, RT3 x)
{
   return boost::math::ibetac(a, b, x, policies::policy<>());
}

template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy()), "boost::math::ibeta_derivative<%1%>(%1%,%1%,%1%)");
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type 
   ibeta_derivative(RT1 a, RT2 b, RT3 x)
{
   return boost::math::ibeta_derivative(a, b, x, policies::policy<>());
}

} // namespace math
} // namespace boost

#include <boost/math/special_functions/detail/ibeta_inverse.hpp>
#include <boost/math/special_functions/detail/ibeta_inv_ab.hpp>

#endif // BOOST_MATH_SPECIAL_BETA_HPP